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S1. Experimental settings for ADF and DPC imaging 

The experiments were performed using an FEI Titan Themis operated at 300 kV, in Lorentz STEM mode. 

The ADF signal was recorded setting the camera length to 9.1 m, for which the angular range of the annular detector 

is 0.21 – 0.84 mrad. The DPC measurement was performed by setting the camera length to 19 m, for which the 

angular range of the segmented detector spans from about 0.1 to 0.4 mrad. 

 

S2. DPC signal normalization 

The differential phase-contrast (DPC) scanning transmission electron microscopy (STEM) signals can be affected 

by local changes in the thickness, density, or composition of the specimen, as they may induce a change in the total 

intensity of the diffraction pattern. The differential signals obtained calculating the difference between the intensity 

detected by opposite quadrants need to be normalized to correct for such absorption of diffraction effects for the 

proper detection of the specimen's electric and magnetic fields. 

As proposed by F. Schwarzhuber et al.,1 a convenient way for normalizing the differential signals is to divide the 

DPC signal vector by the position-dependent signal sum, obtained by summing the intensities of the 4 quadrants 

(A, B, C, D).For the probe position 𝐫𝑷 (in the specimen plane) such sum reads: 

Ssum(𝐫𝑷) = ∑ I(𝐫𝑷)

𝐷

seg=A

 Eq. 1 

We can define the DPC signal vector as: 

S⃗ DPC(𝐫𝑷) = I A−C(𝐫𝑷) + I B−D(𝐫𝑷) 
Eq. 2 

where I A−C(𝐫𝑷) = IA(𝐫𝑷) − IC(𝐫𝑷) and I B−D(𝐫𝑷) = IB(𝐫𝑷) − ID(𝐫𝑷). 

The normalization of the DPC images is thus defined by the following relation: 

S⃗ DPC

Ssum
=

I A−C

Ssum
+

I B−D

Ssum
≡ [(A − C)𝑛 , (B − D)𝑛] Eq. 3 

The DPC signals – i.e. (A-C)n and (B-D)n – shown in Fig. 1 in the manuscript were obtained applying such a 

normalization procedure. 

 

Following the argumentations in Ref. [1], it is straightforward to prove that the normalized DPC signal vector is 

related to the projected electric field and magnetic field. 

For the probe position 𝐫𝑷, in fact, the beam deflection detected by DPC can be related to an electric field by the 

equation: 

S⃗ DPC(𝐫𝑷)

Ssum(𝐫𝑷)
=

1

κel
∫ E⃗⃗ 

+∞

−∞

(𝐫𝑷) dz Eq. 4 

or to a magnetic field by the expression: 
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S⃗ DPC(𝐫𝑷)

Ssum(𝐫𝑷)
=

1

κmag
∫ ∇

+∞

−∞

A𝑧(𝐫𝑷) dz Eq. 5 

where the two factors κel and κmag are given respectively by: 

κel =
R2 − r2

R ∙ C

mrelvrel
2

e
 Eq. 6 

κmagn =
R2 − r2

R ∙ C

mrelvrel

e
 Eq. 7 

with R and r being respectively the radii of the diffraction disk and the detector hole, C the camera length, mrel and 

vrel the relativistic electron mass and velocity, e the electron charge. 

In the most complex case, the DPC signal vector will be the sum of the two contributions expressed by the Eq. 4 

and 5. It is worth noting that for given experimental settings the two factors κel and κmag are different. Indeed, this 

highlights the importance of the separation procedure for the qualitative interpretation of the data, being the 

electrostatic contribution to the beam deflection amplified with respect to the magnetic one. 

 

Finally, we can show that the DPC signal so calculated is a valid approximation of the center-of-mass measurement. 

In particular, under the phase object approximation, we can write the center-of-mass (COM) as a function of the 

gradient of the phase shift of the electron wave as it travels through the sample:2 

CO⃗⃗ M(𝐫𝑷) =
1

2𝜋
 I𝑃(𝐫) ⋆ ∇ϕ(𝐫) Eq. 8 

where IP is the probe intensity, ϕ is the phase shift, and r is the coordinate in the specimen plane. 

Since the phase shift induced by the specimen's electric and magnetic field can be written as: 

ϕ(𝐫) =  ϕel(𝐫) + ϕmag(𝐫) =
e

ℏν
∫ V(𝐫) dz − 

e

ℏ

+∞

−∞

∫ Az(𝐫) dz
+∞

−∞

 Eq. 9 

with V the electrostatic potential and Az the component of the magnetic potential parallel to the electron beam, the 

center-of-mass is equal to: 

CO⃗⃗ M(𝐫𝑷) =
1

2𝜋
 I𝑃(𝐫) ⋆ [

e

ℏν
∫ ∇ V(𝐫) dz − 

e

ℏ

+∞

−∞

∫ ∇ Az(𝐫) dz
+∞

−∞

] Eq. 10 

The center-of-mass components along the two main directions are thus given by: 

COM𝑥(𝐫𝑷) = −
𝑒

ℎ
 I𝑃(𝐫)  ⋆ [

1

𝜈
∫ 𝐸𝑥(𝐫) 𝑑𝑧 − 

+∞

−∞

∫ 𝐵𝑦(𝐫) 𝑑𝑧 
+∞

−∞

] Eq. 11 

COM𝑦(𝐫𝑷) = −
𝑒

ℎ
 I𝑃(𝐫)  ⋆ [

1

𝜈
∫ 𝐸𝑦(𝐫)𝑑𝑧 + 

+∞

−∞

∫ 𝐵𝑥(𝐫) 𝑑𝑧 
+∞

−∞

] Eq. 12 

where we used the definition of the electric field: 

∇ϕ(𝐫) = E⃗⃗ (𝐫) = [Ex, Ey] Eq. 13 

and the definition of the magnetic vector potential: 

B⃗⃗ (𝐫) = ∇ × A𝑧(𝐫) = [
𝑑

𝑑𝑦
A𝑧(𝐫), −

𝑑

𝑑𝑥
A𝑧(𝐫)] Eq. 14 

It is straightforward to observe that the DPC components previously defined correspond to an approximation to the 

center-of-mass measurement. Assuming in fact that the segments A and C are along the x-axis and, correspondingly, 

the segments B and D along the y-axis, we obtain: 

(A − C)n =
1

κel
∫ E𝑥

+∞

−∞

(𝐫𝑷)dz −
1

κmag
∫ 𝐵𝑦

+∞

−∞

(𝐫𝑷) dz Eq. 15 
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(B − D)n =
1

κel
∫ E𝑦

+∞

−∞

(𝐫𝑷)dz +
1

κmag
∫ 𝐵𝑥

+∞

−∞

(𝐫𝑷) dz Eq. 16 

 

 
 

 

 

Fig. S3. (a) The Ni2MnGa disk has a shape of a truncated cone. The dashed line gives the direction of the line profiles. 

(b) Due to the uniform specimen composition, the line-profile of the mean inner potential is proportional to the specimen 

thickness. (c) The electric field (proportional to the gradient of the mean inner potential) shows a non-zero signal at the 

two sides of the disk, where a thickness variation is observed. (c) Similarly, opposite charges are observed at the two 

extreme points of the sides of the truncated cone. 
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Fig. S4. Scheme of the alignment and re-calculation processes applied in the separation experiment. (a) Experimental 

direct DPC signals. (b) DPC signal obtained after flipping the specimen. A finite rotation of the specimen is also 

intentionally introduced to match the real experimental case. The scan area is chosen slightly larger than the field of view 

of the direct experiment for allowing the image alignment procedures. (c) DPC signals shown in (b) are flipped back to 

match the direct experiment specimen. (d) The DPC signals so obtained are finally rotated and aligned to the direct DPC 

signals. The signals (AC*, BD*) cover the same field of view of (AC, BD) and they have the same magnification. 

However, the DPC main axes in (AC*, BD*) are at an angle with respect to the ones of (AC, BD). (e) A vector rotation 

– given by the rotation matrix R – of the DPC axes is then performed and allows to obtain a signal (AC*r, BD*r) that can 

be summed/subtracted to (AC, BD) for the separation procedure. 
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Fig. S5 (a) Electrostatic phase shift and (b) magnetic phase shift as obtained after applying the separation procedure. 

The phase contours are also plot overlaid to the maps. The area corresponding to the field of view of Fig. 3 (c-f) is 

marked by the dashed box. 
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