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a b s t r a c t 

Bone features a remarkable combination of toughness and strength which originates from its complex 

hierarchical structure and motivates its investigation on multiple length scales. Here, in situ microtensile 

experiments were performed on dry ovine osteonal bone for the first time at the length scale of a single 

lamella. The micromechanical response was brittle and revealed larger ultimate tensile strength compared 

to the macroscale (factor of 2.3). Ultimate tensile strength for axial and transverse specimens was 0.35 

± 0.05 GPa and 0.13 ± 0.02 GPa, respectively. A significantly greater strength anisotropy relative to com- 

pression was observed (axial to transverse strength ratio of 2.7:1 for tension, 1.3:1 for compression). Frac- 

ture surface and transmission electron microscopic analysis suggested that this may be rationalized by a 

change in failure mode from fibril-matrix interfacial shearing for axial specimens to fibril-matrix debond- 

ing in the transverse direction. An improved version of the classic Hashin’s composite failure model was 

applied to describe lamellar bone strength as a function of fibril orientation. Together with our experi- 

mental observations, the model suggests that cortical bone strength at the lamellar level is remarkably 

tolerant to variations of fibrils orientation of about ±30 °. This study highlights the importance of investi- 

gating bone’s hierarchical organization at several length scales for gaining a deeper understanding of its 

macroscopic fracture behavior. 

Statement of Significance 

Understanding bone deformation and failure behavior at different length scales of its hierarchical struc- 

ture is fundamental for the improvement of bone fracture prevention, as well as for the development of 

multifunctional bio-inspired materials combining toughness and strength. The experiments reported in 

this study shed light on the microtensile properties of dry primary osteonal bone and establish a base- 

line from which to start further investigations in more physiological conditions. Microtensile specimens 

were stronger than their macroscopic counterparts by a factor of 2.3. Lamellar bone strength seems re- 

markably tolerant to variations of the sub-lamellar fibril orientation with respect to the loading direction 

( ±30 °). This study underlines the importance of studying bone on all length scales for improving our 

understanding of bone’s macroscopic mechanical response. 

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Abbreviations: MCF, mineralized collagen fibril; EFM, extrafibrillar matrix; ECM, 

xtracellular matrix; FIB, focused ion beam; SEM, scanning electron microscope; 

TEM, scanning transmission electron microscopy; HR-SEM, high-resolution SEM; 

F-STEM, bright-field STEM. 
� Part of the Special Issue on Biomineralization: From Cells to Biomaterials, as- 
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. Introduction 

Bone is a hierarchically structured connective tissue with re-

arkable mechanical properties. Its primary functions are struc-

ural support, locomotion, organ protection, mineral storage and

lood cell production [1] . Formed and continuously remodeled by

 cell-mediated process, bone can self-repair and adapt accord-

ng to physiological loads throughout life [2 , 3] . On the macroscale,

t consists of a dense and hard cortex incorporating a trabecular

spongy) structure. Cortical bone accounts for approximately 80%
rticle under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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of the skeletal mass [1] and has a prominent role in defining the

overall tissue mechanical properties [4] . In humans, it is largely

composed of osteons, cylindrical structures made of concentric

lamellae encompassing central blood vessels (Haversian canals). In-

dividual lamellae are 3-7 μm thick and are composed of bundles

of parallel mineralized collagen fibrils (MCFs), typically arranged

in plywood-like motifs [5–8] . Embedded into an extrafibrillar ma-

trix (EFM) of non-collagenous proteins, extrafibrillar minerals and

water, MCFs make up the nanostructural building blocks of bone

extracellular matrix (ECM) [9–11] . 

By effectively mixing simple components, such as a stiff mineral

phase of carbonated hydroxyapatite with a softer organic phase,

principally composed of type I collagen and a small amount of

non-collagenous proteins, nature constructs a strong and tough

nanocomposite [12 , 13] . Brittle mineral platelets of nanometer di-

mensions can sustain large stress due to their small size [14] and

increase the ECM stiffness significantly [15] . On the other hand,

the softer organic phase provides flexibility and allows energy

dissipation throughout several toughening mechanisms [16–23] .

Through its complex hierarchical organization spanning several

length scales, bone is able to increase its toughness by a several-

fold increase [20] . As a result, bone is tolerant to defects giving rise

to stress concentrations, such as lacunae and canaliculi (contain-

ing bone cells and their processes), cavities encompassing blood

cells, as well as internal microcracks. Bone’s resistance to fracture

originates from the great number of interfaces distributed over

the whole hierarchical architecture [19 , 24 , 25] . Interfaces play a key

role in dissipating energy by creating a multitude of deformation

and toughening mechanisms that act simultaneously at different

length scales [20 , 26] . Learning how nature attains this attractive

combination of mechanical properties from a limited selection of

constituents can provide useful insights for the development of

multifunctional bio-inspired materials [27 , 28] . At the same time,

a better understanding of bone failure mechanisms and mechan-

ics can lead to improvements in bone fracture prevention in age-

related diseases [29 , 30] . Because of bone’s structural complexity,

understanding and separating the role of single components, their

organization and their interaction across length scales is challeng-

ing and requires studies on several different length scales [11] . 

Recent advances in experimental techniques, such as micropillar

compression to measure the uniaxial mechanical response of a ma-

terial at the micrometer scale [31] , allowed to shed light on bone

yield and failure properties, as well as on its deformation mech-

anisms at the lamellar level [32–36] . These studies highlighted a

greater strength compared to macroscale that was attributed to

a scale-dependent flaw distribution [34] . Micropillar compression

also revealed apparent ductility with the absence of damage up to

failure [32] . This is in contrast to the quasi-brittle response seen at

the macroscale, in which failure is typically caused by growth and

coalescence of microcracks generated at interfaces, or in the vicin-

ity of pores [37] . MCFs bridging and kinking, crack deflection and

ligament bridging were identified as main toughening mechanisms

in compression [32 , 35] . These experiments have been extremely

helpful to better understand bone hierarchical structure but were

so far limited to compressive loading. Macroscopically, bone ex-

hibits a loading mode asymmetry and fails at considerably lower

stresses under tension. The nanocomposite nature of lamellar bone

suggests that a strength asymmetry might also be present at the

microscale. Since fracture is typically initiated in tension, charac-

terizing bone under this loading mode is particularly important for

clinical studies. To investigate this, we developed a microtensile

setup [38] and performed uniaxial tensile experiments on single

bone lamellae prepared by focused ion beam (FIB) milling ( Fig. 1 ). 

The aim of this study was (a) to characterize the anisotropic

tensile yield and failure properties of bone at the length scale of

a single lamella, (b) to reveal the respective deformation and fail-
re mechanisms under uniaxial tensile loading, and (c) to postu-

ate a failure model able to predict the anisotropic compression-

ension strength asymmetry of the ECM. Microscopic ovine bone

ensile specimens were fabricated via focused ion beam milling

n primary osteonal bone along axial and transverse orientations.

he specimens were successively tested in uniaxial tension inside

 scanning electron microscope (SEM). Analytical techniques such

s scanning transmission electron microscopy (STEM) and fracture

urface analysis by high-resolution SEM (HR-SEM) were employed

o reveal nanoscale deformation and failure mechanisms under

ension. The findings were compared to previous microscale com-

ression data obtained in similar conditions. Finally, a composite

ailure model based on physical considerations was identified to

apture the micromechanical strength of lamellar bone as a func-

ion of fibril orientation for both tension and compression. 

. Materials & Methods 

.1. Sample preparation 

An ovine tibia (2 years old) was obtained from a local abat-

oir and cut at the diaphysis into axial and transverse samples us-

ng a diamond-coated band saw (Exact, Germany). Samples were

lued onto SEM stubs using cyanoacrylate glue (Ergo 5011, Switzer-

and) and air-dried. Smooth and flat surfaces were obtained by

ltramilling (Polycut E, Reichert-Jung, Germany). A 10 nm thick

u film was sputtered (Leica ACE600, Germany) on the samples

o reduce charging during electron and ion beam irradiation. Mi-

rotensile specimens of gauge dimensions of 1.5 μm x 5 μm x 10

m were fabricated at the edges of the samples via top-down FIB

illing on ovine primary osteonal bone in axial and transverse ori-

ntations, following a previously established protocol [38] . A xenon

Xe) plasma-FIB (Tescan Fera, Czech Republic) operated at 30 kV

as employed for the rough milling, while a gallium (Ga) FIB (Tes-

an Lyra, Czech Republic) operated at 30 kV and successively at 5

V was used for the final preparation steps to minimize FIB dam-

ge. Prior to FIB milling, a platinum (Pt) cap of 1 μm thickness

as deposited on the top of the area of interest, to reduce sur-

ace roughness ("curtaining") and FIB damage. Sample cutting and

abrication, including specimen orientation, are illustrated in Sup-

lementary Fig. S1. A total of 27 tensile specimens were fabricated

13 axial, 14 transverse). Five specimens (3 axial and 2 transverse)

ere discarded from the study as they included osteocyte lacunae

r visible microcracks. 

.2. Microtensile testing 

An in situ micromechanical testing platform (Alemnis AG,

witzerland), equipped with a self-aligning single crystal silicon

Si) gripper (Supplementary Fig. S2a, b) [38] , was used to pull the

pecimens in displacement control. Experiments were performed

n vacuum, inside an SEM (Zeiss DSM962, Germany) operating at

 kV to allow for precise positioning and tracking of the defor-

ation mechanisms. Tensile tests were conducted at a quasi-static

train rate of ~ 3 ·10 −4 s −1 , which is in the same order of mag-

itude as the strain rate applied in previous micropillar compres-

ion tests on ovine lamellar bone [32] . For each orientation (ax-

al and transverse), five specimens were loaded until failure after

eing subjected to three partial loading-unloading cycles during a

ortion of the linear elastic response. This was performed to mea-

ure the elastic modulus since during the unloading segments it

s assumed that the specimen deforms elastically. The rest of the

pecimens were loaded monotonically until failure. Supplementary

ideo 1 shows an example of a cyclic test (video speed: 30x ex-

erimental speed). Force and displacement were monitored at 20
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Fig. 1. Hierarchical organization of bone with respect to the microtensile specimen geometry. Bone exhibits a hierarchical structure spanning from the organ level to the 

molecular level. MCFs and EFM constitute the fibers and matrix of the bone ECM composite. To characterize the tensile properties of bone at the lamellar scale, microtensile 

specimens featuring gauge dimensions in the order of a few microns are tested under uniaxial conditions. 
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z sampling rate. Gauge displacement was computed by correct-

ng the total displacement by the instrument and substrate com-

liance, as explained in detail elsewhere [38] . Engineering stress

as obtained by dividing the measured force by the specimen

auge cross-sectional area, while engineering strain was calculated

y dividing the corrected gauge displacement by the initial gauge

ength. Stress-strain curves were offset to correct for the adapta-

ion response (toe region) observed during initial contact and self-

lignment. The corrected zero points of strain were calculated as

he intercept of the linear regression of the elastic part of the

tress-strain curves with the zero-stress axis [39] . Both engineering

alues were converted to true stress-strain data using the assump-

ion of negligible volume change. 

.3. Imaging and microstructural characterization 

Microtensile specimens were imaged before and after the me-

hanical tests using a high-resolution SEM (Hitachi S-4800, Japan)

perated at 1.5 kV and 10 μA to measure their dimensions and

ccurately identify the fracture surfaces’ main characteristics. Two

xial and three transverse specimens with representative failure

tresses were chosen for further analysis. Specifically, a TEM lift-

ut technique was employed to prepare thin sections for STEM

nalysis [35] in two main orientations (as specified in Supple-

entary Fig. S2e). Lateral sections were obtained by thinning the

ractured gauge section of the specimens, while frontal sections

ere milled in the base of the specimens. BF-STEM images of the

hin sections were taken in a high-resolution SEM (Hitachi S-4800,

apan) using a transmission electron detector while operating the

icroscope at an acceleration voltage of 30 kV and beam current

f 10 μA. Fibril orientation was characterized using the software

mageJ (NIH, Bethesda, Maryland, USA). The plug-in OrientationJ

Biomedical Imaging Group, EPFL, Switzerland), based on structure

ensors, was used to evaluate local fibril orientation [40] . A vector

eld analysis was performed over a selected region of interest of

 × 3 μm 

2 from the BF-STEM images. A finite difference gradient

ith a Gaussian window of 125 nm size was applied over a grid of

25 nm periodicity to generate local orientations properties (Sup-

lementary Fig. S3). From this dataset, mean fibril orientation and

tandard deviation were evaluated using MATLAB (The MathWorks,

SA) assuming a normal distribution. 

.4. Failure composite modeling 

Strength as a function of MCF orientation was modeled us-

ng the improved Hashin’s failure criteria [41] developed by Gu

nd Chen [42] . For a unidirectional fiber-reinforced composite, the
lane stress failure criteria can be summarized with the following

quations: 

Tensile fiber mode σ 11 > 0 

σ11 

T 11 

= 1 (1) 

Compressive fiber mode σ 11 < 0 

σ11 

C 11 

= 1 (2) 

Tensile matrix mode σ 22 > 0 

2 P t 

S 21 

σ22 + 

1 + 

2 P t T 22 

S 21 

T 2 
22 

σ22 
2 + 

τ 2 
21 

S 2 
21 

= 1 (3) 

Where P t can be described by 

 t = 

(
1 

C 22 

− C 22 

4 S 2 
23 

)
S 21 

2 

(4) 

Compressive matrix mode σ 22 < 0 

− 1 

C 22 

+ 

C 22 

4 S 2 
23 

)
σ22 + 

σ 2 
22 

4 S 2 
23 

+ 

τ 2 
21 

S 2 
21 

= 1 (5) 

Where σ 11 , σ 22 and τ 21 denote the resolved normal and shear

tresses. T 11 and C 11 stand for the uniaxial tensile and compres-

ive strengths along the longitudinal fiber axis. Whereas, tensile

nd compressive strengths in the transverse orientation are indi-

ated by T 22 and C 22 , respectively. Finally, S 21 and S 23 represent

he shear strengths oriented parallel and perpendicular to the fib-

il direction, respectively (illustrated in Supplementary Fig. S4). 

To evaluate the model, compressive strength C 11 and C 22 were

et to 0.49 GPa and 0.30 GPa, respectively. These values correspond

o the compressive yield stresses measured by Schwiedrzik et al.

32] via micropillar compression. The shear strength between the

bril and the extrafibrillar matrix along the fibril direction (S 21 ) in

ry conditions was calculated based on the existing literature. The

nfluence of hydration on compressive strength was observed by

chwiedrzik et al. [35] , in which σ hydrated / σ dry = 0.4. If this ra-

io is combined with the shear stress measured by Gupta and al.

18] in the hydrated state (80 MPa), it is possible to predict S 21 in

ry conditions (200 MPa). The shear strength perpendicular to the

bril direction S 23 was set to 280 MPa based on the critical shear

trength found for transverse micropillar compression in dry con-

itions [32] . At first, the failure criteria were evaluated in Mathe-

atica (Wolfram Research, Inc., Version 12.0, Champaign, IL) by us-

ng the average measured micromechanical data and their assumed

bril orientation based on sample type (axial = 0 °; transverse 90 °).
he model was later optimized via least square optimization by fit-

ing specific strengths and respective average MCFs orientation of
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Fig. 2. Microtensile anisotropic response of lamellar bone. Representative true stress-strain curves for axial (a) and transverse (b) tension of ovine bone at the length scale 

of a single lamella. 
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three microtensile specimens for which the microstructure was in-

vestigated by STEM. For the first case, all parameters were prede-

termined. For the second case, T 11 and T 22 were fitted, while the

rest of the parameters were set. 

2.5. Statistics 

All data manipulations and statistical analysis were performed

using MATLAB. Normality of the distributions was tested by the

Kolmogorov-Smirnov normality test. Measurements are reported

as mean ± standard deviation. Significant differences between

datasets were tested using two-tailed t-tests. The significance

threshold was chosen with an error probability p ≤ 0.05. 

3. Results and Discussion 

3.1. Microtensile properties of lamellar bone 

Uniaxial tensile tests were performed at quasi-static strain rates

of 3 · 10 −4 s −1 on specimens having thicknesses of 5.29 ± 0.42 μm

(mean ± standard deviation), widths of 1.80 ± 0.13 μm and gauge

section lengths of 10.02 ± 0.25 μm. All tested specimens failed

within the gauge section. Representative true stress-strain curves

obtained from both monotonic and cyclic tests are displayed in

Fig. 2 . The full collection of the stress-strain curves can be found in

Supplementary Figure S5. It can be observed that specimens exhib-

ited apparent brittle failure. Microtensile tests showed anisotropy

in both strength and stiffness. Axial specimens were significantly

stiffer (p = 1.15 � 10 −5 ) and stronger (p = 8.46 � 10 −11 ) when com-

pared to their transverse counterparts. Elastic modulus was 27.7 ±
3.4 GPa in axial orientation and 13.6 ± 1.1 GPa in transverse ori-

entation. Strength was 0.35 ± 0.05 GPa at 1.8 ± 0.2% strain for

axial specimens, and 0.13 ± 0.02 GPa at 1.3 ± 0.3% strain for trans-

verse specimens. As expected, both stiffness and strength showed

a prominent anisotropy. 

The apparent elastic moduli measured in this study were

similar to the ones reported by micropillar compression performed

on ovine bone [32] and bovine bone [33] in the same testing

conditions. Several studies can be found in the literature using

nanoindentation as a way to characterize both elastic modulus and

hardness for osteonal bone in dry conditions [43–49] . One should

however compare the elastic moduli obtained via nanoindentation

with the data in this study with some caution for the following

reasons. Most of the studies focused on human Haversian bone.
hile ovine and human bones show comparable mineral to ma-

rix ratios (Supplementary Information A: Raman spectroscopy),

aversian bone in humans exhibits more complex MCF orientation

atterns (plywood like organization), whereas primary lamellar

vine bone has a rather uniaxial MCF orientation [35] . The cited

anoindentation studies are based on the Oliver-Pharr method

50] and often assume the tested material tested to be isotropic.

he complex stress state below the indentation surface, especially

n the case of heterogeneous and anisotropic material such as

one, involves non-uniform deformations in all principal axes. This

xplains why in most studies, the reported elastic modulus along

xial (longitudinal) orientation was lower than the one reported

ere. The opposite trend was observed for the elastic modulus

eported for transverse orientation. However, when interpreting

he nanoindentation results using an anisotropic stiffness tensor

51] , the literature data fit well to what was found in this study

32 , 51] . The measurements reported in Table 1 also fit well with

he model proposed by Reisinger et al. [52 , 53] for a uniaxial

ineralized fibril-array in dry conditions, as well as with the

odel by Hamed et al. [54] for aligned fibrils with a correction of

 20% increase in stiffness in all directions for dry condition [44] . 

The measured strength on the microscale was considerably

arger than what has been reported at the macroscale [55] . A

reater strength at lower length scales highlights the influence of

he hierarchical organization of bone and is associated with a scale

ffect. In bone, the absence of microdamage, cement lines, and

arge pores [56] , such as Haversian canals and osteocyte lacunae,

esults in a factor of 2.3 higher strength of microscale specimens.

 similar scaling ratio has been reported for compression exper-

ments [32] . Although the volume tested here was smaller (38%)

han the one tested in compression, we believe that a direct com-

arison between the tensile experiments performed in this study

nd earlier measurements in compression is justified. Even by as-

uming MCF diameters up to 200 nm and a fiber volume ratio of

o more than 50%, at least 100 structural units (MCFs) are present

n the tested volume. It would be surprising to observe a speci-

en size effect for this scale. The number of MCFs is also compara-

le with the number of osteons, structural units at a higher length

cale, found in i.e. a standard macroscopic sample measuring 3 mm

n diameter [32] . In fact, osteons diameter ranges between 170 um

nd 270 μm, whereas their density typically varies between 15 to

5 units per mm 

2 depending on age [57–60] . Our hypothesis is fur-

her supported by the reported absence of a strength size effect in
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Table 1 

Micromechanical properties of cortical bone on the microscale. Compression and tensile properties of primary 

lamellar bone tested in vacuo; mean ± standard deviation of elastic modulus E, maximum stress σ max , strain 

at maximum stress ε ( σ max ) and yield stress σ y . Whereas, N is the number of specimens tested in the respec- 

tive loading mode. These data were collected at quasi-static strain rates of ≈ 3-5 � 10 −4 s −1 in both axial and 

transverse orientations via in situ microtensile tests and micropillar compression. 

Sample Orientation Loading mode E (GPa) σ max (GPa) ε ( σ max ) (%) σ y (GPa) N (-) 

Axial Compression ∗ 31.1 ± 6.5 0.75 ± 0.06 5.4 ± 1.7 0.49 ± 0.10 19 

Tension 28.9 ± 3.4 0.35 ± 0.05 1.8 ± 0.2 - 10 

Transverse Compression ∗ 16.5 ± 1.5 0.59 ± 0.04 12.1 ± 2.5 0.30 ± 0.02 20 

Tension 13.6 ± 1.2 0.13 ± 0.02 1.3 ± 0.3 - 12 

∗ Data from Schwiedrzik et al. [32] . 
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Fig. 3. Fracture surfaces of axial and transverse specimens. SEM Top view of the 

fracture surfaces for axial samples (a,b,c) in which canaliculi are seen (white ar- 

rows). Contrarily, in transverse samples (d, e, f) the lacuno-canalicular network is 

seen only occasionally. In all specimens, a thin FIB redeposition layer (50-200 nm 

thickness) is seen in the back of the specimen (black arrows). Scale bars represent 

1 μm. 
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he range between 1 and 5 μm diameter reported for compression

f bone micropillars [34] . 

.2. Tension-compression asymmetry 

Bone, like other brittle materials, is stronger in compression

han in tension. Comparing the microtensile data with previous

icropillar compression experiments, it can be observed that the

ension-compression strength asymmetry is also seen at the mi-

roscale and is therefore an inherent tissue property. This is well

hown in Table 1 , where the micromechanical properties of ovine

one are summarized for both tension and compression exper-

ments for dry testing. At the lamellar scale, bone is strongest

hen compressed along its main axis, exhibiting strength of 0.75

0.06 GPa. Contrarily, it performs poorly when it is tested in

ension normal to the main MCF orientation and fails at 0.13 ±
.02 GPa. From Table 1 it can be observed that the loading mode

ad minimal influence on the elastic response of bone. The elastic

odulus for the axial orientation showed no statistical difference

p = 0.50) between compression and tension. Transverse elastic

odulus showed a significant (p = 9.2 � 10 −3 ) but relatively small

ifference between the two loading modes. This is most likely due

o the limited amount of samples tested in tension compared to

ompression. 

When the post-yield behavior at the length scale of sin-

le lamellae is compared between loading modes, there is a

ignificant difference between tension and compression. For com-

ression, a significant ductility was found. This is not the case

or tensile loading for which apparent brittle failure is observed.

nterestingly, strength anisotropy was much more pronounced

n tension. In compression, the ratio between ultimate axial and

ransverse strength is 1.3, whereas, in tension, this value increases

o 2.7. A factor of 2.1 is thus seen between the two loading modes.

 similar trend is also noticed when ultimate strength is replaced

y yield stress (factor of 2.9). The increased strength anisotropy

een in tension compared to compression hints at a change in

ailure mechanism calling upon a more in-depth analysis. 

.3. Failure mode anisotropy 

Images of the fracture surfaces, obtained by high-resolution

EM, confirm that axial and transverse specimens failed in two

ifferent ways. Fig. 3 shows the fracture surfaces for three axial

pecimens ( Fig. 3 a,b,c) and three transverse specimens ( Fig. 3 d,e,f).

ere, different morphologies can be distinguished based on the

ample orientation. Axial surfaces appear rough and reveal an over-

ll porous structure. Pore size ranges between 40 to 60 nm and is

omparable to the diameter of individual MCFs [61] . As in primary

vine bone MCFs appear mainly oriented along the longitudinal

xis of osteons [35] , the observed surface topography ( Fig. 3 a,b,c)

an be rationalized with a fibril-matrix shear interface failure. In

his case, interfaces failure between MCF and EFM leads to succes-

ive MCFs being pulled out, resulting in a rough and porous frac-
ure surface. In axial specimens, canaliculi were present on each

racture surface. In the transverse orientation, a different scenario

s observed. Transverse specimens exhibit globally smoother frac-

ure surfaces with fewer steps and show a rich fiber texture in

he fracture plane. Furthermore, canaliculi were present in only

2% of the fracture surfaces. In all transverse specimens, the frac-

ure plane was found to be highly orthogonal to the loading di-

ection ( < 3 °). As MCFs are mostly aligned perpendicular to the

oading orientation it is very likely that the surfaces displayed in

ig. 3 d,e,f are the product of a fibril–matrix interfacial decohe-

ion in tension, in contrast to interfacial shear failure in the axial

irection. Microtensile specimens reveal therefore a failure mode

hange when loaded in different orientations. In compression such

 change is absent, and matrix shear failure is always observed

32] . The higher strength anisotropy dependency observed in ten-

ion compared to compression might be explained by this diver-

ence. 

.4. Influence of canaliculi and weak interfaces 

In axial specimens, cracks are always initiated at canaliculi.

ince canaliculi are typically oriented radially inside osteons [62] ,

hey mainly lie perpendicular to the loading direction in axial sam-

les. These microstructural features lead to large stress concentra-

ions in the material, but they serve a biological function by ac-

ommodating osteocytes processes. In the transverse orientation,

analiculi were seen in only 42% of the fracture surfaces. Inter-

stingly, when a canaliculi was present on the fracture surface

he measured strength ( σ max = 0.11 ± 0.01 GPa) was significantly

ower (p = 1.92 � 10 −3 ) than in the rest of the cases ( σ max = 0.15

0.02 GPa). No significant difference was found in terms of stiff-
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ness (p = 0.81). The difference in strength between these typolo-

gies of transverse specimens might be explained by the fact that

the transverse specimens’ orientation ranges between circumferen-

tial and radial directions. While MCF arrangement is expected to

be transversely isotropic, porosity is not. In circumferential spec-

imens, canaliculi are present almost perpendicular to the loading

direction. Similarly to axial specimens, the high stress concentra-

tions in the vicinity of the canaliculi dominate failure and create a

fracture surface containing a canaliculus. Contrarily, in radial speci-

mens, the canaliculi predominantly run along the loading direction

and failure seems to be dominated by other effects. Bright-field

STEM (BF-STEM) performed on both tested and non-tested sec-

tions of material (Supplementary Fig. S6) revealed no observable

differences in the MCF organization, suggesting the absence of sig-

nificant ductile deformation before failure occurred. Interestingly,

regions with ordered and disordered MCF motifs were observed.

This is in line with earlier studies [8 , 35 , 63] and shows a key de-

sign feature for crack deflection at the microscale. The interface

between a disordered and ordered phase acts as a weak layer in

the structure that serves to deflect a crack away from the original

plane of fracture. This is comparable to the effect of lamellar inter-

faces [23 , 64 , 65] at the same length scale, as well as cement lines

[66–68] at higher length scales. From the STEM images, it appears

that these weak interfaces are typically oriented with the long axis

of osteons. When loaded in tension, as is the case in the radial

specimens, these interfaces fail by delamination of MCF and EFM.

If this happens, fracture surfaces will reveal a clear fiber texture,

as seen in Fig. 3 e. 

3.5. Microscale fracture toughness 

Using the modeling assumption that a canaliculus passing

through a specimen acts as a through-crack inside a finite plate

[69] , it is possible to estimate the magnitude of the conditional

fracture toughness K IQ (mode I) for all axial specimens, as well for

the transverse specimens exhibiting canaliculi on the fracture sur-

face. Using the solution reported by Tada et al. [70] the mode I

stress intensity factor K I for a crack through a finite plate can be

described as: 

K I = σ
√ 

πa 

[
sec 

(
πa 

2 T 

)1 / 2 
][

1 − 0 . 025 

(
a 

T 

)2 

+ 0 . 06 

(
a 

T 

)4 
]

(6)

Where σ is the stress applied, a is the half-width of the crack

and T is the half-thickness of the plate, in our case the thickness

of the specimen. Considering the canalicular diameter measured

on the fracture surfaces (160 ± 59 nm), the critical stress inten-

sity factor is 0.17 ± 0.03 MPa m 

1/2 and 0.07 ± 0.01 MPa m 

1/2 for

axial and transverse orientations, respectively. These values likely

are only a rough estimate of microscale bone’s fracture toughness

in dry conditions as they neglect the finite radius of the initial

flaw and the misorientation of the canaliculi to the surface normal,

and might be calculated for plane stress conditions. However, they

serve to highlight a significant scale effect similar to earlier find-

ings [35 , 71] . The fracture toughness at the microscale estimated

here is at least an order of magnitude smaller than the one ob-

served at the macroscale [20 , 66] . This is likely caused by the ab-

sence of extrinsic toughening mechanisms such as crack deflection

at cement lines, crack-ligament bridging and constrained microc-

racking when small volumes of ECM are tested. This result under-

lines the importance of bone’s architecture for its fracture resis-

tance. 

3.6. Microstructure and strength composite modeling 

In order to relate the mechanical behavior and failure mecha-

nisms to the fundamental microstructure, thin sections of material
ere prepared from several failed tensile specimens and imaged

sing BF-STEM. Lateral sections were manufactured by thinning

he width of the specimen fractured gauge sections, while frontal

ections were fabricated from the underlying substrate (schematics

n Supplementary Fig. S2e). Fig. 4 illustrates three BF-STEM images

aken from lateral thin sections of two axial specimens ( Fig. 4 a,b)

nd a transverse specimen ( Fig. 4 c). Darker areas are associated

ith higher average mass due to stronger electron scattering. Be-

ause collagen molecules are staggered axially along fibrils [72] , it

s possible to see the fibrous structure of lamellar bone when MCFs

rimarily lie in the image plane. Ordered regions are identified

hrough the presence of characteristic gap zones (less dense re-

ions) and their respective periodic banding pattern of 67 nm (al-

ernating dark-bright contrast). In general, STEM observations sug-

ested that, differently from secondary osteons, for which MCFs

eem to organize in ply-wood like motifs [5–8] , the investigated

rimary ovine osteons exhibit an overall homogeneous MCF orien-

ation with a general texture along the osteon main axis. In the

wo axial specimens seen in Fig. 4 , MCFs are oriented at two dif-

erent (p < 1 � 10 −15 ) angles of 8.7 ± 6.4 ° ( Fig. 4 a) and 24.5 ±
7.9 ° ( Fig. 4 b) with respect to the loading direction. Their respec-

ive frontal sections also exhibited a difference (p < 1 � 10 −15 ) in

CF orientation with angles of 5.6 ± 8.8 ° and 12.7 ± 10.9 °, re-

pectively. In the transverse specimen, fibril orientation was 88.2

11.7 ° ( Fig. 4 c). Frontal STEM images can be found in Supplemen-

ary Fig. S7. 

Interestingly, the specimen shown in Fig. 4 a has a more coher-

ntly oriented MCF microstructure with an average a smaller offset

rom the loading direction than the sample displayed in Fig. 4 b,

ut it failed at lower stress (81% of the maximum). This behav-

or seems counterintuitive at first glance, as one would expect the

aterial to be stronger along the main fibril orientation. However,

one is different from a common engineering composite, which

ommonly features stiff and strong fibers embedded into a much

ore compliant matrix. Here the difference in strength between

ber and matrix is less striking. Moreover, the high mineral con-

ent present in the EFM allows relatively high shear strength (up to

80 MPa in dry conditions [32] ), causing a maximum in strength

hen the underlying MCF organization is tested at an angle θ � =
 °. 

Because of its sub-lamellar MCF organization, being mostly uni-

xial, ovine primary osteonal bone on the microscale might be

onsidered as a unidirectional fiber reinforced composite. The clas-

ic failure composite model proposed by Hashin’s [41] is a well-

stablished model which considers four distinct failure modes –

ensile and compressive fiber and matrix modes – and can be used

o describe the strength as a function of MCF orientation in bone.

he improved and re-examined version of the Hashin’s model, pro-

osed by Gu and Chen [42] , was applied to the data collected in

his study to describe bone strength as a function of MCF orienta-

ion. 

At first, the Hashin’s model was evaluated using the data in

able 1 and assuming MCF orientation of θ = 0 ° and θ = 90 ° for

xial and transverse specimens, respectively (dashed lines in Sup-

lementary Fig. S8). Despite this generic assumption, the model

howed a characteristic trend with maximum strength for MCF

ain orientation θ � = 0 °. This is true despite the fact the MCF main

rientation is slightly different for each specimen. A more accu-

ate description of the tensile behavior of lamellar bone is given

n Fig. 5 , where the MCF main orientation obtained by STEM is

onsidered for the fit. Instead of using the averaged data from

able 1 to evaluate the model, in Fig. 5 the model is fitted with

he individual strengths and respective MFC angles of the three

ensile specimens (illustrated in Fig. 4 a, b, c), via least-square op-

imization. This might be a more representative description of the

aterial strength than the one described earlier because STEM can
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Fig. 4. STEM imaging of deformed microtensile specimens. BF-STEM images of three lateral thin sections for axial (a, b) and transverse (c) specimens after fracture. The 

in-plane fibrils’ organization is visible through the characteristic 67 nm collagen banding pattern. In (a), (b) and (c) scale bars represent 1 μm. A higher magnification image 

(d) highlights the collagen banding pattern (white arrow) and the presence of mineral crystals (black arrow). Unfortunately, crystal geometry could not be fully resolved 

because of the limited resolution of low voltage STEM. An amorphous layer accounting for less than 35 nm (produced during FIB milling) and a thin layer of Pt are also 

visible at the edge of the section (grey arrow). A high magnification image of a crack (e) observed in the axial orientation shows roughness at the level of single fibrils as 

well as fibril bridging. In (d) and (e) scale bars represent 500 nm. 
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ccess specific MCF organization through the specimen gauge sec-

ion. The material properties can, therefore, be related to a spe-

ific microstructure rather than an assumed average microstruc-

ure. To summarize the dehydrated mechanical properties of lamel-

ar bone, both tension and compression are illustrated in Fig. 5 .

trength uncertainties for the displayed individual data points (ver-

ical error bars for the tension case) were calculated by error prop-

gation analysis, with the assumption of random independent er-

ors [73] using force and SEM measurements uncertainties (4μN for

orce measurement and 100 nm for geometrical deviations). 

The optimized model predicts a tensile strength of 330 MPa and

25 MPa for specimens having fibrils aligned parallel and perpen-

icularly to the load direction, respectively. The maximum tensile

trength of 407 MPa is found at an angle of 26 °, whereas the max-

mum compressive yield strength of 553 MPa is found at an angle

f 21 °. These limits denote the change between fiber failure mode

nd matrix failure mode. While this result seems striking, a sim-

lar behavior was first predicted by Wagner and Weiner [74] and

ater observed in the case of lamellar stiffness [52 , 75] , with the

atter being the largest at an angle between 10 ° and 30 ° with re-

pect to the main osteon axis. The general trend illustrated by the

odel in Fig. 5 also correlates well with the observations of Wa-

ermaier et al. [76] , Spiesz et al. [77] for which the average MCF
ain orientation over several human osteonal lamellae was mea- t  
ured with an offset of 20-30 ° with respect to the bone’s long axis.

imilar results were also observed by Turner et al. [78] for canine

steonal bone. Interestingly, the high tolerance ( ±30 °) in fibril ori-

ntation with respect to the nanocomposite strength remains well

oticeable even when taking into account the weakening effect

roposed by Gu and Chen [42] into Hashin’s model (Supplemen-

ary Fig. S9). Such tolerance might suggest the advantage of rear-

anging the MCF organization inside a lamella from a uniaxial pat-

ern to a plywood-like pattern [5–8] . More precisely, the variation

f fibril angles across the newly formed tissue could be a way to

mprove bone’s fracture toughness, while still retaining the major-

ty of its overall strength [79 , 80] . 

The illustrated model is most likely an oversimplified repre-

entation of the behavior of lamellar bone but it gives an es-

imate of the strength of dry bone. The model neglects factors

uch as variation in mineralization, MCF waviness and distribu-

ion along the main orientation. While a model based on con-

inuum micromechanics might be used to account for these ad-

itional effects [81 , 82] , the simple model considered here seems

ell suited to capture the general trend of the anisotropic loading

ode-dependent strength in bone at the microscale. Even when

he model was optimized to fit the five data points shown in Fig. 5 ,

t still exhibits the same characteristic trend when biological varia-

ions are considered (i.e. fitting the model with the data in Table 1 ,
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Fig. 5. Composite failure model of ovine lamellar bone on the microscale in tension 

and compression. Compressive (blue) and tensile (red) strength of lamellar bone as 

a function of fibril orientation. The graph is illustrated with the schematics of the 

offset angle θ between loading orientation and MCF main orientation. Individual 

strengths of the tensile specimens displayed in Fig. 4 are indicated with their re- 

spective MCF main orientation. Compressive yield strengths taken from the litera- 

ture [32] were also fitted with the composite failure model. The error bars in the 

tension curve denote the experimental uncertainty of individual measurements and 

are obtained by error propagation analysis. 
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illustrated in Supplementary Fig. S9). While failure has shown to

be dominated by canaliculi due to stress concentrations, the model

implicitly takes into account their effect and since these flaws are

fairly consistent in size and well distributed in cortical bone for

many species, including humans [83 , 84] , the Hashin’s composite

failure model presented here can be considered to be well repre-

sentative of the tissue behavior in an average sense. 

3.7. Limitations of the study 

A well-known limitation in micromechanics is the limited

quantity of samples due to the time consuming preparation pro-

cess. Here, both axial and transverse samples were collected from

the same tibia. Nevertheless, since osteons are created individu-

ally and only in two cases two specimens were fabricated on the

same osteon, the authors believe the specimens may be treated as

non-related. Primary ovine osteonal bone was chosen over human

osteonal bone for its simpler and rather homogenous MCF organi-

zation, thus making the data interpretation more straightforward.

Learning about the basic deformation and failure mechanisms in

less complex model materials is a prerequisite for improving our

understanding of human bone. Based on the behavior of an indi-

vidual (uniaxially oriented) lamellar ply, we are able to construct

the behavior of more complex laminates containing several plies

using modeling approaches. If in humans the MCFs are arranged in

plywood-like organization inside the osteons, classic laminate the-

ory or more complex finite element models can be used to build

a specific model able to predict the behavior of human bone. This

is however beyond the scope of this manuscript. In terms of min-

eral to matrix ratio, human and ovine bone are similar and a di-

rect comparison between the two, for a unidirectional lamellar ply,

seems justified. This was confirmed by Raman spectroscopy, which

revealed mineral/matrix ratios (v2PO4/Amide III; Supplementary
ig. S10) of 0.63 ± 0.05 and 0.76 ± 0.08 for axial and transverse

amples, respectively (Supplementary Information A). These min-

ral/matrix ratios are in the same range as what is reported in the

iterature for human osteonal bone [85 , 86] and human trabecular

one [87] . 

Another limitation to be considered is that specimens are fab-

icated via FIB milling. Fabrication artifacts such as redeposition

 Fig. 3 ) and FIB damage ( Fig. 4 d) might affect the mechanical prop-

rties of the specimens. Based on previous Monte Carlo simula-

ions for Ga + irradiation on bone [32] , as well as from Fig. 3 and

 , it was possible to deduce that these artifacts combined only ac-

ount for less than 6% of the total gauge cross-section area. Their

ffect is therefore likely to be negligible. 

Under tensile loads, dry lamellar bone exhibited mode I frac-

ure perpendicular to the loading direction and failed catastroph-

cally due to unstable crack growth. While the latter might have

een partially encouraged by the system compliance [88] , the use

f our setup ensured that failure occurred in the gauge section for

ll specimens even when misalignment might have been present.

his provides an accurate value of the material strength in dry con-

itions. 

The major limitation of this study is the fact that both speci-

en fabrication and mechanical testing has been performed in a

acuum environment. The drying process clearly affects both elas-

ic and yield properties of bone [35 , 89 , 90] . Individual collagen fib-

ils have shown significant shrinking and stiffening with decreas-

ng hydration [91] . Water is an essential element for collagen vis-

oelasticity [92] which in turn is reflected on bone’s mechanical

esponse [93] . In terms of toughness, the presence of water in

he extrafibrillar matrix seems to contribute to plasticity in bone

94] by acting as a lubricant between mineral particles, thus pro-

oting inter-fibrillar sliding [95] . In general, hydration increases

he nanocomposite toughness through the presence of dissipative

echanisms [18 , 96 , 97] . Surface roughness in Fig. 4 d,e, hints at the

xistence of such microscale toughening mechanisms in the form

f fibril pull-out and fibril bridging, although these mechanisms

re likely inhibited by the drying process. It is expected that un-

er hydrated condition they will influence crack resistance, espe-

ially in tension. Seto et al. [89] tested the ECM in tension at the

esoscale under hydrated conditions and observed plastic defor-

ation without premature failure at low strains. Based on previous

esults, one could make a rough estimate of the properties of bone

t the microscale in tension under hydrated condition. In gen-

ral, it has been observed that hydration decreases Young’s mod-

lus, decreases strength, increases bone’s toughness and increases

train to fracture [35 , 44 , 49 , 89 , 90 , 98 , 99] . On the microscale, com-

arative nanoindentation studies between dry and hydrated con-

itions revealed that wet samples exhibited a decrease in elas-

ic modulus compared to dry conditions between 15% and 30%,

s well as a decrease in hardness ranging from 10% to 60%. The

arge scatter in the reported data is likely associated with the com-

lex organization of the MCFs found in human bone and the het-

rogeneous stress state below the indented surface. Previous mi-

ropillar compression experiments at the lamellar scale in both dry

32 , 34] and hydrated conditions [35 , 36] showed that plastic defor-

ation in bone is predominantly dominated by shear in the EFM,

r at the MCFs interfaces. This was also observed in mesoscopic

ensile tests coupled with X-ray scattering and diffraction analy-

is [18 , 100] . If the plastic deformation is predominantly dominated

y shear in both compression and tension, it might be possible to

ake a better prediction of the effect of dehydration on the mi-

rotensile specimens tested in this study by using the information

rom micropillar compression rather than the one from nanoin-

entation. Based on the existing micro compression data on pri-

ary ovine bone [35] , uniaxial microtensile tests performed un-

er quasi-physiological conditions should lead to a significantly in-
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reased ductility, a reduction of the elastic modulus of at least 20%

nd a strength decrease in the order of 60%, when compared to

ry conditions. 

Still, in order to investigate bone’s microscale properties and

eformation mechanisms under physiological conditions, it is cru-

ial to extend the current testing methodologies to the hydrated

tate. A setup allowing uniaxial tensile testing of lamellar bone in

he hydrated condition is currently under development to verify

hese hypotheses. 

. Conclusions 

The tensile properties of ovine lamellar bone were character-

zed at the length scale of a single lamella under uniaxial loading

sing a microtensile setup inside an SEM. Microtensile testing was

ombined with post-test STEM observation to analyze deformation

nd failure mechanisms, as well as to define a composite failure

odel able to predict strength and failure mode as a function of

he main MCF orientation. In vacuum microtensile experiments on

vine lamellar bone revealed brittle failure, a highly anisotropic

esponse and a significant size effect compared to macroscale data

factor of 2.3 higher strength). Axial specimens exhibited strength

f 0.35 ± 0.05 GPa, whereas transverse specimens exhibited

trength of 0.13 ± 0.02 GPa. Similarly to what was observed at

he macroscale, strength anisotropy was considerably greater for

ension than for compression. This discrepancy between the two

oading modes may be attributed to a change in failure mode

rom fibril-matrix interfacial shearing for axial specimens to fibril-

atrix debonding for transverse specimens. In compression this

hange is absent, with fibril-matrix interfacial shearing being the

ailure mode for both axial and transverse specimens. BF-STEM

maging revealed that for the small volumes tested in this study,

he sub-lamellar MCF organization of primary lamellar bone is

airly uniaxial and with an orientation close to the longitudinal

xis of the bone. Yet, disordered phases were also observed and

hey seem to have an important influence on the failure mecha-

isms, especially for transverse specimens. Disordered phases give

ise to weak interfaces and might be a key design feature for crack

eflection. Their influence is similar to cement lines and lamellar

nterfaces, in which cracks can be deviated from critical orien-

ations and dissipate deformation energy. Analysis of the failure

echanisms showed also the influence of the lacuno-canalicular

ystem, especially in axial specimens for which failure is always

nitiated by canaliculi which run in radial direction creating the

ighest stress concentrations. Using linear elastic fracture mechan-

cs it was possible to estimate the mode I fracture toughness K I 

n the case of axial fracture (0.17 ± 0.03 MPa m 

1/2 ) and transverse

racture (0.07 ± 0.01 MPa m 

1/2 ). The noticeable reduction of the

racture toughness from the macroscale by at least one order of

agnitude might be rationalized by the absence of the major ex-

rinsic toughening mechanisms found at higher length scales, such

s uncracked-ligament bridging [101] or crack-deflections/twists

t the cement lines [66–68] . Finally, an improved version of the

ell-established Hashin’s composite failure model was applied to

escribe lamellar bone strength as a function of MCF main orien-

ation. Despite its limitations, due to the simplified representation

f the microstructure of lamellar bone as a uniaxial composite,

he model shows good agreement with the experimental data.

he data suggest that lamellar bone strength on the microscale

s remarkably tolerant to variations of fibril orientation of about

30 °. The presented study establishes a baseline for the microten-

ile properties of bone at the lamellar scale and underlines the

mportance of bone’s hierarchical microstructure and the need

o study structure-property relationships on all length scales for

aining a deeper understanding of its macroscopic behavior. 
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