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ABSTRACT 

 
Conventional mechanisms provide a defined mobility, which express the number of degrees 

of freedom of the mechanism. This allows the system to be driven by a low number of control outputs. 
This property is kept in case of compliant mechanisms with lumped compliance, which are obtained 
by replacing the conventional hinges by solid state ones. Compliant mechanisms with distributed 
compliance have, in general, an infinite number of degrees of freedom and therefore cannot guarantee 
defined kinematics. In this paper, compliant mechanisms with selective compliance are introduced. 
This special class of compliant mechanisms joins the advantages of distributed compliance with the 
easy controllability of systems with defined kinematics. This task is accomplished by introducing a 
new design criterion based on a modal formulation. After having implemented this design criterion in 
an optimization formulation for a formal optimization procedure, mechanisms are obtained in which 
a freely chosen deformation pattern is associated with a low deformation energy while other 
deformation patterns are considerably stiffer. Besides the description of the modal design criterion 
and the associated objective function, an application example is shown. 
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1. INTRODUCTION 
 
In contrast to conventional mechanisms consisting of rigid members and classical hinges, compliant 
mechanisms exploit structural flexibility to produce controllable large deformations. According to a 
classical distinction (Ananthasuresh and Kota 1995), they can be subdivided into two groups: 
mechanisms with lumped compliance and mechanisms with distributed compliance. Mechanisms of 
the first group are obtained from their conventional counterparts by replacing classical hinges with so 
called solid state hinges. Usually, solid-state hinges are realised as short-length regions with reduced 
cross-section and therefore low bending stiffness. This involves, as a rule, poor load-carrying 
capability with respect to external loads. In order to avoid this problem, the second class of compliant 
mechanisms was developed. Mechanisms with distributed compliance make use of longer and thicker 
bending elements with the objective of better distributing the strain and stress over the structure. 

A conventional mechanism generally behaves as a system of rigid bodies (members) 
interconnected by ideal joints. The displacement field in the mechanism is completely defined by the 
choice of m scalar parameters, called mobility of the mechanism. The m-dimensional space of 
possible configurations is called kinematics of the mechanisms.  

Considering the lumped-compliance counterpart of a conventional mechanism, its motion can 
be analysed in a similar way as for the corresponding rigid-body mechanism: the lumped-compliance 



mechanism can only deform according to the configurations allowed by the system’s rigid-body 
kinematics, regardless of the applied forces. The applied forces do not influence the system’s 
kinematics but only the choice of a particular configuration within the mechanism’s kinematics. In 
the following, this behaviour is described as load-independent kinematics. An important consequence 
of this behaviour is that the system can be driven by a low number of control outputs. On the other 
side, mechanisms with lumped compliance typically show discontinuities in their deformation 
pattern, which makes them not suitable for the purpose of shape adaptation, e.g. antenna reflectors 
(Lu and Kota 2003) or morphing wings (Campanile 2006), where a continuous deformation field is 
required. This requirement can be fulfilled by mechanisms with distributed compliance, which do not 
present sharp discontinuities. However, the kinematics of a distributed compliance mechanism is 
usually strongly load-dependent, which reduces their precision due to parasitic motion components. 
Ideally, the structure should enable smooth shape changes by keeping a high degree of stiffness in 
other deformation components to allow precise operation by a manageable activation system. This 
property identifies a third class of solid-state mechanisms, which will be denoted in the following as 
compliant mechanisms with selective compliance and which combines the advantages of both 
existing classes (reduced stress concentrations, a smooth deformation pattern and defined 
kinematics). Even if this classification and definition is new, the concept of selective compliance as 
such can be recognised in some standard solid-state hinges, like the cross-spring pivot or the 
cartwheel-hinge (Smith 2000). Due to their relative simplicity, these standard selective-compliance 
hinges can be easily designed by means of a simple parametric analysis. When the mechanism 
complexity increases, the design task becomes more challenging and must rely, as a rule, on formal 
optimisation techniques. Scope of the present work is to propose a general design methodology in this 
framework. 

The design procedures for distributed-compliance mechanisms which are known from the 
literature mostly involve the homogenization method, the ground structure approach or the graph 
representation, adopted from conventional topology optimization. Based on these parameterizations, 
various approaches using different objective functions and constraints have been developed by 
several authors (e.g. Frecker et al. (1997), Sigmund (1997), Larsen et al. (1997), Saggere and Kota 
(1999), Kota et al. (2001), Pedersen et al. (2001) and Lu and Kota (2003)). 

To sum up, the presented optimization approaches have proved their ability for designing 
compliant mechanisms with distributed compliance for one defined load case. If the mechanism is 
required to offer the above introduced selective-compliance behaviour, these approaches have to be 
adapted. This involves computing the structural response for many load-cases and inserting the 
corresponding deviations into a multi-objective cost function, to ensure a load-independent 
kinematics. This increases the numeric effort considerably and raises the question whether selective 
compliance can be enforced in a more direct way by a special optimization formulation. 

A first step in this direction is represented by the modal synthesis procedure for so-called 
belt-rib structures, presented by Campanile (2008). Belt-rib structures are compliant wing structures 
which are designed to change their lift coefficient by adapting its shape and not by the use of 
moveable surfaces. The core of the concept, the belt rib, is a planar compliant mechanism consisting 
of a deformable belt connected with stiffeners (spokes) by flexible elements. The synthesis procedure 
arranges the spokes so that the stiffness of the desired deformation pattern (e.g. a modification of the 
profile camber) is nearly unchanged with respect to the belt without spokes, whereas other 
deformation components are strongly stiffened. However, this methodology is restricted to systems 
consisting of an external flexible shell and an internal stiffening structure. Besides, the procedure is 
applied to a special stiffener topology (each spoke is directly connected with two points of the 
external flexible shell without intersection with other spokes) in order to obtain an explicit condition 
and avoid the use of numeric optimum search algorithms. 

The current work extends this synthesis procedure to design problem of a general compliant 
mechanisms with selective compliance. 

 
 



 
2. DESIGN PROBLEM 
 
Before approaching the definition of the design problem for selective-compliance mechanisms, some 
clarifications on the special nomenclature are necessary. While working either on the field of 
rigid-body mechanisms or of elastic structures, the term “degree of freedom” is unequivocal. 
Compliant mechanisms, however, have an infinite number of degrees of freedom (in the structure 
sense) and, at the same time, a finite number of degrees of freedom (mobility) in the mechanism 
sense. We will denote the latter with the term “kinematic degrees of freedom” in order to avoid 
confusion. 

We consider a given design domain  , as depicted in Fig. 1. The design problem for the 
mechanism can be seen as the problem of assigning a material to each point of the design domain 
(including the option of assigning a “void” material to the points in which no material is present). In 
the case of a mathematical representation according to continuum mechanics, this corresponds to 
assigning a functional relationship between the stress and the strain tensors to each point of the design 
domain. 

The sub-domain of  which is occupied by material is called the structure domain S . 
Principally,  can assume an arbitrary shape within S   that means the location of the boundaries 
between  and  are unknown except the domain on  S S  where the kinematic boundary 
conditions ( ) are defined and the one on which the above-mentioned load-independent kinematics 
is to be enforced ( ). The set of degrees of freedom which are assigned to  is denoted with 

b

a b b  
and set of degrees of freedom assigned to a  is called master degrees of freedom . Furthermore 
static boundary conditions can be imposed on 

a

a . The degrees of freedom of  that do not belong 
to  or  is identified by . 

S

a b c
Even if the concept of selectable compliance does not require structural linearity, we will 

assume full linear behaviour in order to render the mathematical treatment simpler. Under these 
conditions, a set of desired deformation modes is defined among the design requirements. Imposing 
selective kinematics corresponds to requiring that the displacement field is a linear combination of 
the desired deformation modes. In Fig. 1 the case of one single deformation mode  is shown. d

 
 

 
 

Fig. 1: Problem Specification 
 



Apart from the load-independent kinematics, a compliant mechanism with selective 
compliance has to fulfil additional requirements like conciliating the defined amount of desired 
deformation with the range of allowable material strain (deformability). Furthermore, a certain 
amount of stiffness is required to carry external loads whereas on the other hand flexibility helps 
keeping actuation forces low (further information about the requirements to compliant structures can 
be found by Campanile (2006)). Concerning this work, we will primarily concentrate on the 
kinematics and weight of the structure. In the present case of structural linearity, the deformability 
requirement can easily be controlled by scaling all the beam thicknesses in order to reduce the 
bending stresses and the stiffness while the activation requirements can be adjusted by acting on the 
mechanism’s width. 

 
 
 

3. DESIGN CRITERION 
 
A design criterion must be defined which assesses how load-independent the kinematics of a 
mechanical structure within the design space is. For this purpose, we consider a Finite Element model 
of the structure with b elements and n free degrees of freedom (i.e. degrees of freedom which not 
belong to ). The static equilibrium of the structure under a given external load vector b

nf �  is 
described by: 

  (1) =ku f

where  is the displacement vector and nu � n nk �  is the stiffness matrix. According to 
Campanile (2006) the stiffness matrix of a conventional structure is regular and well conditioned, 
whereas a conventional mechanism has a singular stiffness matrix, with rank deficiency equal to the 
mechanism’s mobility m. For a compliant mechanism with lumped compliance (Fig. 2), the stiffness 
matrix is regular but badly conditioned, i.e. with a certain number of eigenvalues much smaller than 
the other ones. The n eigenvalues  of the stiffness matrix are defined – together with the 
corresponding eigenvectors   – through the eigenvalue problem: 

, 1i i  

1i n 

n
,i

 =k   (2) 

Owing to the homogeneity of (2), the eigenvectors are defined but for a scaling factor. A 
normalisation condition, e.g. 

 =1T   (3) 

allows defining the elements of the eigenvector in an unambiguous way. Left multiplication of Eq. (2) 
on both sides with 2T  yields, by taking into account the condition (3), the energy equation 

 
1 1=
2 2

T T 1
2

 k      (4) 

which gives insight into the physical meaning of the eigenvalues. An eigenvalue amounts to the 
double of the deformation energy which is required to deform the system according to the 
corresponding normalised eigenvector. For that reason, modes with high eigenvalues are stiffer to 
stimulate, that means more energy must be spent in order to reach the amplitude level defined by (3)
. For a compliant mechanism with lumped compliance, the number of ‘very small’ eigenvalues 
corresponds to the mobility of the mechanism’s rigid-body counterpart. We will call this number 
pseudo mobility of the lumped-compliance mechanism. Due to the low required energy, the modes 
corresponding to the low eigenvalues will dominate the static response of the system, i.e. the system 
will preferentially deform according to a displacement distribution given by a linear combination of 
these modes. The subspace defined by these low-energy modes will be called – analogously to the 



above introduced definition of kinematics of a rigid-body mechanism – kinematics of the 
lumped-compliance mechanism. In Fig. 2 the case of a rigid-body mechanism with one kinematic 
degree of freedom is shown, together with its compliant counterparts. It can be easily seen that the 
kinematics (i.e. the first, low energy, mode) of the rigid-body and of the lumped-compliance 
mechanism are very similar. 

For reasons which will be clear later, we extend the eigenvalue problem (2) to the generalised 
problem 

 =k m   (5) 

with as a symmetric weighting matrix. In this formulation, the relation between deformation 
energy and eigenvalues deviates from 

n nm �
(4): 

 
1 1=
2 2

T Tk m     (6) 

The physical meaning of the eigenvalues does not change provided that the condition 

 =1Tm   (7) 

is used while normalising the eigenvectors. 
If m is chosen as the mass matrix of the structure, this eigenvalue problem describes the 

vibration behaviour of the system. The n eigenvalues provide the square of the system’s 
eigenfrequencies and the eigenvectors correspond to the vibration modes. 
 

 
 

Fig. 2: Classification and eigenvalue relations of compliant mechanisms under linear assumptions (on all graphs 
the abscissa represents the dimensionless position and the ordinate the displacements due to deformations)  

 
While comparing now the cases b) and c) in Fig. 2 (lumped versus distributed compliance), it 

can be observed that the ratio of the second eigenvalue to the first eigenvalue is much smaller in the 
case of mechanisms with distributed compliance. As a consequence, the mechanism is more likely to 
show “spurious” deformation components when loaded. The higher eigenvalue ratio in case d) shows 
that the cartwheel-hinge, as mentioned before, provides a lower load-dependency of the kinematics. 

These observations suggest the possibility of a design criterion based on eigenvalues and 
eigenvectors of the stiffness matrix. A set of preferred deformation modes should be imposed as 
eigenvectors of the system’s stiffness matrix and furthermore the ratio between the eigenvalues 



corresponding to the chosen eigenvectors and the remaining eigenvalues of the stiffness matrix 
should be as large as possible. This design task will be supported by numerical optimization and 
therefore the criterion must be expressed as an objective function which can be minimized by 
changing the system’s design variables. For the sake of simplicity, we will restrict to the case of one 
single desired deformation mode . d
 
 
 
4. FORMULATION OF THE OBJECTIVE FUNCTION 
 

According to the above reported definition, only the master degrees of freedom have to fulfil 
the requirement of load-independent kinematics; whereas the other degrees of freedom are not 
subject to any restriction concerning the displacement field. It is therefore appropriate to operate on a 
statically condensed stiffness matrix. Accordingly, we will partition the equation system (1) as 
follows: 

  (8) aa ac a a

ca cc c c

    
    

    

k k u f

k k u f





where a marks the p master degrees of freedom and c are the n-p slave degrees of freedom. The 
reduced stiffness matrix is obtained by applying a standard static condensation (Gasch and Knoth 
1989): 

 1( )aa ac cc ca
 k k k k k  (9) 

which also takes into account that no forces act on the slave degrees of freedom. Now, the system 
behaviour with respect to the master degrees of freedom can be described by: 

 =a aku f  (10) 

By solving the standard eigenvalue problem (2), now applied to the condensed matrix, the 
eigenvalues and normalised eigenvectors are computed 

 , , 1i i i p    (11) 

 =1 1T
i i i p     (12) 

The eigenvectors i  can be used as a basis for the description of the system’s static response: 

 a u Φa  (13) 

where Φ  is the modal basis 

 1 2 p   Φ φ φ φ  (14) 

The vector a in (13) contains the modal coordinates. The system equation (1) in the modal space is 
given by: 

 Ka q  (15) 

with the modal forces q: 

  (16) Tq Φ f

and the modal stiffness matrix K: 

 TK Φ kΦ  (17) 



which contains the system’s eigenvalues on the main diagonal. If, by a proper structural design, one 
of the eigenvalues could be strongly reduced with respect to the other ones, this would allow 
imposing the corresponding eigenvector as the system’s kinematics. If the deformation mode is to be 
chosen freely, an additional step in the procedure is needed which imposes the mode as one of the 
system’s eigenvectors. 

Based on the modal basis Φ , a new modal basis is now obtained by replacing one mode with 
the desired deformation mode. In order to limit the changes in the basis to a minimum, the mode to be 
replaced should be as close as possible to the desired deformation mode is replaced. After computing 
the components of the desired deformation mode on the basis (14): 

 1
d d

a Φ   (18) 

the mode is replaced which corresponds to the largest term in the vector .Then the new basis Φda


 is 
ordered as follows: 

  (19) 1 1 1
ˆ [ | | | | | |d j j Φ       ]p

| 
1...

| | max |dj dii p
a


a  (20) 

After that, the new basis is subjected to an orthogonalization (Gram-Schmidt) procedure with respect 
to the stiffness matrix k , while keeping the first vector unchanged. After normalization, the new 
basis: 

 1 2[ | | | v ]Ψ ψ ψ ψ  (21) 

 1T
i i ψ ψ ,    1i M   (22) 

is obtained, where is equal to 1ψ d . The new basis is the solution of the new eigenvalue problem of 
the kind (6): 

 =kψ mψ   (23) 

Because is close toΨ Φ , it can be assumed that the weighting matrix does not essentially differ 
from the unity matrix. Under this assumption, the eigenvalues can be computed as the terms on the 
main diagonal of the modal stiffness matrix: 

m

 TK Ψ kΨ  (24) 

and give, again, a measure for the energy needed to excite the modes at the amplitude defined by the 
normalisation condition (22). The relevant difference with respect to the original problem with the 
eigenvalues and eigenvectors (11) is that one of the eigenvectors corresponds now to the freely 
chosen desired deformation mode. By imposing now a small ratio between the first and all other 
eigenvalues, selective kinematics can be imposed to the system. This criterion can be implemented 
into the objective function 

 
 

1

2..

( )
min n

f 



x  (25) 

where the vector  represents the design variables of the mechanism to be synthetised. x
 
 
 
 
 



5. OPTIMIZATION PROCEDURE 
 
 
5-1. Optimization Problem 
 

The first step of the optimisation procedure deals with the parameterization of the structure to 
be designed, i.e. how the definition of S  and of the material distribution on it depends from the 
design variables. The objective function presented in this work can be applied to any kind of 
structural representation like the graph-based optimization (Sauter 2008). But we will primarily focus 
on parameterizations in which the design variables can be seen as stiffness scaling variables (e.g. 
cross-sectional area, thickness or material properties) of a fixed element within the design space (e.g. 
the ground structure approach or the homogenization approach, which are elaborately described by 
Bendsoe and Sigmund (2003)). Thus, the influence of the design variables ix  on the global stiffness 
matrix can be described by: 

 
=1

( )=
b

i i
i

x xk k  (26) 

with i ix k being the contribution of the i-th Element to the stiffness matrix. 
In addition to the elements stiffness, the chosen design variables affect the structural weight, 

which is our second design requirement. In order to solve the design task, the objective function has 
to be minimized while the weight has to be within a desired limit. In formal notation the problem can 
be expressed as follows: 

 
  max

min ( )

subject to

0, 1

b

i

f

W W
x i b





 

x
x

x

�



 (27) 

where ( )f x is the objective function, x  the vector of the design variables,  the weight of the 
structure and  the upper weight limit. Each design variable has to be larger than zero in order to 
avoid singularities. 

 W x

maxW

 
 
5-2. Numerical implementation 
 

An overview of the complete numerical procedure is shown in Fig. 3. By starting with an 
initial set of design variables the stiffness matrix of the structural configuration is obtained, which is 
subsequently condensed to the active degrees of freedom by means of the static condensation. After 
calculating the basis , the modal stiffness matrix K  is determined. This enables the evaluation of 
the objective function f(x). Furthermore the value of the constraint functions, the sensitivities of the 
objective and of the constraint functions are determined. In order to obtain an improved design these 
quantities are transferred to the optimization algorithm. As an optimizer we have applied the Method 
of Moving Asymptotes (MMA) developed by Svanberg (1987). This algorithm allows solving 
smooth, non-linear constrained optimization problems with a large number of optimization variables. 
The method was successfully applied to different kinds of topology optimization problems and had 
shown its applicability and efficiency (Bendsoe and Sigmund 2003). 

Ψ 

The above described calculation step are performed within an iterative loop. The procedure 
continues until convergence is reached, controlled by the change of the design variables between the 
iteration steps. By treating different optimization setups, we have found that the objective function is 



smooth but not convex. Accordingly, it may happen that the procedure converges to a local minimum. 
This problem can be solved by applying a multi start loop with randomly defined initial design 
variables. 

 
 

 
 

Fig. 3: Optimization process flow chart 
 

 
 

6. DESIGN EXAMPLE AND DISCUSSION 
 

Various optimization problems of compliant mechanisms are known from literature. 
Particularly demanding in terms of design are shape adaptive structures like antenna reflectors (Lu 
and Kota 2003), morphing wings (Campanile 2006) and adaptive car seats (Sauter 2008), where the 
displacements of a large set of points of the structure has to be considered. In order to show the ability 
of the modal objective function formulation, the current work deals with such a shape adaptive 
example; nevertheless, this optimization formulation can also be applied to any 
single-input/single-output application. 

We assume a rectangular design domain as presented in Fig. 4. The bottom of the structure is 
fixed in all degrees of freedom (black points). On the upper surface we define master degrees of 
freedom (green arrows) which in the final design should show a load independent kinematics. We 
define a sinus shape as desired deformation mode on the vertical degrees of freedom (y-direction), 
and we add one single horizontal degree of freedom to avoid global motion in x-direction. 

As a parameterization for the design optimization we use the ground structure approach. 
Thereby the problem is described as a sizing problem, where the optimizer continuously varies the 
cross-sectional beam areas of a fixed beam configuration. This influences the stiffness matrix and 



consequently the value of the objective function. The methodology described above (see Fig. 3) is 
implemented using MATLAB using beam elements. 

 

 
Fig. 4: Ground structure with active (green) and fixed points (black) 

 
The following figures show two structural configurations with different objective function 

values. The deformation behaviour of the configurations under different load cases demonstrates the 
ability of the design procedure. Looking at the first solution (Fig. 5), in which the objective function 
has a value of 0.59, it can be noted that the outer shape of the deformed structure does not coincide 
very well with the desired mode shape (dashed red line) in both load cases. The kinematic of the 
compliant structure is not load independent; so the aim of designing a compliant structure with 
selective compliance is not satisfactory reached for that value of the objective function. 

 

  
a) b) 

Fig. 5 a) Load case 1 by an objective function value of 0.59 b) Load case 2 by an objective function value of 0.59 
 
On the other hand, observing the second configuration with the objective function value of 0.04 (Fig. 
6), the deformed body under both loadings fits very well with the desired mode shape. 
 



  
a) b) 

Fig. 6: a) Load case 1 by an objective function value of 0.04 b) Load case 2 by an objective function value of 0.04 
 

In case of a low value of the objective function, the previous calculations have shown a 
defined kinematics under certain loading conditions. According to the design criterion, the desired 
deformation mode is expected to appear as the first eigenvector of the stiffness matrix and the 
corresponding eigenvalues should be small when compared to the other eigenvectors. To prove this, 
we have solved the eigenvalue problem of the condensed structure. 
 

 
 

Fig. 7 Mode shapes of the optimized structure with eigenvalues ratios 
 
Looking at Fig. 7, the desired deformation mode and first eigenvector of the structure coincide very 
well. Further, the ratio of the eigenvalues is comparable with the one of the cartwheel hinge presented 
in Chapter 2, which shows selective kinematics as desired. In the end, the results clearly point out the 
validity of the presented design criterion and objective function. 

 
 
 

7. CONCLUSION 
 

The current work introduces a new optimization problem formulation for compliant structures. A new 
class of compliant structures was described, which can take advantage of a distributed compliance 
while virtually restraining the deformation to a small number of degrees of freedom. In order to 
design and optimize that kind of structures a criterion was introduced and expressed as a scalar 
objective function by means of a modal procedure. Finally, a demonstration example (a rectangular 
box with a desired sinusoidal deformation mode shape at the upper surface) was calculated to show 
the abilities of the optimization formulation. 

A conventional ground structure approach is used to represent the design space. The results 



underline the feasibility and the potential of the presented formulations. It was noted that the lower 
the value of the objective function, the more the static response of the system is dominated by the 
desired deformation and the less the load distribution influences the displacement distribution. We 
assume that the presented modal procedure leads to a smooth objective function. Another advantage 
of the presented formulation is the possibility of de-coupling the synthesis of the passive structure 
from the design of the actuator system. Since the coupling with the actuator system is realised though 
modal forces, a procedure is conceivable in which in a first step the structure is optimally synthesised 
and then the best actuator system is chosen among all variants which realise the same modal force. 

In further investigations, the synthesis procedure will be extended to other constraints such as 
maximal allowable stress, stiffness requirements and actuation forces. In addition, nonlinearities 
caused by large deflections will be taken into account. 
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