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Abstract Techniques like nanoindentation and

atomic force microscopy can estimate the local elastic

moduli in a region surrounding the probe used. For

composites with phase regions much larger than the

size of the probe, these procedures can identify the

phases via their different elastic moduli but identifying

phase regions that are on the same size scale as the

indent is more problematic. This paper looks at three

random 3D 8003 voxel composite models, each

consisting of a matrix and spherical inclusions. One

model has non-overlapping spheres and two models

have overlapping spheres, with two and three distinct

phases. The linear elastic problem is solved for each

microstructure, and histograms are made of the local

Young’s moduli over a number of sub-volumes (SVs),

averaged over progressively larger SVs. The number

and shape of histogram peaks change from N delta

functions, where N is the number of elastically distinct

phases, at the 1 voxel SV limit, to a single delta

function located at the value of the effective global

Young’s modulus, when the SV equals the unit cell

volume. The phase volume fractions are also tracked

for each bin in the Young’s modulus histograms,

showing the phase make-up of bin in the histogram.

There are clear differences seen between the non-

overlapping and three-phase overlapping models and

the two-phase overlapping sphere model, because of

different size microstructural features, characterized

by the average value of size as computed by the

W(q) function. In the three-phase model, a peak that is

originally all phase 3 persists at its same location, but

as the size of the SVs increase, it is made up of a

mixture of phases, so that it cannot be identified with a

single phase even though it remains a clear peak.

These results give some guidance as to what probe size

might be useful in distinguishing different phases by

local elastic moduli measurements, and how the length

scales of the probe and the microstructure interact.
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1 Introduction

For linear elastic random composite materials, the

global effective moduli have long ago been defined

[1–5]. One method to compute these moduli is to apply

a strain tensor eokl to a representative volume (RV) of

composite material, solve the elastic equations, and

compute the strain and stress everywhere in the

volume, denoted ekl and rij. An RV of a random

composite material can be qualitatively defined as

being a volume large enough so that the computed

effective elastic moduli change only negligibly with

increasing RV size. This size is a function primarily of

the microstructure and secondarily of the elastic

contrast between phases. The averages of these

quantities over the complete volume are denoted

\ekl[ and\rij[. Equation (1) implicitly defines the

effective elastic moduli tensor, Cijkl:

hriji ¼ Cijklhekli ð1Þ

Throughout this paper, however, the Voigt notation

for the components of the stress, strain, and elastic

moduli tensors is used:

hrii ¼ Cijheji ð2Þ

Equation (2) defines the effective moduli tensor. If

periodic boundary conditions are used, as in this paper,

the average strain tensor,\ej[, is equal to the applied

strain tensor, eoj [1–5]. When comparing any kind of

composite theory to experiment, the effective global

moduli are typically used since most experiments

measure the effective moduli, usually in some direc-

tion, through a simple stress/strain measurement. In

the last few decades, techniques like nanoindentation

[6] and atomic force microscopy (AFM) [7, 8] can now

estimate the local moduli in a region surrounding the

probe. The size of these regions is thought to be a few

cubic micrometers in volume for nanoindentation and

significantly smaller for AFM. For composites with

homogeneous phase regions much larger than the size

of the probe, these procedures can identify different

phase moduli and therefore estimate phase boundaries.

For composites where the phase regions are on the

same size scale or smaller than the probe size,

identifying different phases is more difficult, since

the elastic fields from the indenter can overlap two or

more phases, mixing different phase properties into

the elastic response of the probe. This ‘‘mixing’’ has

been sometimes denoted the ‘‘substrate effect’’ when

nanoindentation has been applied to composite mate-

rials [9]. This paper treats general composite material

models but has in mind applications to composite

materials like cement paste [8, 9].

These developments lead to the problem of how to

define the effective moduli at the local level, where

Eq. (2) is defined for a sub-volume (SV) of the

material, which is what is sensed by the kind of

instruments mentioned above. How do these local

moduli depend on the size of the SVs that define them?

A problem similar in some ways to that studied in this

paper was treated by Ostoja-Starzewski [10], who

looked at computing elastic moduli over a sub-area of

a 2D random composite (inclusions in a matrix) and

studying how the effective moduli varied as a function

of sub-area size. However, Ref. [10] only looked at

single sub-areas of a given size, not multiple SVs

dividing up an entire microstructure. Other workers

have considered the related problem of the effect on

computed elastic properties of the interplay between

the size of the representative volume element and the

internal length scale of microstructural features

[11–17].

Imagine a material divided up into cubic voxels

(see Fig. 1, left), where each voxel is a single phase,

and a voxel is the smallest possible unit of volume; i.e.

a digital image model. The elastic equations have been

solved, and the average strain and stress tensor are

known inside each voxel. If Eq. (2) is applied to

compute the effective elastic moduli tensor in each

voxel, there would be N distinct values, where N is the

number of elastically distinct phases in the composite.

If the volume fraction of material having a certain

Young’s modulus is plotted in histogram form, there

would be N delta functions (in the infinite system

limit) with the weight for each equal to the volume

fraction of that particular phase. If, on the other hand,

Eq. (2) were to be used over the entire volume (see

Fig. 1, right), then the same sort of plot would be a

delta function (in the infinite system limit), centered at

the effective Young’s modulus of the entire system

with volume fraction weight equal to unity. The point

of this paper is to see how those N delta functions,

defined for single voxels, are transformed into a single

delta function as the SVs over which Eq. (2) is defined

increase from single voxels to the entire volume (see

Fig. 1, middle). This transformation is a direct conse-

quence of the competition between the characteristic
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length scale of individual phases and the length scale

or size of the SV used.

With this general picture, one can then comment on

the possibility of some kind of probe actually

measuring true single-phase moduli when the mea-

surement of effective moduli is taken over a certain

length scale (volume). This paper looks at three simple

3D models, two overlapping sphere models and one

non-overlapping sphere model, in a volume that is

8003 voxels in size. The complete elastic problem is

solved for each microstructure using a parallelized

finite element method, and histograms are made of the

local elastic moduli found by averaging over individ-

ual SVs. The phase volume fractions found in each SV

are computed and averaged over all those SVs whose

average E values contribute to a given bin in the elastic

moduli histogram, so that one can tell directly how

much of each phase contributes to various local elastic

moduli peaks.

2 Finite element method and averaging procedure

A digital-image-based finite element method (FEM)

designed to compute the elastic properties of random

microstructures [18–20] was used in this paper. The

code uses Message Passing Interface (MPI) paral-

lelization [20] to enable computations on large

systems, where each cubic voxel is a tri-linear finite

element and the mesh is a 3D rectangular paral-

lelepiped of cubic voxels. The nodes are just the

corners of the cubic voxels. The left image in Fig. 1

can be thought of as a schematic picture of a typical 3D

mesh for a cube of material. It has been successfully

used to study simple shapes like the dilute limit of

rectangular blocks [21, 22] embedded in a periodic

unit cell, with the aid of digital resolution scaling

[23, 24] to improve accuracy. The algorithm can also

operate directly on the image stacks that come from

techniques like X-ray computed tomography [25–27],

after segmentation into distinct phases and where each

image is thought of as a single layer of voxels.. The

entire image stack used defines the 3D rectangular

parallelepiped mesh. In the parallelization scheme, the

system is divided into a number of multi-layer stacks

oriented normal to the z direction. Each processor

controls one stack that is several voxels thick and

communicates with the processor below and above it.

The typical number of processors used is nz/4 to nz/2,

where nz = the total number of layers in the z

direction, and nx and ny are the number of voxels in

the x and y directions, respectively. The total number

of degrees of freedom in this mesh is 3 nx ny nz, since

there is one real node per voxel. Details of the

parallelization process can be found in the manual for

the parallel program [20]. The manual for the scalar

version of the code gives more theoretical and

computational details [19] of the finite element portion

of the computation. Both the scalar and parallel

versions are freely available on-line [28]. In this paper,

the six different independent strains are applied, using

periodic boundary conditions, and the resulting

stresses and strains are averaged over each voxel and

in principle stored. However, for 8003 finite elements,

this is a lot of storage, so there is a pre-averaging step,

taken over every 43 voxel SV, 2003 in all, and these

averaged local stresses and strains are stored for each

choice of applied strain. Not saving the stresses and

Fig. 1 A schematic view of a representative volume element of

a composite material with averaging schemes that start out

subdivided into 1 voxel SVs (left), then larger SVs = collections

of voxels (middle), and finally averaging the stress and strain

over the entire material volume (right)
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strains for each voxel saves on storage requirements,

and the results for 1 voxel SVs are analytically known,

since applying the equivalent of Eq. (2) to the stresses

and strains in a single voxel just recovers the assigned

moduli for that voxel.

To define the local elastic moduli as a function of

length scale means averaging the stress and strain over

each SV of the entire microstructure and then deter-

mining the unique elastic moduli tensor for that SV.

This is the equivalent of Eq. (2), but done for an SV,

not over the entire 8003 voxel/finite element unit cell.

Since there are in general 36 independent components

of the elastic moduli tensor, 36 linear equations are

required to determine these components. These equa-

tions are obtained by using the stored average stresses

and strains. Each strain component, ej, is applied one at

a time and gives rise to six stress components

connected to this strain component, ri, where i = 1,6

and ri is a linear function of the 36 Cij components. If

this procedure is carried out six times, then 6 • 6 = 36

independent linear equations are generated for each

SV, whose solution is the 36 components of the elastic

moduli tensor defined for that SV. A simple Gaussian

elimination algorithm is used to find the components

of Cij for a given SV. The general symmetry elastic

moduli tensor for each SV is then isotropically

averaged [29] and the Young’s modulus (E) extracted.

All results in this paper are given for E, which is

closest to the indentation modulus measured in

nanoindentation; the bulk and shear moduli behaved

very similarly and so these results are not shown. The

average Poisson’s ratio per SV can be similarly

defined but will not be considered further here.

This paper studies how the values of E, computed

for each SV, are distributed statistically as a function

of SV size. The phase volume fractions are computed

in each SV, and then averaged over all the SVs whose

E values contribute to a given bin in the E histogram.

Therefore, the phase volume fractions are also shown

in terms of histograms, showing how they are

distributed as a function of SV size. Two limits are

known: when the SV size goes to zero (one voxel, in

this case) and when the SV size becomes equal to the

entire unit cell size. In this latter limit, the average of

the SVs must equal the average E of the entire system

and the width of the single E peak narrows to a delta

function, with weight 1, in the limit of a very large unit

cell. In this delta function, the phase fractions take on

their global values, since they have been averaged

over the entire system. In the single voxel SV limit,

there areN sharp peaks for N elastically distinct phases

with weights being the phase fractions /i and located

at Ei. This paper looks at how these two distributions

change into each other as the size of the SVs ranges

between these two limits.

3 Microstructure models: generation

and characterization

Two simple random microstructures were first con-

structed, with the cubic unit cell 800 voxels on a side

[1], so that the total number of degrees of freedom in

the finite element mesh will be 8003 nodes times 3

DOF per node = 1.536 9 109. This was large enough

so that the volume fractions of the various phases in

the various models to be discussed would not change

appreciably between different realizations of the same

microstructure. This allowed us to only use one

realization of each microstructure. There is no phys-

ical length scale assigned to the voxel edge length,

since these models are intended to be general. In real

composite materials, the size of inclusions can range

from tens of nanometers (gold nanoparticles in

polymer matrices) to tens of millimeters (gravel in

concrete). Digital spheres of diameter 41 voxels were

used. They were defined by centering a continuum

sphere of 41 voxel diameter on a voxel and labeling

each voxel whose center fell in the interior of the

continuum sphere as belonging to the sphere. The

voxel volume turned out to be 36,137 voxels, which

only differs by - 0.1% from the continuum value of

36,086.95. A list of voxel centers was made, in

reference to the center of the sphere, which was used to

insert a sphere into the unit cell. Spheres were inserted

in two ways. The first way was inserting the spheres,

centered at randomly chosen voxel centers, but not

allowing them to overlap. Periodic boundary condi-

tions were used so that a part of a sphere that extended

beyond the unit cell boundary was filled in on the other

side of the unit cell. Figure 2a shows an 800 9 800

pixel slice of this microstructure, called the two-phase

non-overlapping sphere (2NOS) model. Note that the

ratio between the size of the unit cell and the size of the

inclusions, about 20, means that finite size errors will

be negligibly small, since a ratio of 5 or 10 would be

adequate for having negligibly small finite size errors

[21–24, 29, 30]. Using a ratio of 20 assures us that
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finite size errors can be completely ignored. The

circles in Fig. 2a show a size distribution since they

are sliced through at different distances from mono-

size sphere centers. This model has a two-phase

structure, consisting of the percolated matrix (phase 1)

and the isolated volume inside the spherical inclusions

(phase 2). The volume fraction of phase 2 is then just

the number of spheres, N = 4719, times the volume

per sphere (36 137 voxels), divided by the unit cell

volume. In the case studied, the sphere volume

fraction was 0.333 and the matrix phase fraction was

0.667.

The second method of constructing the model

microstructure was to insert the spheres, centered at

randomly chosen voxel centers, but allowing them to

freely overlap. In a two-phase infinite system of matrix

plus identical overlapping objects, randomly centered,

the remaining matrix volume fraction is given by

[31–33]:

c1 ¼ exp �nVoð Þ ð3Þ

where Vo = the volume of one object and n = the

number of objects per unit total volume. For any finite

realization of this kind of microstructure, even if

continuum rather than digital objects are used, Eq. (3)

will be an estimate only. The resulting two-phase

microstructure, called the two-phase overlapping

sphere model (2POS), had phase fractions similar to

the 2NOS model. A slice is shown in Fig. 2b. 5738

spheres were placed, so that Eq. (3) gives a prediction

of 0.6670, which was very close to the actual matrix

phase fraction of 0.6656. A burning algorithm was

used to determine that both phases were percolated

[34]. The second phase was expected to be percolated

since its volume fraction, 0.3344, was greater than

0.2895 ± 0.0005, the percolation threshold deter-

mined for the 2OS model [35].

To build a simple three-phase overlapping sphere

composite model (3POS), the overlapping sphere

algorithm was slightly modified. When each sphere

was randomly inserted into the matrix (1), the sphere

(meaning all volume it replaced) was chosen to be

phase 2 with a probability of 0.3 and phase 3 with a

probability of 0.7. The final volume fractions actually

achieved were: /1 = 0.3500, /2 = 0.1962, and

/3 = 0.4538. In the system considered, nVo = 14

850 Vo/(8003) = 1.0481142, which gives a matrix

phase fraction of 0.3506, which differs by less than

0.2% from the achieved value, probably due mainly to

the small digital error in using digitized spheres vs.

continuum spheres [36] and the fact that the model is

only a finite-size realization. The total inclusion

volume fraction is predicted by Eq. (3) to be 0.6494,

which is very close to the sum of the volume fractions

of phases 2 and 3 (0.6500). In the 3POS model, the

phase 2 and 3 volume fractions are predicted to be

0.6494 � 0.3 = 0.1948 and 0.6494 � 0.7 = 0.4546,

which are again very close to what was actually found.

Since the matrix phase fraction, 0.35, in the 3POS

model is much less than the matrix phase fraction,

0.667, in the other two-phase models, the inclusion

phases, which have higher moduli than does the

matrix, will carry more weight in the average E value.

A burning algorithm [34] showed that phases 1 and 3

were percolated and phase 2 was not. A percolation

phase diagram for nPOS models, where n C 3, is

discussed in more detail in Ref. [37]. Figure 2c shows

one of the possible 800 9 800 voxel cross-sections of

the 3POS model.

(a) (b) (c)

Fig. 2 Slices of the two- and three-phase periodic 8003

spherical particle microstructures: (a) non-overlapping spheres

(2NOS), (b) two-phase overlapping spheres (2POS), (c) three-

phase overlapping sphere (3POS) microstructure. Phase 1

(matrix) is light gray, phase 2 (inclusion) is mid-gray, and

phase 3 (inclusion) is dark gray
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In the first columns of Table 1, the elastic moduli

assigned to each phase and the phase volume fractions

in all three models are given. Note that there is perfect

contact between voxels of the same or different

phases. The last column, marked ‘‘Unit cell,’’ shows

the effective moduli obtained by the FEM computa-

tion averaged over the entire unit cell. Note that in

experiments on multiphase materials, a given phase

may itself have a distribution of elastic moduli,

centered around an average value, due inherent

randomness in an amorphous phase or crystallite

orientation in a polycrystalline phase. In this paper,

each phase has a distinct value of elastic moduli. It will

be seen below that the E distribution histograms arise

only from mixing of these precise phase moduli

values, not from any distribution of elastic moduli

values inside a given phase. It is interesting to note that

the computed composite values of E and m, listed in

Table 1, agree rather closely with the self-consistent

effective medium theory (SC-EMT) listed on p. 475 of

[1]. The SC-EMT values for both two-phase models

are E = 16.77 GPa and m = 0.267, and the three-phase

model has SC-EMT values of E = 39.63 GPa and

m = 0.226.

To better understand how the size of the SVs affects

the E distributions, one needs a length scale inherent to

the phase in the three models in order to understand

how the E distributions change with SV size. Com-

paring Fig. 2a, b, it is reasonable that the size scale of

the inclusion phases in the 2POS model could be

somewhat larger than in the 2NOS model, since

overlapping spheres contain larger lengths in them

than do isolated spheres. However, there is no obvious

intuition for the 3POS model, as seen in Fig. 2a, c

common length scale is thus needed to be able to

quantitatively compare the three models to each other.

Reference [1] gives a choice of several microstructure-

dependent length scales, which could be used for our

isotropic microstructures, but none are particularly

well-suited to the oriented cubic SVs used in this

paper. The closest length-scale-type quantity is the

coarseness, defining how the phase volume fractions

fluctuate over local length scales [1, 38, 39], but is still

not entirely appropriate since our SVs are aligned with

the voxel lattice. In this paper, and in analogy to the

lineal path function [1], we define the quantity Wj(q)

to be the probability that a randomly placed q3 voxel

cube, oriented with the 3D voxel arrangement, will be

entirely contained in the jth phase. Since the limit

q ? 1 is a single voxel, the value of Wj(1) is just /j,

the volume fraction of the jth phase, since in this limit

Wj(q) just adds up the number of voxels belonging to

phase j. For some value of q, called qj0,Wj(q) will go to

zero and remain zero for larger values of q, since there

would be no place in the microstructure where this size

cube or larger could fit anywhere into the jth phase.

The average value of q for phase j, computed using

Wj(q) and Eq. (4),

hqi ¼
PQ

q¼1qWj qð Þ
PQ

q¼1Wj qð Þ
ð4Þ

will then be a length that is representative of phase

j, where the largest value of q considered was Q.

However, as will be seen below, the qj0 parameters are

actually more useful than the averages for understand-

ing how the E histograms change.

A simple way of computing Wj(q) is to randomly

overlap an oriented q3 voxel cube on top of the

microstructure and sum the values of the voxels

overlaid (1 = phase 1, 2 = phase 2, 3 = phase 3). If

this sum is equal to q3, then the cube is entirely in

phase 1; if the sum is equal to 2q3, the cube is entirely

in phase 2; if the sum is equal to 3q3, the cube is

entirely in phase 3. One million random points were

chosen for each model microstructure, which was

Table 1 A list of the elastic moduli (units of GPa) assigned to the various phases (1, 2, or 3) in the three microstructures investigated,

along with the phase volume fractions and the values of the average over the entire unit cell

Model E1 m1 /1 E2 m2 /2 E3 m3 /3 Unit cell

E m

2NOS 10 0.3 0.667 50 0.2 0.333 16.30 0.269

2POS 10 0.3 0.666 50 0.2 0.334 16.69 0.267

3POS 10 0.3 0.350 150 0.2 0.196 60 0.2 0.454 37.56 0.227
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determined to be sufficient by comparing to Wj(-

q) computed by systematically summing over every

voxel in the 8003 models. An important number for

each model will be q = qj0, which is that value of q

such that Wj(q) is less than 0.0001, a reasonable

approximation of where Wj(q) is zero considering the

finite size of the unit cell of the models, which would

tend to make the large q tail of Wj(q) appear longer

than it really is. If one were using some kind of

microstructural probe, such as a nanoindenter, then qj0

gives the largest size at which the probe might

randomly fall inside a single phase.

4 Results

Each microstructural system was solved for the nodal

displacements, and the six stresses and six strains were

averaged over each voxel. The total runtime was about

500 h, but the runtime varied between systems. Using

200 processors in the parallelization, the runtime was

235 h for the 2POS system, 175 h for the 2NOS

system, and about 90 h for the 3POS system. These

times differed because the various microstructures

caused different amounts of conjugate gradient relax-

ation steps to be needed to obtain equivalent solution

accuracies. A 16003 version of one of the models was

solved, giving the same global composite moduli as

the 8003 version, thus confirming that the 8003 unit

cells were large enough for stable results. Cubic SVs

of edge length 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 80,

and 160 voxels were used to generate the E his-

tograms. For SVs of edge length 4, 8, 16, 20, 32, 40,

and 80, an 8003 system was subdivided into non-

overlapping SVs that exactly filled the microstructure.

For example, for an SV with edge length 32, (800/

32)3 = 15,625 SVs were utilized. Since the numbers

12, 24, 28, and 36 do not divide 800 with a zero

remainder, the SVs of this size did not quite cover the

entire unit cell. For example, for the SV with edge

length 28, since 800/28 = 28.57, 283 = 21,952 SVs

were used, which utilized 94% of all the possible

voxels. The amount not covered was of negligible

volume compared to the total unit cell for these four

SV sizes. For each choice of SV size, a histogram was

constructed such that each bin contained the volume

fraction of SVs having a value of E between the bin

limits. For each SV, the volume fractions of the phases

were computed and then averaged over all SVs falling

into the given E bin. Not all the graphs corresponding

to all the choices of SV sizes will be presented, but

only enough so that the changes in the E histograms

can be followed as SV size increased.

4.1 Wj(q) versus q

We first present the Wj(q) results, which will be used

to understand the E histograms. Figure 3 shows plots

of Wj(q) for (a) the 2NOS and 2POS models, and

(b) the 3POS model. Notice that in Fig. 3a, the

Wj(q) curves for the 2POS model are always larger

than those for the 2NOS models. Table 2 lists the

values of \q[ and qj0 computed for the different

phases and models using the Wj(q) curves from Fig. 3.

In Table 2, and referencing Fig. 3, note that that

phase 1 in the 2POS model has significantly more

‘‘size’’ than does phase 1 in the 2NOS model, while the

sizes of phase 2 in both models is quite similar, in

terms of \q[ and q0. The ‘‘size’’ of phase 1 in the

3POS model is smaller than both the 2NOS and 2POS

models, and phases 2 and 3 are similar to the two-

phase models.

4.2 Two-phase non-overlapping sphere (2NOS)

model

As given in Table 1, the global effective E was found

to be 16.30 GPa. This number will affect how the

following E histograms transform as the SV size

increases, since the distribution goes to a delta

function of weight 1 centered at 16.30 GPa in the

limit where the SV becomes equal to the size of the

unit cell.

Figure 4a shows the E distribution computed over

43 voxel SVs. There are clear, sharp peaks at values of

10 GPa and 50 GPa, which are the E values of phases

1 and 2, respectively. The values of the phase fractions

at these peaks show that they are made up of a single

phase only. However, there is a small amount of

weight for values between these two peaks, and the

phase fraction curves show how the phases are starting

to mix to give the intermediate E results. For example,

the bin at 24 GPa is made up of almost exactly 50% of

phase 1 and 50% of phase 2. If a sampling instrument

had linear dimension of 4 voxels or less, and many

probes were made to give statistical results, the data

would readily identify two major phases.
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Figure 4b shows the E distribution at the SV size of

163 voxels. The heights of both sharp peaks have

decreased by about the same factor, while the weights

of the intermediate E values, especially close to the 10

GPa peak, have significantly increased. The phase

fraction curves show the phase mixing that is giving

rise to this additional weight near 10 GPa.

The next two graphs in Fig. 4 have SV sizes that are

closer together, since at this point qualitative changes

take place rapidly in the histograms as a function of SV

size. Figure 4c, for a SV size of 243 voxels, shows that

a small peak still remains at 10 GPa, but the peak at 50

GPa has mainly disappeared. There is still some

weight there, since there is still a bin at 50 GPa and the

phase 2 fraction still goes to 1 as E goes to 50 GPa.

However, at least 80% of the weight of the histogram

is in the wide shoulder between 10 and 35 GPa. The

phase fraction curves look quite similar to those in

Fig. 4a, b, although the actual phase volumes associ-

ated with each symbol are quite different, since they

reflect the number of SVs with local E values that fall

into a given bin of the E histogram. At this point, if a

sensing instrument sampled a region with linear

dimension equal to 24 voxels, it would not identify

two major phases. Figure 4d shows that by a SV size

of 283 voxels, there are no more pure phase 2 SVs,

since the upper limit of the graph is at approximately

48 GPa and the phase fraction points for phase 2 now

no longer go to 1 at the right hand side of the graph.

This is predicted by the value of q20 in Table 2, 24

voxels. There is no way to get a local SV E value of 50

GPa by any mixing of phase 1 and phase 2. The peak at

10 GPa has broadened and now values of up to 15 GPa

have equal weight as the 10 GPa peak. There are still

pure phase 1 bins, since the value of q10 is 34 voxels

and 28\ 34.

Figures 4e, f show the E histogram at SV sizes of

323 voxels and 403 voxels. In Fig. 4e, the histogram

has changed qualitatively and is now a single,

asymmetric peak centered at around 14 GPa. There

is still weight at 10 GPa, and the phase fraction for

phase 1 shows that there is still a small amount of pure

phase 1 SVs. The right-hand limit on the E axis has

decreased to slightly less than 40 GPa, and there are

less phase 2 and more phase 1 voxels at this limit.

Figure 4f, for 403 SVs, shows that now there is no

longer any pure phase 1 SVs since there is zero weight

at 10 GPa and 40[ q10 = 34. The single peak has

become narrower and thereby taller (compare left

y-axes between Fig. 4e, f and has moved its center
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Fig. 3 The computed

Wj(q) curves for (a) the

2NOS and 2POS models,

and (b) the 3POS model

Table 2 Values of\q[ in voxels, approximate q = qj0 values where Wj(q) becomes less than 0.0001, and volume fractions for all

three models and the two or three phases in each model

Model \q[1 /1 q10 \q[2 /2 q20 \q[3 /3 q30

2NOS 7.3 0.6670 34 5.7 0.3330 24

2POS 10.5 0.6656 56 6.3 0.3344 26

3POS 5.8 0.3500 31 5.4 0.1962 24 6.3 0.4538 27
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Fig. 4 Histogram of local E values and phase volume fractions

per bin for the 2NOS model. Units of left y-axis are volume

fraction per GPa, and units of right y-axis are volume fraction.

(a) 43 voxel SVs, (b) 163 voxel SVs, (c) 243 voxel SVs, (d) 283

voxel SVs, (e) 323 voxel SVs, and (f) 403 voxel SVs
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approximately to 16 GPa, which is very close to the

global Young’s modulus of 16.3 GPa. The phase

fraction curves have become flatter, since their lower

(upper) limit has increased (decreased) from 0 (1). A

sensing instrument of linear size greater than about 34

voxels, which is about � of the size of one inclusion,

would only see one phase that had a distribution of

elastic moduli values that was centered on the global

composite modulus value.

4.3 Two-phase overlapping sphere (2POS) model

The global effective E, averaged over the entire unit

cell, was listed in Table 1 as 16.69 GPa, about 2.5%

larger than the 2NOS case, so the center point of the

eventual single peak in the E distribution will be close

to that of the 2NOS sphere model.

Figure 5a shows the distribution of E computed

over 43 voxel SVs. There are clear, sharp peaks at

values of 10 GPa and 50 GPa, which are the E values

of phases 1 and 2, respectively. The values of the phase

fractions at these peaks show that the peaks are made

up totally of a single phase. However, there is a small

amount of weight for values between these two peaks,

and the phase fraction curves show how the phases are

starting to mix. Figure 5a shows that if a sampling

instrument had linear dimension of 4 voxels or less, it

would readily identify two major phases.

Figure 5b skips to the 323 SV results. The SV sizes

between 43 and 323 voxels show a progression that is

quite similar to that shown for the 2NOS model, so

they will not be presented. For the 323 SV results, the

50 GPa peak has vanished, since q20 = 26 voxels for

the 2POS model and 32[ 26. There still could be a

small amount of weight showing in the last histogram

bin, however, because the bins are of finite size. The

peak at 10 GPa is still visible, although much reduced

in height, and there is a large shoulder extending to

about 40 GPa.

Figure 5c shows the E distribution for a slightly

larger SV size, 363 voxels, still showing a distinct

phase 1 peak. Figure 5d, for a 403 voxel SV, shows

that the 10 GPa peak is no longer a distinct peak. There

is now a single peak, gradually decreasing from 10 to

40 GPa, but there is still weight in the 10 GPa bin,

since q10 = 56 for this model and 36\ 56.

At an SV size of 803 voxels, as shown in Fig. 5e,

there is a clearly defined single peak, centered at about

17 GPa, and the phase fraction lines have become

much flatter, in terms of their minimum and maximum

values, than in Fig. 5d., and there is no weight at

E = 10 GPa, as expected, since 80[ q10 = 56. A

sensing instrument of linear size greater than about 40

voxels, which is about the size of one inclusion, would

only see one peak and therefore one phase but with a

spread of E values. A sensing instrument with linear

size larger than that, up to 80 voxels in size, would

show a single phase, with a distribution of elastic

moduli values, which was centered on the global

composite modulus value.

4.4 Three phase overlapping spheres (3POS)

model

This model was chosen so that more than two phases,

with a wider range of phase elastic moduli, could be

studied. More theoretical work can be done with only

two phases [1], but many composite materials have

more than two phases. In Table 1, the global effective

E, averaged over the entire unit cell, was found to be

37.56 GPa, which is substantially greater than the two-

phase models.

Figure 6a, b show the E distributions and accom-

panying phase fractions for SV sizes of 43 voxels and

163 voxels. In Fig. 6a, three clear, sharp peaks are seen

at 10 GPa (phase 1), 60 GPa (phase 3), and 150 GPa

(phase 2), corresponding to the phase E values, and

only one phase fraction is non-zero at each peak. The

phase fraction curves for phases 1 and 2 both have

cusps at the 60 GPa peak, so that only phase 3 is non-

zero there. In Fig. 6b, for a 163 voxel SV, the peaks

have shrunk in height by factors of 2 to 3, with the

greatest relative shrinkage being in the middle at the

60 GPa peak. Significant weight has developed

between the 10 GPa and 60 GPa peaks and between

the 60 GPa and 150 GPa peaks, showing the phase

mixing that has taken place with the increased SV size.

For a SV of 243 voxels, there has been a sharp

qualitative change in the E histogram, as can be seen in

Fig. 8c. The 150 GPa phase 2 peak and any weight at

all in the last bin has essentially disappeared, since

q20 = 24, and a distinct 10 GPa phase 1 peak has

almost disappeared, too, though with weight still in the

10 GPa bin. The phase 3 peak can still be seen at 60

GPa, but it is no longer pure phase 3. Most of the

weight of the distribution is between 10 and 60 GPa,

since the eventual limit of the distribution is a narrow

peak at 37.56 GPa. In Fig. 6d, at a slightly larger SV,
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Fig. 5 Histogram of local E values and phase volume fractions

per bin for the 2POS microstructure. Units of left y-axis are

volume fraction per GPa, and units of right y-axis are volume

fraction. (a) 43 voxel SVs, (b) 323 voxel SVs, (c) 363 voxel SVs,
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283 voxels, there is now a single broad peak, and the

phase 3 bin at 60 GPa is even more mixed phase.

Note that the 60 GPa peak in Fig. 6c is only about

70% phase 3, but it still exists since there are many

ways 150 GPa and 10 GPa voxels could mix to

produce an E value of 60 GPa. In the 60 GPa peak, we

have contributions to the ‘‘real’’ phase 3 peak by

combinations of phases 1 and 2. This means that even

if peaks can be recognized in a technique like

statistical indentation, since they are appearing at E

values that are close to those expected for a pure phase

(so they can be labeled), no volume fraction of the

phases can be calculated from these peaks. Taking a

closer look at the data shown in Fig. 6c, the value of

the phase 3 volume fraction was averaged for all the

243 voxel SVs that had a value of E between 50 and 70

GPa, in 2 GPa-wide bins in that range, with the results

shown in Fig. 7 plotted against the mid-point E value

of each bin. The open circles show the maximum value

of the phase 3 volume fraction encountered over the

bins examined, some of which were near unity, so that

some of the SVs in this region were indeed almost pure

phase 3, which is reasonable, since 24\ q30 = 27

voxels. However, for every bin in the histogram, the

minimum value of the phase 3 volume fraction in an

SV was 0 (not shown in figure), indicating that there

were some SVs with values of E in this range that

contained no phase 3 voxels. The open squares show

the average value of the phase 3 volume fraction in

each E range, which peaks near E = 60 GPa as might

be expected. The solid circles show the number

fraction of the SVs that had a phase 3 volume fraction
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Fig. 6 Histogram of local E values and phase volume fractions per bin for the 3POS model. Units of left y-axis are volume fraction per

GPa, and units of right y-axis are volume fraction. (a) 43 voxel SVs, (b) 163 voxel SVs, (c) 243 voxel SVs, and (d) 283 voxel SVs
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less than 20% in each E bin, while the solid squares

show the number fraction of the SVs that had a phase 3

volume fraction greater than 80%. Figure 7 shows that

there was a significant number of SVs included in the

peak around 60 GPa whose local microstructure had

very little to do with phase 3. Counting these

contributions to the peak at 60 GPa as indicating the

presence of phase 3 would therefore be erroneous.

Note that the 60 GPa peak actually became less than

100% phase 3 by about an SV size of 203 (data not

shown).

By the time a 323 voxel SV is reached, Fig. 8a

shows that the single peak has become better defined

but has about the same width as in the 283 voxel SV.

There is still some weight in the 10 GPa bin, but this

could be just because the bin width in Fig. 8a is larger

than in Fig. 6, since q10 = 31 voxels, which is close to

32. In Fig. 8b, using a 403 voxel SV makes the single

peak significantly narrower and somewhat higher. The

phase fraction curves have become much flatter, too,

and show a large amount of mixing over the entire

E range. There is very clearly now no pure phase 1 bin,

since 40[ q10 = 31. A sensing instrument of linear

size greater than about 32 voxels, which is about � the

size of one inclusion, would only see one peak and

therefore one phase but with a spread of E values not

centered on the global composite value. A sensing

instrument with linear size larger than that would show

a single phase with a steadily narrower distribution of

elastic moduli values, which was more and more

centered on the global composite modulus value.

5 Discussion and future work

Many figures have been shown in this paper of how the

morphology of the E distributions change with the SV

length scale. It should again be noted that these

E distributions come about only because of

microstructural mixing within a given size SV, since

the phase moduli assigned to each phase was exact and

was not distributed within a phase [9].

Although the elastic fields around any kind of probe

will differ, in general, from simply summing the local

stress and strain fields in a SV of a material to which a

uniform strain was applied, the results obtained are

still instructive in that the development of the E his-

tograms with SV size should probably be qualitatively

similar. For these kinds of models, the function Wj(q),

which is the probability of finding an oriented q3 cube

entirely in phase I, and the values of qj0, the value of q

at which Wj(q) approximately goes to zero for phase j,

can be used to understand how the E histograms

change with SV size. The value of qj0 predicts where

peaks associated with phase j drop out of the E

histogram for the two-phase models, since there was

no combination of phases that could produce the E

values associated with the phases. However, it was

shown for the 3POS model that a distinct peak, located

at the phase 3 (E = 60 GPa) bin, could reflect a

mixture of phases and not a pure phase 3 peak, as

determined by numerical simulation and the value of

q30. This is because a mixture of 10 GPa and 150 GPa

material could produce a 60 GPa effective E in a given

SV. For each microstructure, the approximate size of

the probe was found such that only a single peak would

be seen, with its center approximating the effective

E of the entire system. The width of the single peak

does not reflect anything about the actual number of

distinct phases in the system [9].

It should be noted that the models and data analysis

presented in this paper were ideal, in several ways,

compared to an experimental approach. First, the

nanoindentation and atomic force microscope
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approaches only sample the surface of a material, so

that much less of the material is sampled than in these

models, where the entire volume was used. A conse-

quence of this is that much fewer SVs are used in

experiment to determine E histograms than in these

models. Of course, larger areas could be examined to

partially make up for this surface/volume difference.

Note that if there are inclusions in the material, then in

general, a cut through the material to produce a smooth

surface will produce an apparent size distribution of

inclusions that range down to smaller size inclusions

[40, 41]. This would probably tend to make the SV size

decrease that was needed to make the multi-peak

structure disappear [42]. Second, determining the

local moduli was done exactly, albeit numerically, in

these models, while in experiment the local moduli

have to be extracted using assumptions such as an

assumed value of local Poisson’s ratio [6] on a surface

that may have been damaged by polishing and sample

preparation. Indeed, a substantial fraction of measure-

ments typically needs to be discarded because of

damage on the surface (e.g. [17]). Roughly speaking,

the results of these models can be stated that by an SV

size of about one half the diameter (41 voxels) of the

spherical building block of the models, one could not

identify more than one peak from any of the models.

However, such small indents may be impossible on

some composite materials such as cement paste, since

the intrinsic surface roughness of the paste might be of

the same size and cannot be polished out in a

nanoindentation experiment [43].

Third, the local ‘‘probe’’ used in this paper was

ideal, while that used in experiment has uncertainties

associated with it in terms of quantities such as

assumed shape and calculated penetration depth [6–8].

Fourth, while in the model the phase make-up of every

SV is known, in mechanical measurements on the

surface the local phase make-up, especially below the

visible surface, is almost never known. In experiment,

even if a phase can be clearly identified on the surface,

the probe may be sampling other phases just below the

surface of the sample [44]. In recent practical appli-

cations of statistical nanoindentation, researchers have

started to avoid an approach based only on the analysis

of the mechanical response. When extra microscopic

information is available about the phases present

within the interaction volume of each indentation

point, it is possible to discard points where multiple

phases are present and finally identify the mechanical

response of the single phases [45]. Of course,

discarding the majority of points (either because they

correspond to a phase mixture or because the surface is

damaged) requires a larger number of indentations and

precludes the possibility of deriving the phase fraction

of the different phases.

The type of materials that the analysis of this paper

could apply include any multi-phase composite mate-

rial. Examples would include cement paste [8, 42, 43]

or concrete [46], or a polycrystalline, poly-phase
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Fig. 8 Histogram of local E values and phase volume fractions per bin, for the 3POS microstructure. Units of left y-axis are volume

fraction per GPa, and units of right y-axis are volume fraction. (a) 323 voxel SVs and (b) 403 voxel SVs

  150 Page 14 of 16 Materials and Structures          (2020) 53:150 



material like steel [47, 48] or other alloys. Polymers

filled with an inorganic powder would also lend

themselves to this kind of analysis.

Future work will look at real cement paste

microstructure in 3D, as captured by focused ion

beam serial sectioning [42, 43], and how variations in

the microstructure, elastic moduli contrast, and data

analysis affects the clarity of the Young’s modulus and

phase volume fraction histograms. Specifically, three

areas will be studied: the effect of changing from

monosize inclusions to an inclusion size distribution,

the effect of varying the elastic moduli contrast

between phases, and the effect of having ‘‘coating’’

phases of a known thickness [49].
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