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Abstract

Significant advances have been made in the development of Adverse Outcome Pathways (AOPs) 

over the last decade, mainly focused on the toxicity mechanisms of chemicals. These AOPs, 

although relevant to manufactured nanomaterials (MNs), do not currently capture the reported 

roles of size-associated properties of MNs on toxicity. Moreover, some AOs of relevance to 

airborne exposures to MNs such as lung inflammation and fibrosis shown in animal studies may 

not be targeted in routine regulatory decision making. The primary objective of the present study 

was to establish an approach to advance the development of AOPs of relevance to MNs using 

existing, publicly available, nanotoxicology literature. A systematic methodology was created for 

curating, organizing and applying the available literature for identifying key events (KEs). Using 

a case study approach, the study applied the available literature to build the biological plausibility 

for ‘tissue injury’, a KE of regulatory relevance to MNs. The results of the analysis reveal the 

various endpoints, assays and specific biological markers used for assessing and reporting tissue 
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injury. The study elaborates on the limitations and opportunities of the current nanotoxicology 

literature and provides recommendations for the future reporting of nanotoxicology results that 

will expedite not only the development of AOPs for MNs but also aid in application of existing 

data for decision making.
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1. Introduction

Manufactured Nanomaterials (MN/MNs) are a diverse class of materials, defined as 

‘material containing particles, in an unbound state or as an aggregate or as an agglomerate 

and where, for 50% or more of the particles in the number size distribution, one or more 

external dimensions is in the size range 1–100 nm’ (European Commission 2011). Because 

of their nanoscale dimensions, MNs exhibit unique structural, chemical, physical, optical, 

electrical, and thermal properties, making them desirable for a wide range of applications 

from consumer products to medical diagnostics (Maynard, Warheit, and Philbert 2011). 

In the context of biology, because of their small size, MNs (1) can be easily taken up 

by cells; (2) accumulate in resident macrophages and translocate to tissues, including 

reaching deeper, highly vascular areas such as lung tissues; and (3) exhibit larger surface 

area per unit mass compared to their bulk counterparts and thus, exhibit higher reactivity 

with biomolecules and potentially higher toxicity (Nel et al. 2006) for a given mass. In 

addition, MNs are often application-tailored which involves modifications to their surfaces 

with chemical groups and/or charges that can impact their toxicity. More recently, novel 

generations of hybrid MNs (MN core is coated with a shell of another composition) are 

penetrating the consumer market (Hafner et al. 2014), leading to advanced materials (i.e. 

materials with engineered properties) such as composites, ceramics, biomaterials, polymers, 

and others. Because of their numerous applications, the production of MNs and other 

advanced materials has increased and the availability of nano-enabled consumer products 

on the market is also on the rise (Boyadzhiev et al. 2020). Consequently, exposure to these 

substances in occupational settings and throughout the lifecycle of the MNs is expected to 

increase.

Two decades of toxicological research has revealed that (1) unique MN properties influence 

their behavior in biological and environmental matrices and are reciprocally influenced by 

the surrounding biological or environmental milieu (Wagner et al. 2014; Garner and Keller 

2014; Geitner et al. 2020); (2) physicochemical properties (such as dissolution, size, shape, 

density, dustiness, fiber rigidity, specific surface area, surface reactivity, band gap energy 

and surface bond strain) have been associated with differences in toxicity (Nel et al. 2006; 

Warheit et al. 2007; Cho et al. 2010; Braakhuis et al. 2014; Halappanavar et al. 2015, 

Halappanavar, Ede, et al. 2019; Poulsen et al. 2016; Schmid and Stoeger 2016; Rahman et 

al. 2017) although validated models are not yet available to predict toxicity based on these 

properties, which may necessitate case-by-case investigation of individual MNs (Danielsen 

et al. 2020; Knudsen et al. 2019; Nel et al. 2013; Poulsen et al. 2017; Wohlleben et al. 
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2019); (3) some of the existing methods for material characterization and toxicity testing 

approaches for assessing risks to human health and the environment require modifications 

or adjustments for MNs and, in some cases, new methodology is needed (Hirsch et al. 

2011; Krug 2014); and (4) some MNs can be toxic to the environment and/or humans, and, 

the toxicity mechanisms or the eventual adverse effects may be similar to ones known for 

chemicals (Labib et al. 2016; Nikota et al. 2016; Laux et al. 2018) or to microscale particles 

of similar chemical composition, although at lower mass concentrations (Saber et al. 2019). 

Conventional toxicity testing methods have been used to characterize MN toxicity; however, 

given their variability and number, methods that heavily rely on animal experimentation are 

not operationally feasible (Choi et al. 2009). Alternatives to animal testing exist, including 

increasing use of toxicogenomics and in silico methods, but will require justification and 

validation before their application in nanotoxicology and regulatory decision making for 

MNs (Afantitis et al. 2020; Kinaret et al. 2020).

In the last 10 years, advances have been made in the field of regulatory toxicology to move 

away from decision making relying on testing for apical effects in animals to a mechanistic 

approach that is based on a holistic understanding of the biological pathway perturbations 

at the molecular, cellular, tissue and whole organism levels (Shatkin et al. 2016; Ede et 

al. 2020). The resultant mechanisms-based testing tools and assays are expected to reduce 

overall animal use and help predict the human and environmental health impacts from 

exposure to chemicals in a cost, time and resource-effective manner (NRC 2007). However, 

the effectiveness or success of such a scheme depends on a detailed understanding of 

the mechanisms of toxicity and the development of targeted, sensitive, and reliable assays 

that enable accurate measurements of essential components of the mechanisms, allowing 

predictions of the outcomes in an organism. All of this requires: (1) careful curation of 

the large body of scientific information that describes how chemicals perturb the normal 

biological pathways and functions to exert their toxic effects; (2) organization of the 

complex mechanistic information in a meaningful and simplified format that is open and 

accessible; and (3) development of guidance for application of this information to decision

making.

In order to facilitate a systematic curation, organization and application of mechanistic 

information, the Adverse Outcome Pathways (AOPs) framework was developed (OECD 

2016). AOPs capture the complex mechanistic basis of toxicity in linear modules of causally 

linked biological events spanning multiple levels of biological organization, from molecular, 

cellular, tissue and organ levels to individuals and whole populations (Ankley et al. 2010; 

Vinken 2013). AOPs connect an initial trigger of toxicity at a molecular level (molecular 

interactions with stressors, termed molecular initiating events; MIEs) to an apparent toxicity 

or adverse outcome (AO) associated with chemical exposure. AOPs are ‘chemical agnostic’ 

(i.e. AOPs can be triggered by various stressors) and describe dynamic processes of toxicity. 

AOs are measured at higher levels of biological organization such as human health (organ 

or organism) or environmental endpoints (organisms, populations or ecosystems) that are 

important for regulatory decision-making (Carusi et al. 2018). The individual components 

of the AOP include a MIE, a series of key events (KEs), which are measurable biological 

changes that occur between a MIE and its eventual AO, linked by the key event relationships 

(KERs; Halappanavar, Ede, et al. 2019).
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Several efforts worldwide have been promoting the development of AOPs as next-generation 

tools for knowledge transfer across the research community, guiding risk assessment 

strategies, and regulatory decision-making (Pollesch, Villeneuve, and O’Brien 2019; Knapen 

et al. 2018; Villeneuve et al. 2018a). From a risk assessment and regulatory perspective (e.g. 

grouping, categorization and readacross), AOPs provide a structured framework to develop, 

assess and use data generated from alternative testing strategies (e.g. in chemico, in silico, 

in vitro, ex vivo and systems biology) as part of an integrated approach to testing and 

assessment (IATA) (Delrue et al. 2016).

The underlying mechanisms of toxicity induced by MNs may be similar to those for larger 

particulate materials. However, MN-induced toxicity could exhibit differences in severity 

compared to their microscale particle counterparts due to size-associated changes in the 

physicochemical and structural properties of MNs. Evaluating the evidence available for 

utilizing or further developing AOPs, the focus of this paper, is relevant for application 

of AOPs in occupational and environmental health risk assessment. Particle size is also 

associated with particle dissolution rate or their distribution kinetics, which in turn both play 

a role in distribution of particulate and chemical substances in the biological system and 

the potential toxicity. Detection and quantification of MNs in biological tissues has been 

challenging, which hampers assessment of particle doses associated with toxicity (Johnston 

et al. 2013). It is important to note that conventional toxicity testing is mostly based on 

uniform distribution of a test substance in the exposure vehicle, and in cells and tissues post

exposure, because of which conventional toxicity testing may not be applicable to assessing 

MN-induced toxicity (Drasler et al. 2017). In addition, the unique surface properties of 

MNs govern their interaction with biomolecules and cells and can result in cellular uptake 

and internalization, a critical biological event or MIE for MN-induced tissue responses, 

but which is not captured in AOPs for chemicals. The application of AOPs in the field of 

nanotoxicology was evaluated by Gerloff et al. (2017), focusing specifically on MN-induced 

liver toxicity. The authors found that mechanistic knowledge from chemically induced 

toxicity and captured in AOPs is generally relevant for MNs; however, key differences 

between chemicals and MNs include consideration of toxicokinetics and the nature of the 

initial interaction of MNs with biological systems (i.e. the MIE). These differences between 

chemicals and MNs need to be accounted for and evaluated to ensure the applicability of 

AOPs for MN risk assessment.

In a recent review by Halappanavar et al. (2020), the authors stated that for most MN

induced toxicity, MIEs constitute MN interaction with cells and biomolecules in the 

surrounding microenvironment (e.g. lung fluid or serum in vivo, cell culture medium in 
vitro) and thus, may not always represent molecular level interactions. For now, MN-related 

MIEs are nonspecific and insufficiently understood. Moreover, how these interactions are 

governed by the individual properties of MNs is not completely known. Thus, AOPs 

developed for chemicals may require further modification, or new AOPs of relevance to 

MNs that incorporate MN property-specific deviations in toxicity, may be needed (Ede et al. 

2020; Halappanavar et al. 2020). Many groups are working to develop and validate AOPs for 

MN risk assessment and a roadmap for development of AOPs for MN risk assessment has 

recently been published (Ede et al. 2020).
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The work presented here builds on the previous efforts of Halappanavar, Ede, et al. (2019) 

and summarizes the outcomes of a recently completed multi-stakeholder project, the primary 

objective of which was to develop a methodology to extract, curate and apply the existing 

nanotoxicology literature in support of advancing the future development of MN-relevant 

AOPs. Halappanavar, Ede, et al. (2019) outlined (i) a systematic process for mining the 

nanotoxicology literature to identify potential KEs relevant for MNs and (ii) a strategy 

to prioritize potential KEs for development. The study also selected ‘tissue injury’ as an 

appropriate KE of relevance to MN-induced AOs, for further development. In the present 

follow-up study, using a case study approach, we examine the available evidence in the 

literature for assessing the (i) biological plausibility, (ii) measurability, and (iii) regulatory 

relevance of the KE ‘tissue injury’ following exposure to MNs and its applicability for future 

development of AOPs. These criteria align with the evolved Bradford Hill criteria described 

by Becker et al. (2017). The various challenges concerning the utility of the available 

nanotoxicology literature are discussed and preliminary insights and guidance are provided 

on standard reporting of nanotoxicity study results of relevance to AOP development. In 

addition, a second case study is presented that demonstrates the utility of the Nano-AOP 

database, the primary outcome of the project, to provide additional weight of evidence for 

identified KEs and MN-induced AOs and to build KERs in support of future development of 

AOPs.

2. Material and methods

2.1. Strategy for assessing tissue injury

The results of the Swiss-VCI database (in vivo and in vitro studies) evaluation conducted in 

Halappanavar, Ede, et al. (2019), which mainly targeted tissue inflammation and associated 

events, revealed that events of inflammation, oxidative stress and cytotoxicity were the most 

commonly assessed and reported in the database, that had a direct inference to tissue damage 

and injury. The evaluation of the relationships shared between the three main reported events

—inflammation, oxidative stress and cytotoxicity—showed that they are interconnected and 

play a prominent role in tissue injury in general and also in inflammation-mediated injury. 

Thus, it was inferred that these three frequently assessed and reported biological events 

can be used as upstream KEs to the ‘tissue injury’ KE (Figure 1), which would also allow 

identification of its downstream effector KEs, as well as the various methods and assays 

for their measurement using in vivo and in vitro models. Furthermore, each upstream KE 

(i.e. inflammation, oxidative stress and cytotoxicity) is represented by distinct associative 

events. For example, the upstream KE inflammation is represented by ‘tissue resident cell 

activation’, ‘leukocyte recruitment/activation’ and ‘increased pro-inflammatory mediators’, 

which are referred to here as hub-KEs of inflammation. Similarly, the oxidative stress KE 

is represented in the database by the hub-KEs of ‘increased reactive oxygen (or nitrogen) 

species (ROS) synthesis’, ‘imbalanced oxidant and anti-oxidant levels’ and ‘modification of 

biomolecules’. Cytotoxicity KE is represented by the hub-KEs ‘altered membrane integrity’ 

and ‘cytotoxicity’. Positioning the upstream and associated hub-KEs in an AOP framework 

shows that they occur in a causal sequence from exposure to an adverse event, but also in 

parallel, including functioning in a feedback loop (Figure 1).
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2.2. Literature review and Nano-AOP database development

The review of literature and establishment of the database was conducted in two phases, 

as shown schematically in Supplemental Figure S1. The details of the phase-1 literature 

review strategies and resulting Swiss-VCI database are described in Halappanavar, Ede, 

et al. 2019. The Swiss-VCI database (Krug 2014) was used for identifying MN-relevant 

KEs and prioritizing a tissue injury KE for the case study. The preliminary Swiss-VCI 

database consisted of publications from 2000 to 2013 (a total of ~11 000 studies), which 

were evaluated following the ‘Preferred Reporting Items for Systematic Reviews and Meta

Analyses’ (PRISMA) scheme (Liberati et al. 2009). The Swiss-VCI database was filtered 

to identify studies specifically reporting on ‘inflammation’, which were then evaluated 

for quality with the scheme developed within the DaNa project [www.nanoobjects.info]; 

however, the quality criteria proposed in the DaNa project were not applied stringently as 

is it was found that it would result in an insufficient number of records for any type of 

downstream analysis (Halappanavar, Ede, et al. 2019).

In phase-2, the original Swiss-VCI database was updated within the context of the 

NanoCommons research infrastructure project with studies published from 2014 to 2017 

and reorganized to suit the needs of the tissue injury case study presented here. Specifically, 

literature was extracted from the Swiss-VCI database and updated for a select set of seven 

MNs (Silver, Cerium Oxide, Copper Oxide, Multi-walled Carbon Nanotubes, Single-walled 

Carbon Nanotubes, Titanium Dioxide, Zinc Oxide) and a modified database called the 

‘Nano-AOP database’ was created. These seven MNs were chosen as they are widely 

researched and represent a range of MN properties including differences in chemical 

composition, solubility and shape. The literature search was limited to the key term 

‘inflammation’ and one of the seven MNs. Addition of the search term ‘tissue injury’ 

resulted in many irrelevant results and thus was not used in the review strategy. Only the 

Web of Science (WoS) portal was used for the systematic review, as Scopus and Pubmed 

resulted in fewer results with the search query used.

The WoS’s basic search query tab included the ‘topic’ field, with a customized time 

range of 2014–2017, and the terms ‘nano*’ AND ‘inflamma*’ combined with suitable 

truncated terms to include the MN type. The Boolean operator NOT was used in the same 

search query to reject publications reporting intravenous mode of exposure. Inclusion (e.g. 

inhalation exposure) and exclusion criteria (e.g. experiments with environmental organisms, 

such as Daphnia magna, zebrafish) were developed and applied for selecting/identifying the 

studies to include in the database (Supplemental Information; Appendix 1; Box S1). By this 

search mechanism, ~1294 new publications were identified for the seven MNs, of which 

only 136 publications satisfied the inclusion/exclusion criteria (Supplemental Information; 

Appendix 1; Box S1). Since one of the objectives of the present study was to assess whether 

existing data are supportive of the development of KEs and AOPs of relevance to MNs, the 

inclusion/exclusion criteria in some cases were not stringently applied to enable inclusion of 

a maximum number of studies (some of which were later removed after deliberation during 

the analysis step). After a scan of the full paper these publications were then assessed for 

quality as described below (details in Supplemental Information; Appendix 1).
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A two-step quality assessment process (Supplemental Information; Appendix 1) was 

applied to the 136 publications. The first step specifically addressed whether a particular 

publication sufficiently completed and reported a set of minimum MN characterization 

data. Publications that did not provide sufficient material characterization data were always 

rejected. The second step addressed the experimental design (e.g. animals, cell lines, dose/

concentrations, route of exposure, inclusion of appropriate controls, etc.), as per the criteria 

provided in the Supplemental Information (Supplemental Appendix 1). Finally, a total of 

124 publications were included in the ‘Nano-AOP database’ (Supplemental Figure S1). If 

an individual publication evaluated more than one type of MN, data was separated by MN 

type and each was considered as a separate ‘study’. Thus, the final ‘Nano-AOP database’, 

reporting specifically on the seven selected MNs, consisted of publications from the original 

Swiss-VCI database (119 publications) and new publications from the phase-2 literature 

review (124 publications), leading to a grand total of 243 publications and 294 studies.

The developed NanoAOP database is aligned with the FAIR (Findable, Accessible, 

Interoperable, and Reusable) guiding principles. A manuscript detailing its development 

and curation is currently in development and the database will be accessible as part 

of the KnowledgeBase (https://ssl.biomax.de/nanocommons/) being developed under the 

NanoCommons project via which it will be provided with a unique Digital Object Identifier. 

The ontologies developed under the NanoCommons project are applied consistently in the 

NanoAOP database to make it interoperable with the additional datasets developed within 

that project. Recently, the FAIRness of datasets included in the NanoCommons database has 

been evaluated, and the majority of the criteria defined by the FAIR maturity indicators were 

met; use of standard schema for metadata was suggested to further increase the FAIRness of 

the data (Ammar et al. 2020).

2.3. Database organization for gathering evidence in support of the KE tissue injury

The Nano-AOP database was organized by grouping the reported biological endpoints 

from individual studies under the three main upstream KEs identified for tissue injury in 

Halappanavar, Ede, et al. (2019): inflammation, oxidative stress, and cytotoxicity (Figure 

1). The KE inflammation is represented in this evaluation by two of the three individual hub

KEs (Figure 1) of inflammation: ‘increased pro-inflammatory mediators’ and ‘leukocyte 

recruitment/activation’ in the database, as recommended by EAGMST (Villeneuve et al. 

2018b), and individual endpoints assessing the hub-KEs were sorted in the database 

accordingly (Table 1). This breakdown of the upstream KEs provided clarity on the specific 

endpoints assessed, the actual measurements reported in the literature, and the relevance of 

the measurements to the final KE of interest, i.e. tissue injury. Since histology is one of the 

in vivo endpoints of relevance to health risk and regulatory assessments, and since several 

studies in the database reported histological findings (i.e. histopathology, fibrosis, granuloma 

formation) in vivo and related endpoints in in vitro models (e.g. cell morphology), histology 

was added as a separate endpoint for consideration in the analysis. Histology is one of the 

measures of pulmonary fibrosis, which can be an AO of tissue injury.
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2.4. Analyses of the Nano-AOP database

The Nano-AOP database, consisting of both in vivo and in vitro studies, was analyzed to 

gather experimental support for the KE plausibility, measurability, and regulatory relevance; 

the same three criteria applied to select the tissue injury KE as a case study (Halappanavar, 

Ede, et al. 2019). For the analysis of ‘regulatory relevance’, both in vivo and in vitro studies 

were used to evaluate no-observed effect levels (NOELs) or or lowest-observed effect levels 

(LOEL); however, only in vivo studies were employed to examine benchmark dose (BMD) 

estimates. Further details of these analyses are provided below. A full list of literature 

available in the NanoAOP database is provided in Supplemental Information, Appendix 3.

2.4.1. KE plausibility—For each MN, the analyses examined the number of studies that: 

(i) reported (i.e. measured) each of the three upstream KEs and the histology endpoint; 

and (ii) found significant induction of each upstream KE following MN exposure at any 

of the concentrations tested in the study. For example, the upstream KE cytotoxicity was 

considered to be reported if at least one endpoint (e.g. altered membrane integrity, cell 

death, caspases, mitochondrial membrane potential, cell growth/colony formation, survival; 

Table 1) was included in the experimental design for assessment as reflective of one or 

both hub-KEs of cytotoxicity. An upstream KE was considered to be induced following MN 

exposure if at least one measured endpoint assessing any one hub-KE showed a statistically 

significant difference (as determined in the experiment) in exposed groups in comparison to 

the un-exposed control groups in at least one of the concentrations tested in the study. Based 

on these criteria, all 294 studies were reviewed and assigned a value of 1 for each upstream 

KE measured and the number of studies reporting each upstream KE was noted. Similarly, in 

a separate analysis, all studies were reviewed and each upstream KE assigned a value of 1 if 

the study found significant induction of that KE after MN exposure. This analysis was used 

to determine the number of studies that (i) reported and (ii) found significant induction with 

MN exposure of 0, 1, 2, or 3 upstream KEs and/or histology within a single experimental 

design.

2.4.2. KE measurability—Following a similar approach as described above, the 

analysis quantified the number of studies that (i) reported and (ii) found significant induction 

with MN exposure of each individual endpoint (e.g. TNF, IL-1, IL-6, IFN, IL8/CINC, 

NF-kB, Cytokines (other), Inflammasome), under each upstream KE (e.g. inflammation) 

(Table 1). The quantified number of studies was then converted to a percentage of studies 

measuring or finding induction, to enable comparisons between each type of MN. Individual 

assays used to measure an endpoint and thus an upstream KE were identified.

2.4.3. Regulatory relevance of the KE—The relevance of the tissue injury KE for 

regulatory decision-making was assessed in part by evaluating the availability of dose

response data for endpoints within the upstream KEs. Two types of quantitative dose 

estimates were evaluated using the Nano-AOP database: (1) BMD estimates, and (2) NOEL 

or LOEL estimates. These point estimates of dose are typically used as points of departure 

in quantitative risk assessments (depending on the response endpoints) and could also be 

used as estimates of hazard potency in grouping or ranking of MNs. Studies reporting 

AOs of relevance to humans and conducted according to the OECD study guidelines (e.g. 
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subchronic inhalation studies) are more typically used in quantitative risk assessment for 

exposure limit derivation, although establishment of KERs and AOPs could be useful in the 

development of predictive models based on earlier (upstream) biological responses.

2.4.3.1 BMD estimates.: Sufficient data reported in the publications were required for 

dose-response modeling. This information includes at least two dose groups in addition to 

controls, quantitative response endpoints of interest, and sufficient summary statistics (mean 

or proportion, error, group size).

Endpoints selected as being relevant to occupational health risk assessment and used here 

for BMD estimation include in vivo pulmonary inflammation and pulmonary fibrosis. 

Pulmonary neutrophilic inflammation is measured as an increase in the percentage of 

polymorphonuclear leukocytes (PMNs) in the bronchioloalveolar lavage fluid (BALF) in 

rodents at 1–3 days post-exposure. The percentage of PMNs (of the total cells recovered in 

BALF) was either reported in the paper or calculated from the cell differential data reported. 

The benchmark response (BMR) for modeling was a 4% increase in PMN above the control 

mean response, which has been considered to be biologically relevant in rodents and humans 

and used in previous analyses (e.g. Drew et al. 2017, NIOSH 2011).

In addition, pulmonary fibrosis is a recognized downstream consequence of tissue injury 

and an adverse health effect in workers exposed to airborne respirable particles (e.g. coal 

dust, silica). It has been used as a response endpoint in quantitative risk assessments of 

MNs, e.g. CNTs (NIOSH 2013). Pulmonary fibrosis was reported quantitatively as the 

amount of collagen or hydroxyproline in lung tissue or as histopathology severity scores 

(e.g. proportion of animals with fibrosis per dose group). A biologically-based adverse level 

of collagen or hydroxyproline was not identified, so the BMR was defined statistically as the 

level at 1.1 standard deviation above the control mean response (Crump 1995).

2.4.3.2. NOELs and LOELs.: NOEL and LOEL estimates were recorded during database 

development for the various biological response endpoints within the upstream KEs (Section 

2.3). NOELs and LOELs were either reported in the journal articles or determined from 

the statistical significance of the responses associated with the doses. If a NOEL was not 

identified for a particular endpoint, the highest dose in the study was estimated as the NOEL 

for that endpoint. LOELs in this database were recorded as being less than the lowest dose, 

indicating that LOELs were not reported in those studies.

Within the upstream KEs, ‘Inflammation’ and ‘Cytotoxicity’ were selected as the first 

KE and last KE preceding the adverse outcome of tissue injury (Figure 1). The 

following measurements and associated NOELs or LOELs were selected for investigation: 

Inflammation—cytokines (Altered levels of pro-inflammatory mediators) or cell number 

(Leukocyte recruitment/activation); and Cytotoxicity—cell death and altered membrane 

integrity. The measurement selected for the tissue injury outcome was Histology—fibrosis. 

Specific cytokine information (IL-1, IL-6, IL-8, TNFα, IFNγ, etc.) was recorded only in the 

updated database (i.e. papers published between 2014 and 2017). In the original database, 

all types of cytokines were combined and reported as NOELs or LOELs (with additional 

information included in comments). Cell number represented either increased leukocyte 
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number or total cell number in BALF, in the updated or original database, respectively. 

Fibrosis was reported based on findings from histopathology examination or biochemical 

measures (collagen or hydroxyproline) in lung tissue.

Of the studies reporting the selected endpoints, the data were divided into in vivo and in 
vitro experiments, which were further stratified by: (1) rat or mouse model if in vivo; and 

(2) rat, mouse, or human model if in vitro. The rat and mouse in vivo datasets were further 

stratified based on route of exposure: (1) inhalation; or (2) administered dose (intratracheal 

instillation or pharyngeal aspiration).

2.5. Application of Nano-AOP database to support development of other KEs of relevance 
to different routes of exposure and other AOs induced by MNs

A second case study was conducted to evaluate the use of the Nano-AOP database to 

provide additional weight of evidence to the already identified KEs, MN-induced AOs or 

to build KERs for known KEs connecting particle exposure to an AO. The details of the 

case study are provided in Supplemental Information, Appendix 2. In brief, the database 

was searched for cellular events such as endoplasmic reticulum (ER) stress, ROS synthesis, 

NLRP3 activation/caspase increase, and changes in IL-1/TNF levels. These events represent 

a series of KEs putatively linking chronic exposures to titanium dioxide (TiO2) MNs with 

type-2 diabetes (T2D). TiO2 MN is one of the most widely assessed of the 7 MNs in the 

Nano-AOP database (Figure 2). The presence of TiO2 MNs was observed in the pancreas 

of eight individual type-2 diabetic (T2D) patients (4 with and 4 without pancreatitis), while 

TiO2 NPs were not detected in the non-T2D controls (Heller, Jarvis, and Coffman 2018). 

Several studies (for details, refer to Supplemental Appendix 2) have shown that the potential 

mechanisms of T2D following exposure to particles involve the KEs mentioned above. It 

should be noted that the study aimed to gather weight of evidence for these KEs, not for 

TiO2 NP-induced T2D which is still a hypothesized pathway.

The Nano-AOP database was searched using the strategy described in Supplemental 

Appendix 2. The individual studies in the database were analyzed after filtering for ‘TiO2’ 

MN, and individual entries in the database were checked for the cellular events/KEs ‘ER 

stress’, ‘ROS’, ‘inflammasome’, ‘caspase’, ‘IL-1/TNF’. Out of 180 experiments with TiO2 

MN, 77 were found for ‘Titanium dioxide’ (any size/shape/coating, in vivo and in vitro 
– various cell lines and doses) that measured ‘ROS’ (53) or ‘inflammasome’ (20) or 

‘caspase-1’ (4), and were used for further analysis (it was found that the KE of ER stress 

was not measured in any of the studies in the database). Eight experiments (3 publications) 

measured ‘ROS’, ‘IL-1’ and ‘TNF-α’. Sixteen experiments (4 publications) measured ‘ROS’ 

and ‘TNF-α’. Nineteen experiments (6 publications) measured ‘inflammasome’ and ‘IL-1’. 

No experiment measured ‘inflammasome’, IL-1’ and ‘NF-κB’. In all, the search resulted in 

46 experiments belonging to 11 publications that were evaluated separately for weight of 

evidence.
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3. Results

3.1. The updated Nano-AOP database

The original Swiss-VCI database consisted of data from 191 peer-reviewed journal articles 

published in the period 2009–2013 addressing inflammation, which were reduced to 119 

following additional analysis to determine their suitability for tissue injury assessment. 

From the additional literature search (2014–2017) and further iterations regarding inclusion 

criteria, a total of 124 new peer-reviewed publications were used for the analysis of 

plausibility and measurability of KEs covering seven selected MN types. The Nano-AOP 

database is highly enriched with studies reporting on nano TiO2 (71 studies), MWCNT (62 

studies), silver (55 studies), zinc oxide (41 studies), SWCNT (25 studies), cerium oxide (24 

studies), and copper oxide (16 studies) (Figure 2).

3.2. Tissue injury KE plausibility

A total of 41, 119 and 107 studies assessed 1, 2 or 3 of the upstream KEs, respectively. Five 

studies did not assess any of the upstream KEs for tissue injury. Only 22 studies assessed all 

three upstream KEs in addition to the histology endpoint (Figure 3), although in total 116 

papers reported some histology.

Inflammation was the most commonly measured upstream KE and the most commonly 

induced. Almost all the studies that assessed inflammation (Figure 4) reported induction, 

where induction was defined as any statistically significant change in at least one endpoint 

(e.g. leukocytes recruitment) following MN exposure for at least one tested concentration, 

relative to the unexposed control. As summarized in Figure 4, there were a total of 259 

studies that assessed inflammation and 240 of these found significant induction with MN 

exposure. The second most commonly reported and induced upstream KE for tissue injury 

was cytotoxicity (Figure 4); a total of 192 studies assessed at least one cytotoxicity endpoint 

(see Table 1 for list of endpoints), of which 159 found significant induction following MN 

exposure compared to controls. Ninety three of the 120 studies that examined the upstream 

KE oxidative stress reported it as being induced. It is important to note that the analysis did 

not discriminate between the number and types of endpoints used in making the ‘induced’ 

call. Finally, of the 116 studies that reported on histology 92 found significant changes with 

MN exposure compared to untreated controls.

3.3. Tissue injury KE measurability

The measurability of the tissue injury KE was assessed by analyzing the number of studies 

that evaluated specific endpoints under each upstream KE and the biomarkers/assays used to 

assess and measure them.

Review of the Nano-AOP database identified the various endpoints and biomarkers/assays 

used to measure the upstream KEs. Studies generally reported on at least one of the 

upstream KEs; however, the specific endpoint and biomarker/assays varied widely between 

studies. The upstream KE inflammation was measured in vitro mainly by assessing the 

hub-KE altered levels of pro-inflammatory mediators; however, the number and type of 

mediators assessed varied across the studies.
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The upstream KE cytotoxicity was measured using a wide variety of assays targeting 

different hub-KEs (Table 1); the majority of these used assays that are indicative of altered 

membrane integrity. Other studies assessed cytotoxicity through assays measuring cell death, 

caspases, mitochondrial membrane potential, cell growth/colony formation, or survival. In 

addition, some studies documented histological changes (e.g. altered morphology) to support 

the occurrence of cytotoxicity.

Different endpoints were used to assess the upstream KE oxidative stress. Oxidative stress 

was measured by multiple endpoints under its three hub-KEs and several different cell 

types were used across the studies representing different organ systems. Thus, a large 

heterogeneity was observed across the studies with regards to the cell types, specific 

endpoints and assays used. Table 1 shows the different endpoints used to evaluate the three 

upstream KEs and histology endpoint, broken out by their respective hub-KEs.

3.3.1. Types of endpoints assessed for each upstream KE

3.3.1.1. Inflammation Upstream KE.: Analysis by the type of endpoints used for each 

individual upstream KE revealed that for inflammation, from the individually reported 

cytokines, TNF-α, IL-1, and IL-6 were the most frequently measured (34, 33 and 29% of 

studies, respectively) and induced (21, 19 and 18% of studies, respectively) following MN 

exposure. Figure 5 presents results of this analysis, demonstrating the percentage of studies 

measuring and finding induction for each endpoint under the upstream KE inflammation, for 

each of the seven classes of MNs.

Leukocyte recruitment/activation was also a commonly assessed endpoint, with 41% of 

examined studies measuring it, and 39% finding significant recruitment following MN 

exposure. Inflammasome activation was far less reported in the selected literature as an 

indicator of inflammation, with just 7% of studies examining it. From this overview 

analysis, which did not take into account dose, MN physicochemical properties, or 

experimental factors, it was not possible to deduce any MN or MN property-specific trends 

(Figure 5). Rather, the purpose of this analysis was to determine the amount of information 

available in the literature—and as represented in the Nano AOP database—for further 

evaluation of a tissue injury KE for MNs.

3.3.1.2. Oxidative stress Upstream KE.: The most assessed oxidative stress endpoint 

in the MN literature was total ROS, with 21% of studies examining it and 16% finding 

induction. Other examined endpoints include: RNS (9% of studies measured; 8% found 

induction), oxidation products (11% measured, 8% found induction), GSH/GSSH (9% 

measured, 7% found induction) and antioxidant gene expression (Anti-Ox; 4% measured, 

3% found induction). Less commonly reported endpoints were activation of HO-1 and NRF2 

signaling pathways, altered expression of iNOS; synthesis of mitochondrial ROS, and DNA 

oxidation (Figure 6).

3.3.1.3. Cytotoxicity Upstream KE.: For the upstream KE cytotoxicity, cell death 

was the most predominantly assessed endpoint, with 44% of studies examining it, and 

35% reporting significant cell death following MN exposure. Altered membrane integrity 

was also frequently assessed, with 35% of studies examining it, and 29% reporting 
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compromised membrane integrity following MN treatment, compared to controls (Figure 7). 

The endpoints caspases, mitochondrial membrane potential, cell growth/colony formation 

and survival were less commonly assessed, with a total of 9%, 6%, 2%, and 0% of studies 

examining them, respectively.

3.3.1.4. Histology endpoint.: For histology, cell morphology was the most commonly 

reported endpoint in vitro, with 19% of studies examining it, and 13% reporting significant 

changes in morphology after MN exposure. Tissue histology was the most commonly 

reported endpoint, and provided a direct measure of tissue injury. Damage to tissue structure 

was frequently reported; 37% of studies examined this endpoint, with 28% reporting 

significant change in tissue morphology following MN exposure.

3.4. Regulatory relevance and application of database to quantitative analysis

The regulatory relevance and application were assessed, in part, by evaluating whether data 

could be used to derive potency estimates for grouping/ranking or points of departure for 

quantitative risk assessment.

3.4.1. BMD estimates—In an evaluation of the Nano-AOP database, 39 in vivo studies 

were selected as reporting sufficient dose-response data to perform BMD modeling for the 

endpoint ‘recruitment of leukocytes,’ a hub-KE of inflammation (measured as %PMNs in 

BALF). BMDs could be estimated for 45 experiments from 20 of those studies. In addition, 

19 studies were selected as reporting quantitative data for the AO of pulmonary fibrosis 

(measured as amount of collagen or hydroxyproline or as histopathology severity score); 

these studies are being evaluated further. An experiment refers here to any treatment group 

that differs from another treatment group in any aspect (e.g. material/modification, species/

strain/sex, exposure time/post-exposure time). In addition, an experiment consists of the 

unique dose-response data for a given MN under specific experimental conditions; i.e. one 

BMD estimate is obtained per experiment.

For most studies, BMDs could not be estimated because of incomplete or insufficient data 

for dose-response modeling (including only one exposure group; no standard deviation 

reported; or data reported as fold of control). Also, some data did not show a dose-response 

trend and a model could not be fit to the data, or the BMD estimate required extrapolation 

beyond the highest dose in the experiment. Fitting models to these data required several 

adjustments/assumptions, including relaxing the goodness of fit criteria from p > 0.05 to p 
> 0.1, removing the highest dose group from the model (if more than two dose groups in 

addition to control), or assuming a lognormal distribution (exponential model).

3.4.2. NOELs—Study-reported NOELs were ranked within strata by experiment (in vitro 
vs. in vivo); endpoint (cell number, cytokines, cell death, LDH, or fibrosis); and species 

(rat or mouse in vivo, and human, rat, or mouse cells in vitro). The NOELs from the in 
vivo studies were also stratified by route of exposure based on dose units (e.g. mg/kg body 

weight vs. mg/m3). The number of NOELs per stratum ranged from 0 to 138 for in vitro 
experiments, and from 1 to 40 for in vivo experiments. LDH and cytokines were commonly 

reported endpoints in both in vivo and in vitro studies in the Nano-AOP database. Cell 
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death was typically reported only in the in vitro studies. Cell number (in BALF) and fibrosis 

are endpoints specific to in vivo studies. Further analyses of these results are underway, 

including normalizing dose across species and route/duration of exposure, which would 

allow pooling across some strata and increasing the number of NOELs for comparisons, and 

comparisons of results in vitro and in vivo.

Other differences among these experiments within each stratum include exposure duration 

and post-exposure duration differences. Within the Nano-AOP database, there are a few 

differences in the information provided in the phase-1 and phase-2 versions of the database 

(e.g. post-exposure duration was added in phase-2, and cell number variable was revised 

from neutrophils to total cells), which would be expected to contribute to heterogeneity 

among NOELs within strata. Additional stratification of experiments by organ (in vivo) 

and cell type (in vitro) may further reduce variability and provide a clearer picture of any 

patterns in the data for selected KE endpoints.

3.5. Application of Nano-AOP database for identifying other KEs of relevance to different 
routes of exposure and other AOs induced by MN

The second case study search resulted in a total of 46 individual experiments belonging 

to 11 publications (details in Supplemental information) which were evaluated separately 

for weight of evidence. The analysis provided evidence for activation of KEs NLRP3- 

and caspase-1 activation, ROS, IL1-β activation and TNF-α release and the data supported 

the causal relationship between the KEs. The effects were also found to be TiO2 NP size 

dependent (for more details, refer to Supplemental Appendix 2). This analysis demonstrates 

that the Nano-AOP database can be used to gather preliminary evidence in support of KEs or 

AOs of particular interest.

4. Discussion

4.1. Limitations of the nanotoxicology literature

Publicly available nanotoxicology literature is rich with more than 50 000 peer-reviewed 

publications to date covering a wide variety of MN classes and properties, which are 

easily accessible on PubMed (Krug, 2018). However, there are only a few that would 

actually pass a rigorous quality assessment for use in risk assessment. For example, in the 

original Swiss-VCI database, less than 20% of the 11 000 publications passed the stringent 

quality criteria applied (Halappanavar, Ede, et al. 2019; Krug et al. 2018; Kühnel et al. 

2014). In another recent study, a targeted literature search for studies reporting on silica 

nanoparticle induced toxicity (publications between 2013 and 2019), resulted in less than 

25% of the selected publications fulfilling the applied quality check criteria (Krug, personal 

communication). Thus, a major impediment for researchers attempting to develop AOPs or 

identify KEs of relevance to MN toxicity, is the lack of quality scientific information and 

the heterogeneity of endpoints reported. However, of the 136 papers from 2014 to 2017 that 

met the inclusion/exclusion criteria outlined in Supplemental Appendix 1, 126 publications 

(89%) passed the two-step quality assessment that ensures minimum physical-chemical and 

study design criteria are included and reported, suggesting that the quality of nanosafety 

literature/reporting is improving.
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A majority of the studies in the Nano-AOP database did not include information relevant for 

dose-response assessment. As a result, in the present work, the results could only be reported 

as ‘assessed’ and ‘induced’ and does not include a dose component. A subset of studies 

was identified with adequate dose-response data for BMD modeling, and those data were 

obtained directly from the publications (Section 2.4.3.1). Furthermore, the current literature 

mainly captures the results from papers showing some degree of altered host response 

following MN exposure, largely excluding studies that show no response (negative or 

noeffect studies), which are important in establishing appropriate experimental controls and 

benchmark response levels but which are traditionally harder to publish. These limitations 

will make future quantitative AOP development difficult with currently available literature. 

Although quantitative AOP development and modeling is still in its infancy, the field 

is gaining momentum and several qAOPs have been proposed (Spinu et al. 2020). As 

future efforts aim to validate, harmonize and gain regulatory acceptance of quantitative 

AOP models, guidance should be provided on the information that should be reported 

in the nanotoxicity literature to support their development; some initial recommendations 

are included in Section 4.4, and a proposal for community driven metadata standards for 

nanosafety has been proposed recently (Papadiamantis et al. 2020).

Regardless of the deficiencies, the Nano-AOP and Swiss-VCI databases provide a 

preliminary but rich platform to build upon. Although the present work focuses on seven 

specific MN types, inflammation and associated events, and mainly the pulmonary system as 

the exposure target, which is the most commonly reported in this database, the Nano-AOP 

and Swiss-VCI databases can be used to support preliminary investigations of KEs of 

relevance to other routes of exposure, MN type, or tissue type responses (Supplemental 

Appendix 2), and different types of KEs such as genotoxicity (for studies up to 2013 

in the Swiss-VCI dataset) which can then be supplemented with more recent studies as 

demonstrated here.

4.2. Biological plausibility, measurability, and regulatory relevance of tissue injury as a 
KE

Tissue injury, which is defined as damage to tissues involving structural and/or functional 

changes, is a very common response observed and measured following exposure to MN. 

While tissue injury incited acutely after exposure to stressors results in the release of 

signaling molecules that activate tissue repair and regeneration processes, which includes an 

early inflammatory response, tissue injury that follows unresolved inflammation or failed 

tissue repair attempts can be detrimental to the organism. Tissue is a complex assembly of 

cells and associated extracellular matrix of the same origin that work together to carry out 

a specific function. Tissue injury or damage can be described as the stress or toxicity that 

a tissue suffers due to external stimuli, such as physical, chemical, infectious and others, 

or internal stimuli arising secondary to substance exposure or due to internal biological/

physiological processes. Tissue injury or damage results in the disruption or loss of the 

ability of the tissue to maintain structural integrity, function and homeostasis. Depending 

on the type and extent of exposure (exposure dose or substance properties), the damage 

can be repaired, and function restored, or, in the case of repeated or persistent exposure, 

severe damage to tissues can result in complete dysfunction and impairment leading to a 
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disease or an AO. Tissue injury precedes tissue dysfunction and plays a role in several 

adverse outcomes of regulatory relevance to MNs (e.g. fibrosis (AOP 173 2019), granuloma, 

mesothelioma, and emphysema in the lung (Nagai et al. 2011; Morimoto, Izumi, and Kuroda 

2014; Halappanavar et al. 2020). Tissue injury, among other processes, plays an important 

role in diseases such as cancer by promoting clonal expansion.

A review of the literature included in the NanoAOP database found that events related to 

inflammation, oxidative stress and cytotoxicity were the three most commonly assessed and 

reported biological events following MN exposure with a direct inference to tissue injury. 

Thus, the frequently reported biological events were believed to represent the upstream KEs 

of ‘tissue injury’. As such, unresolved inflammation, oxidative stress and cytotoxicity induce 

injury to cells and tissues. Since each of these upstream events involves complex processes 

and multiple biological events, potentially at different levels of biological organization, they 

were broken down into hub-KEs. The identified upstream and associated hub-KEs reflect 

a change in the biological state that is critical for occurrence of the ‘tissue injury’ KE; 

however, they may not be sufficient on their own to cause an adverse effect. As evidenced 

by the NanoAOP database, each of the upstream and hub-KEs are measurable and the same 

three upstream KEs are measured irrespective of the tissue or cell type in both in vivo and 

in vitro models. The three KEs can be measured in all tissue/cell types. Moreover, a number 

of in vivo and in vitro endpoints, methods and assays have been used to measure the KEs 

for tissue injury and are readily available (Table 1). Tissue injury is observed following 

exposure to a variety of MNs of diverse properties. Thus, from the case study, it can be 

construed that in vitro cellular level assays could be used in developing predictive models of 

the occurrence of tissue injury, a tissue level effect in vivo.

4.3. Limitations of the case study

One of the important challenges for assessing the evidence in support of the tissue injury 

KE was the relatively limited number of specific endpoints that were assessed. For example, 

altered levels of pro-inflammatory mediators, an inflammatory hub-KE, is assessed by 

measuring the change in expression of single or multiple cytokines/chemokines. The number 

of mediators assessed and the specific types may depend on the experience of the individual 

researcher/laboratory and the resources available. The relative importance of any of these 

specific biological entities in the actual event, and the granularity with respect to how 

many entities, or which specific ones to be assessed in an assay, remains to be determined. 

Similarly, many studies opt to measure cytotoxicity using more than one assay. How many 

pro-inflammatory mediators or cytotoxicity assays should be included in the assessment as 

sufficient evidence, or whether an assay requires validation by another assay measuring the 

same endpoint, is not yet known. At present, the evidentiary basis of in vitro toxicological 

science is insufficient, particularly for MNs, to develop recommendations addressing these 

questions. Lastly, although the KEs identified at cellular level reflect a change in the 

biological state that is critical for occurrence of the ‘tissue injury’ KE at organ level, it 

is acknowledged that the suggested upstream KEs and the associated hub-KEs may be too 

many for use as indirect measurements of one single KE tissue injury.
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Moreover, tissue injury in some cases could be regarded as an AO. Thus, guidance on how 

many upstream KEs need assessment as predictive of tissue injury occurrence is important. 

While it is tempting to suggest that one endpoint measuring each of the upstream KEs 

showing dose and temporal progression in a cell type that is relevant to the tissue type 

or route of exposure investigated should be sufficient, further discussions have to be held 

in the community to agree on a set of recommendations or provide specific guidance on 

experimental design for assessing tissue injury in vitro as indicative of an MN-induced 

adverse event in vivo.

This study also focused on seven MNs; as a result, MN properties such as sizes, surface 

coatings, even if part of the same study, were not evaluated separately with respect to the 

measurement and induction of an upstream KE. If a study used a MN doped with elements 

or a combination of two MNs (e.g. diesel exhaust particles and cerium oxide MNs), the 

data points specific to these property deviants and MNs other than the seven prioritized 

in the study were not included in the analyses. This impeded the ability to evaluate the 

influence of MN property on induction of tissue injury, an important piece of information for 

consideration in regulatory applications such as read across and grouping.

The other major limitations with respect to assessing the weight-of-evidence for an upstream 

KE was the heterogeneity in experimental designs, including differences in the in vivo 
species, route of exposure, and post-exposure duration; variability in the in vitro cell type; 

and the specific assays employed in both in vivo and in vitro studies. For example, for the 

cytotoxicity KE, cell death is a commonly reported endpoint; however, it has been assessed 

with a variety of methods and assays (e.g. metabolic assays, live/dead cell count). Different 

assays for a given endpoint cannot be directly compared to evaluate trends between MNs, or 

their properties. Moreover, cytotoxicity assays are reported as cell viability, cell survival, and 

cell death; however, the assays employed to measure the listed endpoints are often the same. 

For example, the LDH assay is employed for measuring both cell viability and cell death 

or different types of death (e.g. apoptosis and necrosis). Designing the NanoAOP database 

using consistent ontology (e.g. capturing and grouping all the assays that measure membrane 

permeability under a ‘loss of membrane permeability’ endpoint) would permit (i) consistent 

analysis of the types of assays/methods used to assess a particular endpoint and a KE, and 

(ii) would allow the data to be organized by assay type, to allow for better comparisons 

between MNs and their properties.

Lastly, the Swiss-VCI database was not specifically designed to assess tissue injury, the 

parameters collected in the database and the criteria for capturing this were not ideal for 

development of the qualitative or quantitative tissue injury KE. The NOEL and LOEL 

estimates, which were available from the information reported in this NanoAOP database, 

were limited in their utility for quantitative comparison of hazard potency across MN. 

In addition to the inherent uncertainty in NOEL or LOEL estimates compared to BMD 

estimates (Crump 2002; US EPA 2012), the experiments in the database without a reported 

NOEL or LOEL resulted in additional uncertainty about the values that were estimated here. 

For example, for the unreported LOELs, estimating the LOELs as the lowest experimental 

dose (which was statistically significant) may overestimate that value since the true 

LOEL may be lower and may represent a possible bias in a nonprotective direction. In 
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contrast, estimating the unreported NOELs as the highest experimental dose (which was not 

statistically significant) may underestimate the NOEL and represent a possible bias in an 

overly protective direction. These uncertainties would need to be taken into account in using 

the estimated NOEL and LOEL values in this database. In addition, the heterogeneity in 

experimental design resulted in relatively few studies within each stratum for comparison of 

NOELs or LOELs, and likely contributed to obscuring any patterns in the potency rankings 

across MNs. The same challenge of experimental heterogeneity hampers comparison of 

BMD estimates across these studies, as it would for other measures such as LD50 or 

EC50 from in vivo or in vitro experiments. Normalizing these values to better account for 

differences in experimental factors, or obtaining a larger set of comparable studies, would 

be needed for more reliable comparative potency analyses. A challenge of using the NOEL, 

LOEL, or BMD estimates to assess upstream KEs is that these point estimates may vary by 

assay or endpoint. Evidence-based criteria would be needed for selecting a given upstream 

KE as a point of departure for risk assessment or determining how these findings could be 

integrated into an overall assessment.

4.4. Recommendations

• Although the present case study largely employed manual curation, a 

combination of human intelligence with machine learning is required in the 

future to extract and organize relevant data for AOP building. The high

quality human-annotated datasets derived from past publications can aid in 

training machine learning algorithms for accurate identification of KEs and 

their relation to a specific AOP. This requires consultation and engagement 

of experts in the community from various disciplines including biochemistry, 

toxicology, medicine, materials science, physics, biology, etc., to establish the 

KE ontologies.

• Study reporting templates (e.g. excel sheets) should be developed that allow 

for capturing the study details, which should include modules such as 

toxicology module (doses, duration of exposure, post-exposure time points), 

exposure module (mode and route of exposure, exposure system [submerged, 

air liquid interface, preparation of exposure material, etc.]), endpoints and 

assays module (specific endpoint, assay and included in the publication as 

Supplementary information, etc.). Reporting standards and guidelines must be 

developed for each of these modules (e.g. the ISA-TAB-Nano specifications: 

https://wiki nci.nih.gov/display/ICR/ISA-TAB-Nano). Best practices for toxicity 

testing should be developed. Such detailed reporting would allow application 

of machine learning and text mining approaches to extract the data from the 

disparate literature into the agreed database structure, in a time effective manner.

• Most current approaches are based on text-mining algorithms, although, some 

software for digitizing plots in pdfs is available but would require thorough 

validation against the raw data for regulatory use. For a specific set of KEs 

that are already identified, the international research community can be called 

upon to report the data in a usable format (e.g. Supplemental Tables). Therefore, 

building on the lessons obtained here, once ontologies and in vitro assays have 
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been formalized and their reporting guidelines have been established, machine 

learning and text mining approaches will be able to scale-up the extraction of 

data from the disparate literature.

• Quantitative analyses are important to AOP development because of the inherent 

relationship between dose and response that is critical to the validation of an 

AOP. Evaluation of responses across materials depends on the dose as well 

as experimental factors. Thus, study reporting should enable collection of the 

full range of concentrations tested and the post-exposure sampling time points 

assessed within each experiment, which would enable building of dose-response 

and temporal relationships. This is important as tissue injury evolves over time; 

and physico-chemical properties of MNs, duration of exposure and the specific 

exposure concentrations are important factors that determine its manifestation 

(Figure 1). It is also important to appreciate the fact that injury leading to 

permanent damage or functional dysfunction ensues only when endogenous 

defence mechanisms are compromised or are insufficient to repair the injury; 

although the repair process itself, e.g. if it results in scarring of lung tissue, can 

contribute to the adverse outcome of tissue injury.

Conclusions

One of the most critical caveats of the present day nanotoxicology is that the best practices 

and reporting standards for most measurements are not yet established. Despite the many 

limitations, this study demonstrated a systematic approach to reviewing the available 

nanotoxicology literature for identifying KEs of relevance to MNs, a process for establishing 

the KE ontologies, and a process for evaluating the weight of evidence using the available 

literature for a given KE leading to an AO. The study established a KE ‘tissue injury’ and 

showed how available literature with its limitations can be used to assess its biological 

plausibility. The exercise allowed identification of the gaps in the literature that pose 

impediments to developing KEs and potential AOPs in the future and opportunities for 

improvements. The Swiss-VCI and Nano-AOP databases are rich sources of information that 

are open to amendments and expansion to allow future KE or AOP development of relevance 

to specific route of exposure, tissue, or MN type.
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Figure 1. 
Schematic depiction of the mechanism underlying tissue injury KE. Substance-induced 

tissue injury is an interplay between inflammation, oxidative stress and cytotoxicity events 

which are thus considered as upstream KEs. The individual upstream KEs presented here 

reflect both cellular and tissue level events and are represented by additional associative 

events in the database, which are referred to as hub-KEs. The dashed arrows describe 

parallel events and the solid arrows describe the main pathway to tissue injury. Cyclic 

arrows describe feedback loops. At the cellular level, injury inflicted by the acute interaction 

of irritants, pathogens and toxic materials with cells (Molecular Initiating Event) serves 

to induce signaling pathways that in turn, lead to activation of host defence mechanisms, 

including immune and pro-inflammatory responses. This initial injury is not intrinsically 

detrimental. The activated inflammatory process involves secretion of complement proteins, 

enzymes and cytokines and recruitment of pro-inflammatory cells to the injury site. 

The metabolic activity of pro-inflammatory cells results in ROS synthesis leading to 

exacerbation of cell injury and cell death. At the tissue level, uncontrolled cell injury results 

in extracellular matrix degradation, vascular damage and eventual tissue dysfunction. The 

surface reactivity (oxidative potential) of MNs can directly induce ROS synthesis, which in 

turn, can activate pro-inflammatory process leading to cell injury and cell death. Negative or 

inhibitory processes are not shown.
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Figure 2. 
Number of studies (in vivo and in vitro) analyzed for each MN in the Nano-AOP database.
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Figure 3. 
Number of studies (in vivo and in vitro) in the database measuring 0, 1, 2 or 3 upstream KEs 

of tissue injury, or 3 upstream KEs plus histology.
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Figure 4. 
Number of studies (in vivo and in vitro) that measured each individual upstream KE and 

number of studies that reported induction of a KE.
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Figure 5. 
Percentage of studies (in vivo and in vitro) in the Nano-AOP database that (i) measured 

and (ii) found significant induction of endpoints assessing the upstream KE inflammation 

for seven types of MNs. Endpoints for the inflammation hub-KE ‘Leukocyte recruitment/

activation’ are shown in A, while endpoints for the inflammation hub-KE ‘increased 

proinflammatory mediators’ are shown in A, B.
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Figure 6. 
Percentage of studies (in vivo and in vitro) in the Nano-AOP database that (i) measured 

and (ii) found significant induction of endpoints assessing the upstream KE oxidative stress 

for the seven types of MNs. Endpoints for the oxidative stress hub-KE ‘increased ROS 

synthesis’ and ‘Imbalanced oxidant and anti-oxidant levels’ are shown in A, while endpoints 

for the oxidative stress hub-KE ‘Modification of biomolecules’ are shown in B.
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Figure 7. 
Percentage of studies (in vivo and in vitro) in the Nano-AOP database that (i) measured and 

(ii) found significant induction of endpoints assessing the upstream KE cytotoxicity for the 

seven types of MNs. Endpoints for the cytotoxicity hub-KE ‘Altered membrane integrity’ 

and ‘Cytotoxicity’ are shown.
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