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S.1 X-Ray Fluorescence

The X-ray fluorescence data have been fitted with PyMca version 5.5.3 [1]. To correct
for the background radiation, we subtracted an average background—gained from a fit
of the spectra integrated over the scanned area—of each single spectrum and did not
use further background stripping routines, as justified and detailed in [2]. To extract
the mass fraction of the elements, we used PyMca’s built-in routine, which is based
on the fundamental parameter method [3, 4]. For the application of self-absorption
correction, the nominal values for the sample structure and for the measurement geometry
as described in sections 2.1 and 2.2 were considered as a priori information. We used
Se as reference element to scale the mass fraction, as Se is the absorber element with
highest signal-to-noise ratio and most homogeneous stoichiometric distribution. Based
on the measured fluorescence count rate fi and the unscaled mass fraction w∗

i obtained
through PyMca for each element i, the effective molar area density ρiA was calculated as
follows.

First, the mass fraction was scaled for each element such that the sum equals 1 at
each scanned spot:

wi =
w∗

i∑
i w

∗
i

. (S.1)

By multiplying the scaled mass fraction wi with the nominal thickness dnom and mass
density ρmass,tot

nom of the layer, the nominal mass area density

ρmass,i
A,nom = w∗

i · dnom · ρmass,tot
nom (S.2)
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Figure S1: Effective molar area density ρA of Se, Cu, Ga, In, Rb and Zn extracted from scanning X-ray
fluorescence measurements.

in [g/cm2] was calculated for each element and converted into the nominal molar area
density in [mol/cm2] with the molar mass Mi:

ρmol,i
A,nom =

ρmass,i
A,nom

Mi
. (S.3)

To obtain the effective molar area density map for each element i, the count rate fi
was scaled to ρmol,i

A,nom averaged over all scan points:

ρiA =
ρmol,i

A,nom · fi
fi

. (S.4)

For completeness, the resulting maps of all main absorber elements as well as Rb and Zn
are shown in Figure S1.

S.2 X-ray Beam-Induced Current

To regain the measured current IXBIC from the acquired count rate fXBIC, the factors
along the signal processing chain are considered in

IXBIC =
2 · fXBIC ·Wff

p · k · l
, (S.5)

with Wff =
√

2 taking into account the sine-shape of the modulated signal, p = 106 V/A
the sensitivity of the pre-amplifier, k = 106 Hz/V from the voltage-to-frequency conver-
sion, and l = 10 the scaling of the lock-in amplifier. The factor 2 takes into account the
oscillation between the positive and negative amplitude [5].
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Figure S2: (a) Relative phase shift, reconstructed with ptychography and (b) the relative area electron
density calculated from that.

S.3 X-ray Excited Optical Luminescence

As the interaction point between the sample and the X-ray beam was aligned to the
focus spot of the confocal XEOL setup, the luminescence photons were projected to a
reasonably narrow point on the CCD detector. For maximum signal-to-noise ratio, the
photon count rate of the camera pixels were first integrated in the vertical direction of
the detector and second fitted in horizontal direction by a Gaussian on top of a linear
background.

S.4 Ptychography

The reconstruction of the phase shift Φ via ptychography was done with an in-house
developed code [6]. Lacking of an absolute reference for the phase shift in this measure-
ment, we have offset Φ such, that the minimal phase shift (maximal value of Φ) is zero;
the resulting relative phase shift is denoted ∆Φ. The reconstructed image has a pixel
size of 17 nm and is displayed in Fig. S2a.

The phase shift Φ is related to δ from Equation (2) through

Φ = −2π

λ

∫
δ(x)dx (S.6)

where λ is the wavelength and x the direction of X-ray beam propagation [7]. With
Equation (2) and the conversion of the electron density to the area electron density via

ρe
A =

∫
ρe(x)dx, (S.7)

the relative phase shift can be converted into the relative area electron density:

∆ρe
A = − ∆Φ

λ · re
. (S.8)

As introduced in Equation (2), re is the classical electron radius. Figure S2b shows the
resulting relative area electron density map.
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Figure S3: Characteristic figures to determine the optimum group size k for k-means clustering from (a)
the elbow and (b) silhouette method.

S.5 Position Correction and Normalization

Within the ptychographic reconstruction, the position of the sample-beam interaction
could be refined beyond the accuracy of the scanning system. Therefore, we have applied
this position correction to the measurements from all modalities which required, however,
the re-alignment of the reconstructed ptychographic image with the results obtained from
the other modalities. The alignment was achieved through registration of the phase-
shift image and the Se area density image using the enhanced correlation coefficient
image alignment algorithm [8] from the OpenCV library [9]. All measurands except the
ptychographic phase shift were interpolated on the supergrid given by the ptychographic
reconstruction with the nearest neighbor method.

To compensate for the oversampling during the measurement, a Gaussian filter from
the OpenCV library was applied. With a beam size of 105 nm×108 nm (FWHM), a filter
size with a standard deviation of σ = 54 nm was appropriate. For statistical correlation,
the maps were cropped by half filter width on all sides to avoid artifacts from the filter
at the border corrupting the correlation.

Furthermore, all measurements were normalized to the dwell time and incident photon
flux.

S.6 k-Means Clustering

Given a set of n measurands spanning an n-dimensional space, the k-means clustering
algorithm aims to separate the data into k groups of similar size and small variance by
minimizing the sum of squared Euklidian distances between each data point and the
center of the cluster it belongs to [10]. The k-means implementation of the scikit-learn
library [11] in Python was employed in this study. The optimal number of groups k
was determined using the so-called elbow and silhouette methods, both of which we
implemented in Python using scikit-learn. The elbow refers to a kink in the plot of
the minimized sum of squared Euklidian distances as a function of k. Details on the
silhouette score can be found elsewhere [12]. In general, a silhouette score of 1 means
that a perfect cluster structure has been found and a score of −1 translates to poor
clustering. In Figure S3 it can be seen, that both methods indicate a group size of k = 2
to be ideal.
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Figure S4: Correlation coefficient of Se (ρSeA ), In (ρInA ), Ga (ρGa
A ), Cu (ρCu

A ), Rb (ρRb
A ) and Zn (ρZnA ), of

the X-ray beam-induced current (IXBIC), of the XEOL photon count rate (fXEOL) and of the relative
electron area density (∆ρeA) for the total data set as well as the two sub-sets with data from the k-means
groups 1 and 2, respectively.

S.7 Correlation Coefficients

The correlation coefficient ρ that is shown in the manuscript only for a subset of
measurands is shown in Figure S4 for all measurands, with Figure S4a including the
data from the entire maps and Figure S4b–c including only the data for the k-means
groups 1 and 2, respectively.
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