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in the two enantiomers of the topological chiral
semimetal PdGa
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It has recently been proposed that combining chirality with topological band theory results in

a totally new class of fermions. Understanding how these unconventional quasiparticles

propagate and interact remains largely unexplored so far. Here, we use scanning tunneling

microscopy to visualize the electronic properties of the prototypical chiral topological

semimetal PdGa. We reveal chiral quantum interference patterns of opposite spiraling

directions for the two PdGa enantiomers, a direct manifestation of the change of sign of their

Chern number. Additionally, we demonstrate that PdGa remains topologically non-trivial over

a large energy range, experimentally detecting Fermi arcs in an energy window of more than

1.6 eV that is symmetrically centered around the Fermi level. These results are a consequence

of the deep connection between chirality in real and reciprocal space in this class of materials,

and, thereby, establish PdGa as an ideal topological chiral semimetal.
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The discovery of symmetry-protected topological materials
represents a milestone in condensed matter physics1,2.
They provide a new paradigm with regard to the band

structure of solids, allowing for a classification of materials based
on well-defined topological invariants that are calculated as global
quantities from their bulk wave functions. On a fundamental
level, the development of topological concepts in condensed
matter has provided a fertile ground for the realization, in table-
top experiments, of concepts such as Majorana3,4 and Weyl
fermions5,6, which were first predicted but never realized in the
field of high-energy physics. More recently, it has been suggested
that condensed matters systems can host totally new fermions,
resulting from band crossings protected by specific symmetries of
one of the 230 space groups7. In this context, the concept of
chirality occupies a primary role8–11. Chiral structures are char-
acterised by a well-defined handedness due to the lack of both
mirror and inversion symmetries, resulting in two distinct
enantiomers. Their handedness can be manifested in several
forms including non-collinear spin textures12, magnetochiral
dichroism13, or unconventional superconductivity14. The addi-
tional existence of topologically non-trivial bands is expected to
confer on chiral crystals unique physical properties which, not
only don’t exist in conventional materials, but are also forbidden
in other topological classes11. These phenomena are directly
linked to the Chern number, an integer used to classify the
topological properties of the band structures in solids, and which
is obtained by integrating the Berry curvature over a closed
surface in momentum space. Because of the pseudovector-
character of the Berry phase, the Chern number reverts its sign
under a mirror operation. Far from being a purely mathematical
concept, this property has far-reaching implications and, in
topologically non-trivial chiral crystals, is expected to result in
radically new effects such as quantized circular photo-galvanic
effects15, unusual phonon dynamics16, and gyrotropic magnetic
effects17.

Angle resolved photoemission (ARPES) studies have provided
strong evidence for chiral Fermi arcs in chiral crystals belonging
to the space group P213, number 19818,19. Recent scanning tun-
neling microscopy (STM) measurements detected surface-
orientation dependent states exhibiting chiral fermion char-
acteristics in one CoSi enantiomer20. However, the experimental
investigation of chirality-dependent phenomena, i.e., the emer-
gence, observation, and manipulation of effects directly linked to
the sign of the Chern number, remains largely unexplored. This
requires chiral topological semimetals for which both enantio-
mers can be selectively synthesized so as to control the sign of the
topological charge while keeping all other material properties
unchanged21.

Here, we use STM to visualise how these unconventional
quasiparticles propagate and interact with defects in the two
enantiomers of the prototypical chiral semimetal PdGa. Our
results provide compelling experimental evidence of a new and
distinct feature of this class of materials: handedness-dependent
scattering. We directly detect this effect in two distinct ways: (i)
the opposite chirality of the quantum coherent interference pat-
terns of the surface Fermi arcs in the two enantiomers and, (ii)
their opposite energy-dependent spiraling direction, i.e., clock-
wise and anticlockwise. By imaging the perturbation pattern
developing around defects in the crystal lattice of the two enan-
tiomers, our results provide self-consistent experimental evidence
of the deep connection between chirality in real and reciprocal
space in this class of materials, with chiral multifold-fermion
crossings in reciprocal space being protected by the chiral crystal
structure in real space. Finally, by spectroscopically analysing
unoccupied states, which are not accessible by conventional
photoemission techniques, we demonstrate that PdGa remains

topologically non-trivial over a very wide energy window, with
Fermi arcs existing in an energy window of more than 1.6 eV
symmetrically centered around the Fermi level. These observa-
tions, jointly with the large extension of the Fermi arcs over the
surface Brillouin zone, set PdGa as an ideal topological conductor,
making it a promising platform to access and utilize optical and
transport phenomena dictated by topology.

Results
Crystal structure and electronic properties. PdGa belongs to the
family of chiral crystals with a cubic B20 structure, as illustrated
in Fig. 1a. Gray and blue correspond to Pd and Ga atoms,
respectively. The chirality can be distinguished by the handedness
of the helix such as that formed by the Ga atoms, which rotates
either clockwise or anticlockwise, depending on the enantiomer.
The structural chirality directly determines the electronic prop-
erties. As schematically illustrated in Fig. 1b, symmetry-protected
band crossings are visible at the Γ and R high symmetry points in
the bulk. In particular, a spin-3/2 fermion is realized near the Γ
point, while a double spin-1 fermion is realized at the R (see
Supplementary Note 1 for a detailed discussion). These crossings
act as a source (red dot) or a sink (blue dot) of Berry curvature.
They correspond to a Chern number of magnitude 4, i.e., the
maximum Chern number achievable at a multifold node cross-
ing22, and reverse sign under a mirror operation23. Note that,
contrary to non-chiral topological semimetals, these crossings are
well-separated in energy. Because of the surface-bulk correspon-
dence characterizing topological materials, this scenario results in
the emergence of topologically protected surface Fermi arcs
emanating from momenta that match that of the surface pro-
jections of the bulk’s nodes. At the (001) surface, Γ and R bulk
points are maximally separated, being projected onto the Γ and M
points, respectively. Consequently, Fermi arcs characterized by an
extremely large extension appear, spanning the whole surface
Brillouin zone as illustrated in Fig. 1c, with a dispersion which
changes sign under a mirror operation.

Figure 1d shows a topographical overview of the PdGa(001)
surface (experimental details on samples preparation can be
found in “Methods” and Supplementary Fig. 1). Large, atomically
flat terraces with extremely low defect concentrations are visible,
confirming the high quality of the crystals. The line profile
analysis allows the identification of the smallest step height, which
is 2.5 Å. This value matches well with that of half the unit cell as
illustrated in the inset, where adjacent terraces are labeled I and
II, respectively. Atomically resolved images for crystals of
opposite handedness are displayed in Fig. 1e. A square lattice is
visible in both enantiomers with a periodicity a= 4.9 Å matching
the bulk lattice constant. A careful inspection of the perturbation
developing around native defects reveals the presence of a
strongly anisotropic pattern which cannot be superimposed on its
mirror image. As illustrated in Supplementary Figs. 2, 3 and
discussed in Supplementary Note 2, this behavior is consistent
with the bulk characterization of the two enantiomers, providing
a direct real space signature of the structural bulk chirality.

The local density of states (LDOS) has been experimentally
inferred by scanning tunneling spectroscopy (STS) measure-
ments. Results are reported in Fig. 1f. The minimum in the LDOS
that is visible around the Fermi level highlights the semi-metallic
character of the compound. Even though STS strongly depends
on how electronic states decay into the vacuum, with higher
sensitivity for states located at the center of the surface Brillouin
zone24, our results are in good agreement with the theoretically
calculated LDOS, obtained by projecting the bulk band structure
over the surface. A one-to-one matching is evident for all of the
most prominent features visible in the spectrum, i.e., the peaks
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located at +400 and +650 meV with respect to the Fermi level
(see gray dashed lines).

Handedness-dependent quasiparticle interference. To investi-
gate how the bulk chirality impacts the electronic properties, we
analyzed the standing wave patterns generated by coherent scat-
tering of quasiparticles at defects. The resulting LDOS modula-
tions are visualized by energy-resolved differential conductance
(dI/dU) maps that were measured at 1.9 K in order to have a larger
coherence length and an improved energy resolution. Fourier
transforms (FT) of these data allow the quantitative analysis of this
information in reciprocal space, making the visualization of the
scattering vectors q that connect the initial ki and final kf states on
an iso-energy contour possible, i.e., q= ki − kf. This technique,
originally developed in the context of trivial surface states in noble
metal surfaces25, has recently been applied to investigate the
unconventional electronic properties of different classes of topo-
logically non-trivial materials26–29. In contrast to conventional
photoemission, this method allows access of both, occupied and
unoccupied states, thus providing a complete spectroscopic
characterization of quasiparticles that sit close to the Fermi level,
i.e., those dominating the transport properties. This is particularly

important in the present case. Photoemission studies have shown
that Fermi arcs are overlapping with topologically trivial bulk
bands for occupied states, complicating their identification23. On
the other hand, theoretical calculations predict them to become
strongly decoupled from bulk states at positive energies, a scenario
favoring their experimental detection (see Supplementary Fig. 4).

Figure 2a–h summarizes the results obtained at four repre-
sentative energies from two PdGa(001) single crystals with
opposite chiralities. The Bragg spots of the square (001) surface
lattice can clearly be identified (highlighted by four gray circles).
They are located at a distance 2π/a from the center, with a=
4.9 Å being the lattice constant. The FT-maps show a rich
plethora of scattering vectors. Their lengths, and even more
remarkably their pattern, rapidly evolve with energy. No FT-
pattern is visible for occupied states, a direct consequence of
Fermi arcs overlapping with bulk states, generating a continuum
of possible scattering vectors which washes out any Fermi-arc
distinct features (see Supplementary Fig. 5). For each energy, a
one-to-one comparison of measurements taken on crystals of
opposite handedness clearly reveals, despite different background
contributions, that scattering events are chiral, i.e., FT-maps
taken on the two enantiomers are related by a mirror operation.
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Fig. 1 Connection between chirality in real and reciprocal space in PdGa. a Crystal structure for both PdGa enantiomers. Gray and blue atoms correspond
to Pd and Ga, respectively. The handedness can be distinguished considering the helix formed by Ga atoms; b Schematic line cut showing the symmetry-
protected band crossing at Γ and R points, respectively. The Chern number associated to the nodes reverts its sign by mirror operation. c Fermi arcs
developing on the surface for the two different enantiomers as a result of the surface-bulk connectivity. d Topographic overview of the PdGa (001) surface.
The line profile evidence the minimum step height, corresponding to half unit cell. The two possible surface terminations, labeled I and II, are reported in
the inset. The scalebar corresponds to 20 nm. e Atomically resolved images for crystals of opposite handedness. The perturbation developing around
native defects cannot be superimposed to its mirror image. The scalebar corresponds to 5 nm. f Comparison between experimental (red line) and
theoretical (blue line) local density of states.
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As highlighted in the zoomed FT-maps displayed in panel i and j,
this is the case for both long and short scattering vectors, labeled
A(Aʼ) and B(Bʼ), respectively.

Measurements performed on terraces separated by half-integer
unit cells provide the very same results (see Supplementary
Fig. 6). This demonstrates that our findings are not related to
possible terrace-dependent trivial surface states, but are an
intrinsic property of the overall PdGa(001) surface termination.
In addition, Mn adatoms were dosed onto the surface. Despite
this procedure, which was applied to increase the disorder,
resulting in a significantly stronger background in the FT-maps,
large q scattering vectors [labeled A(Aʼ) in Fig. 2] are still visible
(see Supplementary Fig. 7), confirming that the signatures visible
in our FT-maps are of a topological origin.

Furthermore, our measurements reveal opposite spiraling
directions in the energy-dependent evolution of the QPI pattern
for the two enantiomers, as illustrated in Fig. 3, where the long
scattering vectors (A and Aʼ in Fig. 2) are shown at progressively
higher energies. A comparison between enantiomers A and B
reveal their opposite rotational sense: anticlockwise vs. clockwise,
respectively.

Theoretical analysis. The emergence of chirality-dependent
scattering between topological Fermi arcs is further supported
by our theoretical analysis reported in Fig. 4. Panel a shows a
constant energy cut at E=+450 meV for both PdGa(001)
enantiomers, showing long chiral Fermi arcs that are well
decoupled from bulk states. As expected, only a mirror operation
can convert one handedness of the Fermi arcs to the other. The
FT-maps, calculated by including the spin-dependent scattering
probabilities that take into account the influence of the relative
spin orientations of the initial and final states, are displayed in

Fig. 4b. The FT-maps, and thus the scattering events, are chiral in
the two PdGa enantiomers and are related by a mirror operation.
The rich plethora of scattering vectors and their rapid evolution
as a function of energy makes it difficult to establish a one-to-one
correspondence for all features visible in the FT-dI/dU maps.
However, the large scattering vector [labeled A(Aʼ) in Fig. 2] is
sufficiently decoupled from the typical background centered
around q= 0, so allowing for a detailed theoretical analysis of its
origin. This is illustrated in Fig. 4c, d, where different sections of
the constant energy cuts are progressively included in our ana-
lysis. The resulting FT-patterns unambiguously prove that vectors
A(Aʼ) are directly linked to scattering events between opposite
surface Fermi arcs connected by good nesting vectors.

Energy extension of the Fermi-arcs. The existence of quantum
interference patterns originating from Fermi arcs allows for their
investigation as a function of energy. This is shown in Fig. 5a,
which shows the experimentally obtained energy-dependent
length of the scattering vector A (see Supplementary Fig. 8 for
a description of the analysis procedure). These data reveal that
Fermi arcs in PdGa are dominant up to 850meV above the Fermi
level. As mentioned above, no clear information can be obtained
by QPI mapping for occupied states. As complementary infor-
mation, we present ARPES data of PdGa crystals in panel b which
show that the band bottom of the Fermi arcs is located at
approximately 780 meV below the Fermi level (see “Methods” for
a description of the measurement procedure). Overall this pro-
vides direct experimental evidence of one of the distinct features
theoretically predicted for topological chiral crystals, i.e. the
persistence of non-trivial Fermi arcs over a very large energy
range, establishing an experimental record of more than 1.6 eV,
almost symmetrically centered around the Fermi level.
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Discussion
Our work reveals the emergence of quantum interference in
topological chiral crystals that depends on the crystal enan-
tiomer. Consequently, in this class of materials, the surface-bulk
correspondence not only guarantees the existence of topologi-
cally protected surface states, but also determines how they

propagate and scatter. This phenomenon directly follows
from the deep connection between chirality in real and reci-
procal space, and is a direct manifestation of Chern numbers
changing their sign by changing the handedness of the
crystal structure. These findings, jointly with the investigation
of both PdGa enantiomers and the large extension of the
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Fermi arcs, demonstrate that this material is a near ideal
topological semimetal. This suggests that the topological
response of PdGa can be accessed in transport and optical
measurements30.

Methods
Sample preparation. The PdGa single crystals were grown using the self-flux
technique and subsequently polished to expose the (001) surface. The atomically
flat surfaces were prepared by cycles of Ar+ ion sputtering and annealing in an
ultra-high vacuum chamber with a base pressure of 1e-10 mbar. During the
sputtering, we first turned on the titanium sublimation pump for 1 min, then
filled the chamber with 5e-5 mbar Ar gas. The emission current and high voltage
of the ion gun were set to 20 mA and 2.0 kV, respectively. The ion current was
typically 1 μA. The sputtering time varies between 1 and 5 h, depending on
the condition of the surface. After sputtering, the single crystal was annealed at
680 ◦C for 2 h by radiation heating. Supplementary Fig. 1 reports large scale
topographic images (top row) and their derivative (bottom row) of a PdGa single
crystal (001) surface as a function of the number of sputtering and annealing
cycles. After 16 cycles, the surface shows clean terraces with a residual small
number of defects. A strong accumulation of steps is visible. Atomically flat
terraces with a width of approximately 50 nm are present in our samples. These
are used for the quasiparticle interference experiments described in the
main text.

STM measurements. Low-temperature STM measurements were performed using
a cryostat (Oxford Instruments) equipped with an UHV insert hosting a Tribus
STM head (Sigma Surface Science) operated at a temperature T= 1.9 K. All
measurements have been performed using electrochemically etched tungsten tips.
Before measurements, the tips were conditioned on a Ag(111) single crystal.
Spectroscopic data have been obtained using the lock-in technique and a bias
voltage modulation in between 1 and 20 meV at a frequency of 793 Hz, with the
amplitude progressively increasing with the scanning bias. dI/dU maps have been
acquired simultaneously to topographic images.

ARPES measurements. The ARPES experiments were performed at the high-
resolution ARPES branch line of the beamline I05 at the Diamond Light Source,
UK, with a Scienta R4000 analyzer at a temperature below 20 K. The momentum
direction of the band dispersion shown in Fig. 5b of the main manuscript is
indicated by the red arrow in Supplementary Fig. 9. The line-cut was chosen at a
position where the bottom of the Fermi-arc was at the largest binding energy in the
surface Brillouin zone.

Data availability
The data supporting the findings of this study are available from the corresponding
authors upon reasonable request.
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