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Magneto-Active Elastomer Filter for Tactile Sensing
Augmentation through Online Adaptive Stiffening

Leone Costi1, Arturo Tagliabue2, Perla Maiolino,3 Frank Clemens 2, Fumiya Iida1

Abstract—The mechanical properties of a sensor strongly affect
its tactile sensing capabilities. The role of morphology and
stiffness on the quality of the tactile data has already been the
subject of several studies, which focus mainly on static sensor
designs and design methodologies. However, static designs always
come with trade-offs: considering stiffness, soft compliant sensors
ensure a better contact, but at the price of mechanically filtering
and altering the detected signal. Conversely, online adaptable
filters can tune their characteristics, becoming softer or stiffer
when needed. We propose a magneto-active elastomer filter
which, when placed on top of the tactile unit, allows the sensor
to change its stiffness on demand. We showcase the advantages
provided by online stiffening adaptation in terms of information
gained and data structure. Moreover, we illustrate how adaptive
stiffening influences classification, using 9 standard machine
learning algorithms, and how adaptive stiffening can increase the
classification accuracy up to 34% with respect to static stiffness
control.

Index Terms—Force and Tactile Sensing, Soft Sensors and
Actuators, Biologically-Inspired Robots.

I. INTRODUCTION

The mechanical characteristics of any given structure (e.g.
its stiffness) greatly affect and alter the capability to sense and
process tactile information [1], [2]. Biological systems show
us that adapting the sensors’ mechanical characteristics to the
environment is fundamental to achieve adequate sensitivity and
high resolution. Nature has developed task-specific sensing
networks for millions of years [3], developing sensors com-
posed of different receptors, with varying morphology, spatial
distribution, and density, perfectly tuned to achieve the best
possible performance for the given task [4], [5]. Nevertheless,
the complexity and the scale used by nature are still out of
technology’s reach, making morphing and adapting sensors
very difficult to obtain [6].

Previously, researchers in this field have focused on the
effect of different morphology designs, investigating the max-
imization of the information gain [7], the role of redundancy
[8], sensitivity amplification [9], and task-specific optimization
[10]. Moreover, there has been a considerable amount of
studies on the relationship between the morphology of the
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sensor and the action for perception [11]–[13]. From these
studies, it emerges the importance of the sensor’s mechanical
characteristics in action-based perception [14] and the trade-
offs offered by a static structural design. Considering the
sensor’s stiffness as an example, softer interfaces offer more
compliance [15]–[18] and more adhesion onto the object of
interest [19], [20], thus increasing the contact area and the
quality of tactile information. At the same time, a soft layer
between sensor and object behaves as a ‘mechanical low-pass
filter’, changing and perturbating the stimulus before it reaches
the sensing elements [21]. The presence of such a trade-off is
intrinsic in the nature of a static morphology that cannot be
tuned online, thus being ideal for a specific task, but lacking
generalization.

The natural solution to avoid the aforementioned problem
is the implementation of online morphing filters. So far,
there have only been a limited number of attempts due
to the technological demanding challenge of such devices.
Noticeable examples include the usage of hot melt adhesive
to change the sensor morphology [22] and of liquid sensors
able to tune their sensitivity and dynamic range [23]. A rather
successful attempt has been made by Hughes, Scimeca, et al.
[24]: they use granular jamming to change the morphology
of a tactile sensor and prove that the ability to change the
sensor’s morphology online produces enhanced classification
performance. However, for the system to work, it is needed
an external pump and a set of known morphing stands that
are used to change the filter’s morphology. As a result, the
change between filter configurations is very slow and relies
on external devices.

The aim of this work is to implement a fast, robust,
and compact mechanism able to rapidly change the sensor’s
stiffness online, to improve tactile information-based object
classification. Moreover, we plan to achieve such an aim
without the need for external devices or known surfaces, like
in previous works, but only with a sensorized UR5 robotic arm
(Universal Robots). To do so, we plan to use a magneto-active
elastomer (MAE) as a soft interface between the tactile sensor
and the object of interest. We are able to tune the MAE’s
stiffness almost instantly thanks to an electromagnet placed
between the sensor and the UR5. We will prove that selectively
increasing the stiffness, after the first contact is made, ensures
a good fit and produces higher quality tactile data, when
compared to maintaining the same stiffness throughout the
whole touching process.

We will implement 3 different stiffening strategies on a
set of 12 objects varying stiffness, roughness, and shape.
Moreover, the tactile data obtained with online stiffness adap-
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tation will be compared with the ones of the two static
configurations, low and high stiffness. First, the data will be
characterized in terms of variance retention and clustering
behaviors, then they will be used as input for 9 standard
machine learning classification algorithms to show that adapt-
ing the filter’s stiffness online can ultimately result in higher
classification accuracy, up to 34%.

In the remainder of the paper, we will describe the manu-
facturing of the MAE and the implementation of the overall
sensing system, as well as the implementation of the testing
bench, in Section II, followed by the results in Section III and
the conclusion and final remarks in Section IV.

II. MATERIALS AND METHODS

A. System overview

The entire sensing system is designed to fit on the end-
effector of a UR5 robotic arm and it is composed of an
electromagnet, a tactile sensor, and the MAE (see Fig. 1).
When the magnet is activated, the MAE changes its visco-
elastic properties. In this study, we aim to exploit the increase
of compression modulus induced by the magnetic field, thus
differentiating between a softer configuration when the magnet
is off, and a stiffer one when the magnet is on.

The magnet (RS PRO magnet 791-7567, RS Components)
is connected to the end-effector with screws and powered via
cable from the 24 V tool output of the UR5. The dimensions
of the magnet are a trade-off between the magnetic strength re-
quired by the MAE and the volumetric and weight constraints
imposed by the UR5’s end-effector: we selected the biggest
magnet that can be carried as payload by the manipulator.
This configuration allows us to avoid external devices, thus
increasing the operating frequency of the manipulator up to
125 Hz. The tactile sensor is a circular capacitive sensor
disk that has 50 ‘taxels’ providing high sensitivity and spatial
distribution over the surface of the sensor, glued on top of the
magnet. The sensor provides measurement with a resolution of
16 bits corresponding to a variation of capacitance proportional
to the pressure acting on top of it. Details of the specific
sensor and its fabrication have been previously reported [25].

Fig. 1. On the left, implementation of the MAE filter on the tactile sensor at
the end-effector of the UR5. On the right, Schematics of the system and the
executed task.

The MAE filter is a 3 mm thick layer obtained by placing 4
27 × 27 × 3 mm MAE samples on top of the tactile sensor.
The adhesion is obtained by applying with a brush a thin
layer of Dragon-skin 20 (Smooth-On, Inc.) on the sensor,
before placing the filter, and allow it to cure before using the
system. The MAE is composed of a matrix of silicone and
inner carbonyl iron particles (CIP). Further details about the
fabrication process are discussed in Section II-B. During the
experimental trials, the system is placed above the selected
object, and then the sensing action is performed in 2 steps:
approaching phase and touch phase. First, the end-effector is
moved down until the sensor is able to successfully detect that
a contact has been made, and later a ‘rubbing motion’ on the
xy plane is performed (see Section II-C).

B. MAE manufacturing

For the elastomer matrix, Ecoflex 00-10 polymer (Smooth-
On, Inc.), with a specific gravity of 1.04 g/cm3 and a shore
hardness below 1, was used. As the magnetoactive filler, CIP
with a mean particle size of 1.9 µm (BASF, Ludwigshafen,
Germany) were used (see Fig. 2a and 2b). SolidWorks was
used to design appropriate molds for casting the samples with
a size of 27× 27× 1, 27× 27× 3, and 27× 27× 5 mm3, re-
spectively. These molds were 3D-printed using CraftFilament
PLA (CraftWare, Hungary).

To achieve a silicone with 30 vol.% CIP, the magnetic par-
ticles were pre-mixed with Ecoflex 00-10 (1:1 ratio monomer
and hardener) for 1 minute using a manual stirrer. To lower
the viscosity, 10 mL of acetone (7.9 g) were added to 237.7 g
MAE before final mixing on a 3-roller mill (Exakt, type 80
S). Before pouring the liquid into the mold, an anti-sticking
spray was used. The liquid MAE was poured into the mold
and any excess material was removed by tape casting using a
doctor blade. In the last step, the material was heated in an
oven at 60◦C to speed up the solidification process, avoiding
unnecessary sedimentation of CIP in the matrix. Both the
low and high stiffness states have been characterized with
compression tests (see Fig. 2c): the filter has been tested with
a 500 N load cell (2580-500N, Instron) on a screw driven
compression testing machine (5584, Instron) with a single

Fig. 2. On the left, scanning electron microscopy of carbonyl iron particles
at 20 µm (a) and 2 µm (b). On the right (c), compression tests’ result of
the MAE filter with and without the magnetic field.
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cycle compression at 1 mm/min, to limit the effect of the
MAE’s viscosity.

C. Experimental protocol

In order to test the effect of online filter stiffening on
discrimination tasks, we collect tactile data on a set of 12
objects with different shapes, roughness, and stiffness, in 3
different stiffening strategies: magnet off (MO), magnet before
contact (MBC), and magnet after contact (MAC). On one
hand, MO and MBC represent static stiffening strategies,
where the stiffness of the material is constant during the whole
touching process, being the magnet always switched off in
MO and on in MBC. On the other, MAC is an online adaptive
stiffening strategy, because the MAE filter is kept in its low
stiffness state for the approaching phase, and the magnet is
turned on after the contact.

The approaching phase consists of the lowering of the end-
effector to achieve contact with the object of interest. For each
object to touch, the end-effector is controlled to move normally
downward until a touch event is detected by the capacitive
tactile sensor at its extremity. The touch event consists of a
raise, in any of the 50 taxels, by more than 5% of their reading
range. Note that, since the approaching phase is terminated
after reaching a pressure threshold, the stiffness of the MAE
directly affects the level of interaction with the object. In MO
and MAC, the filter is softer while approaching the object,
achieving a deeper interaction, whereas in MBC the filter is
stiffer from the start of the trial, leading to less compliance
upon contact and earlier stop of the approaching phase, thus
having a more shallow interaction. The touch phase consists of
a controlled 5 seconds interaction between the sensorized end-
effector and the object under trial. After contact is detected,
the robot proceeds to perform a ‘rubbing motion’, by moving
3 mm diagonally in the xy plane for 5 s. In the touch phase,
the sensor is sampled at 50 Hz. We thus retrieve a total of 250
tactile images for each experiment, each containing responses
from 50 different taxels. This brings the dimensionality of each
tactile experiment to a 12,500-dimensional vector.

The set of objects used for the experiments consists of 12
objects with different mechanical characteristics: 2 different
levels of roughness, smooth and rough, 2 different object’s
shapes, square and round, and 3 different stiffness levels,
obtained by using different manufacturing materials (see Fig.
3). The 3 materials used to manufacture the test objects are
PLA, Dragon-skin 20, and Ecoflex 00-10: non-elastomeric
PLA objects are directly 3D printed, whereas elastomeric
silicone-based ones are the result of silicone casting in 3D
printed PLA molds. Concerning the shape, the squares are
fabricated as 20 mm edge cubes and the rounds are 20 mm
diameter and 10 mm height cylinders with 20 mm diameter
half-spheres on top. Finally, the rough objects are made ridged
by adding 1 mm deep and 1 mm wide grooves on the object’s
top surface, at a distance of 1 mm.

Every object is subject to 50 trials for each of the 3 stiff-
ening strategies, for a total of 150 trials per object and 1800
overall trials. Fig. 4 illustrates the work-flow of a single trial.
The trials are executed in random order without replacement.

This also results in a pulsed activation of the magnet, given
the random order of trials with and without the magnetic field,
rather than a continuous one. Avoiding continuous activation
of the magnet strongly reduces a potential increase in temper-
ature, which could change the MAE visco-elastic properties.
The outcomes of the proposed protocol are 3 distinct datasets
(MO, MBC, and MAC), that will be analyzed and compared
in Section III.

D. Data processing

Given the amount of data produced by the experimental
trials and the high number of dimensions of each data point,
we decided to implement a dimensionality reduction technique
and to verify if there are any clustering behaviors for data
points belonging to the same object.

First, we opted to apply principal component analysis (PCA)
to reduce the number of dimensions of our dataset. This is used
to strongly reduce the initial number of dimensions, 12,500, to
a pre-selected number of principal components, where pi is the
ith principal component retained [26]. Then, we evaluate the
information loss by analyzing what fraction of the original data
variance is retained as a function of the number of considered
principal components.

Next, we analyze how structured are the acquired data.
Ideally, a good data structure has a low intra-class distance
among data points belonging to the same object, and a high
inter-class distance among different objects. For the purpose
of this work, each object corresponds to a different class, for
a total of 12 classes. A metric that can be used to have a
first approximation of the structure’s quality is the Silhouette
score [27]. Such a metric has already been implemented in
tactile information-based discrimination tasks [28] and can be
computed as follows:

s(i) =
b(i)− a(i)

max(a(i), b(i))
(1)

where a(i) is the mean intra-class distance and b(i) is the
mean nearest-class distance for the object i. To summarize the
results, we will refer to a Silhouette score s as the mean of
the scores of individual classes s(i) for i = 1, .., 12. The score
s can thus assume values between -1 and 1 included, where
higher values correspond to a better defined data structure,
which may lead to a more accurate classification.

Fig. 3. (A) Side view and (B) top view of different dummies used for the
recognition task. From left to right: Ecoflex 00-10, Dragon-skin 20, and PLA.
From top to bottom: Smooth Square, Rough Square, Smooth Round, Rough
Round.
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Fig. 4. Work-flow of a single trial during data collection. First, the object of
interest is selected among the 12 possible options: 4 combinations of shape
and roughness for each of the 3 levels of stiffness. Next, the stiffening strategy
for the current trial is selected: in MO the MAE is kept in its low stiffness
state for the entire trial, in MBC it is kept stiff for the entire trial, and in
MAC it is initially off, and then it is turned on after the contact with the
object is detected. Finally, the task is executed and the tactile data are saved
in the respective dataset (MO, MBC or MAC).

E. Classification

In order to further analyze the quality of the tactile in-
formation, we compare the performance of several machine
learning algorithms (MLAs) while working on the 3 datasets.
We decided to select 9 standard MLAs: Feed Forward Neural
Network [29], QDA [30], Linear SVM [31], RBF SVM [32],
Nearest Neighbors [33], Gaussian Process [34], Decision Tree
[35], Random Forest [36], and Naive Baise [37]. The choice
behind such a high number of different algorithms is that we
do not want our conclusion to be biased by a specific feature
of a single classifier, thus by considering different ones we
aim to highlight the difference in the quality of the provided
data over the intrinsic difference among them. We assume that
better data would lead to a better classification in the majority
of the cases. All the classifiers are implemented using Python
3.8 built-in functions with default parameters and trained on
the same 3 datasets (MO, MBC, and MAC).

III. RESULTS

This Section elaborates on the results obtained using the
tactile data generated following the experimental protocol
described in Section II-C, with primarily focus on the per-
formance difference between the 3 datasets (MO, MBC, and
MAC), corresponding to the 3 stiffening strategies.

A. Filter response

To show how the change in stiffness affects the tactile
sensing, Fig. 5 illustrates the raw tactile signal picked up
in the 3 different stiffening strategies for all 12 objects. The
images are taken after 2.5 s of the touch phase, performed as
described in Section II-C. By comparing images belonging to
the same object, it is clear that the change in stiffness does
not radically change the overall response of the sensor, but
rather promotes some noticeable changes in the contact area,
where the interaction with the object is detected. It is clear that

changing the stiffness alters the tactile information because it
alters the mechanical interaction between object and sensor
during the touch phase.

B. Data processing

In order to reduce the dimensionality of the data points, a
PCA was applied to the dataset. The main metric to assess
the goodness of the PCA is the percentage of data variance
preserved as a function of how many principal components
are retained. At the same time, the Silhouette score, as shown
in Section II-D, is a good metric to understand the correct
clustering of data points. Fig. 6 shows the results in terms
of PCA variance retention and Silhouette score as a function
of the principal components and of the stiffening strategy
employed. More in detail, the Silhouette score is computed
for different values of retained dimensions in order to avoid
any bias caused by the dimensionality reduction’s choice.

Firstly, it can be noticed that the MAC dataset can cumula-
tively retain more information than the other 2: considering the
number of needed components to achieve 80% of the initial
variance, MAC only needs 7, against the 8 of MBC and the
9 of MO. Moreover, the first component is able to retain 5%
and 15% more variance than its counterparts, MBC and MO,
respectively. Next, MAC also showcases a higher Silhouette
score for any number of considered dimensions, having the
bigger difference between 4 and 9. Those results prove that
changing the stiffness of the filter between the approaching and
touch phase allows better variance retention when applying
PCA and produces more structured data.

To further analyze the data structure, Fig. 7 illustrates the
2D plots of the data points according to the first 2 principal
components, one for each stiffening strategy. Here, it can be
appreciated how MAC contributes to a better separation of
the data by decreasing the intra-class distance. In fact, even if
it has a limited effect on inter-class distance, it successfully
manages to bring closer data points belonging to the same
class, or object, especially in the central most crowded portion
of the plots. This visualization of the tactile data clarifies the
mechanism causing MAC’s higher Silhouette score.

Fig. 5. Raw tactile sensor activation after 2.5 seconds from the beginning of
the touch experiment. Brighter colors correspond to higher sensor values.
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C. Classification
Finally, we test how the higher variance retention and the

better structure of the data affect the classification perfor-
mance. To do so, every object is considered a different class,
thus we have 12 classes and a random choice performance of
8.3%. We selected accuracy as a performance metric because
the datasets are balanced, with exactly 50 data points per object
for each stiffening strategy. Fig. 8 shows the performance
of the 9 MLAs used to test the datasets as a function of
the stiffening strategy and the number of retained principal
components.

MAC is shown to achieve a better performance than the
other 2 datasets by a large margin: it scores an overall better
average accuracy in 8 classifiers, leaving out only Forward
Neural Network. The largest difference is registered in RBF
SVM and Gaussian Process, where the accuracy increment
reaches a maximum of 34%. Moreover, MAC clearly provides
a better classification than MBC in more than half of the
classifiers, even if they both use the stiffer configuration during
the touch phase. This can be explained by the difference
in interaction with the objects: in MAC, the low stiffness
approaching phase allows the filter to better adapt its mor-
phology to the object, obtaining a better contact, whereas
MBC is characterized by a stiff MAE throughout both phases,
resulting in a lower interaction with the object. Hence, the
results suggest that 2 factors influence the quality of the tactile
data: the filter’s stiffness during the touch phase and the level
of interaction, which is determined by the filter’s stiffness
during the approaching phase. Depending on the classification
algorithm, the relative importance of those 2 factors can
greatly change: as an example, Random Forest seems to be
affected mostly by the touch phase filter’s stiffness, with
similar performance for MBC and MAC, whereas RBF SVM
strongly increases its accuracy only when both factors are
present, in MAC.

IV. CONCLUSION

In this work, we proposed an MAE online adaptive filter,
able to change its stiffness on demand. Moreover, unlikely
other adaptive filters present in state-of-the-art literature, our
system can easily fit on top of the end-effector of a robotic
arm, without the need of external devices nor additional
control boards, and ensures a rapid switch between the filter’s
possible configurations.

Fig. 6. The variance retention of the principle components (a) and the
silhouette score for increasing number of dimensions (b), for each stiffening
strategy. The 3 datsets (M0, MBC and MAC) have been obtained through the
experimental protocol in Section II-C.

Fig. 7. PCA 2D projections of the sensor response. Each figure is generated
via touch experiments with a different stiffening strategy (see Section II-C).
The ellipses are drawn at 1 standard deviation and 3 standard deviations.

Fig. 8. Accuracy when performing classification of the different objects using
the 9 different classifiers a function of the PCA dimensions. The 3 datasets
(MO, MBC, and MAC) have been obtained according to Section II-C.

To test the performance of the filter we acquired data
from a set of 12 objects of variable shape, roughness, and
stiffness, using 3 different stiffening strategies: magnet off,
magnet before contact, and magnet after contact. A total
of 1800 trials have been executed in a random order to
minimize time-variant bias and possible temperature increase
due to continuous magnet operation. Using the PCA variance
retention and the Silhouette score, we demonstrated that online
stiffness adaptation successfully produces higher quality tactile
data, showcasing both greater variance retention and a more
separable data structure. Generally, online adaptive stiffening
produces more structured tactile data when compared to con-
stant stiffness, either low or high. Moreover, we prove that
online stiffness adaptation’s data produce increased accuracy
when using 9 different standard machine learning classification
algorithms, up to 34%.

Overall, we showcased how to compactly and rapidly
achieve online stiffness adaptation and its potential. The ability
to tune the compliance of the tactile sensor at the right
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moment, instead of pre-selecting it, can affect substantially the
quality of the collected data, and in turn increase the perfor-
mance of classification algorithms. However, we acknowledge
that our work is limited to stiffness adaptation, and does not
cover morphological changes, due to the simple geometry of
the MAE filter. Moreover, the magnet’s positioning is not ideal
in order to maximize the compression modulus increase: the
field loops around the magnet, thus its magnitude inside the
material rapidly decreases when moving away from the magnet
itself. Future work could also include computational modelling
of the magnetic field inside the material and modulating it so
to sweep along a stiffness’ range, instead of two discrete states.
Lastly, we believe that online adaptive stiffening is not limited
to active touch, but can be effective also during passive touch,
since it only depends on the relative motion between sensor
and object, and we endorse further studies on this topic.
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