Na₂ZrCl₆ enabling highly stable 3 V all-solid-state Na-ion batteries Hiram Kwak, abl Jeyne Lyoo, al Juhyoun Park, ab Yoonjae Han, ab Ryo Asakura, Arndt Remhof, Corsin Battaglia, Hansu Kim, Seung-Tae Hong*c and Yoon Seok Jung*a ^a Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, South Korea. ^c Department of Energy Science and Engineering, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu 42988, South Korea. ^d Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland ## Table of contents - 1. Supporting Figures - 2. Supporting Tables ^b Department of Energy Engineering, Hanyang University, Seoul 04763, South Korea. ## 1. Supporting Figures **Figure S1.** Typical Nyquist plots of ion-blocking Ti/SE/Ti symmetric cells. **Figure S2.** Chronoamperometry results for the Ti/SE/Ti symmetric cells with a voltage step of 1 V at room temperature for employing BM-Na₂ZrCl₆. Corresponding electronic conductiviteis were 2.09×10^{-10} S cm⁻¹. **Figure S3.** XRD patterns of BM-Li₃YCl₆, BM-Li₃ErCl₆ and BM-Na₂ZrCl₆. Bragg indexes for Li₃YCl₆ are also shown at the top.[38] **Figure S4.** The (001) view of the observed Fourier map for Na_2ZrCl_6 . The map with and thickness are 13 and 8 Å, respectively, with the center of the map at (0.5, 0.5, 0.5). Figure S5. Raman spectra for ball-milled, heat-treated Na_2ZrCl_6 and $ZrCl_4$. **Figure S6.** Cyclic voltammetry curves for Ti/Na₂ZrCl₆/Na₃PS₄/Na-Sn all-solid-state cells in the negative potential range $(0.0\text{-}2.5~V~(vs.~Na/Na^+))$ and in the positive potential range $(2.0\text{-}5.0~V~(vs.~Na/Na^+))$ at 10 mV s⁻¹ and 30 °C. The enlarged view in the positive voltage range is shown in the inset. 30 mg of Na₂ZrCl₆, 150 mg of Na₃PS₄, and 40 mg of Na-Sn with nominal composition of Na₃Sn were used. **Figure S7.** Electrochemical performance at 60 °C for NaCrO₂/Na-Sn all-solid-state cells employing Na₃PS₄ or BM-Na₂ZrCl₆. a) First–cycle charge–discharge voltage profiles at 0.1C and b) corresponding cycling performance. **Figure S8.** Equivalent circuit model used for fitting Nyquist plots, shown in Figure 4d, e, g, h, for Na⁺ non-blocking e⁻-blocking symmetric cells of Na-Sn/Na₃PS₄/electrode/Na₃PS₄/Na-Sn for NaCrO₂ or RuO₂ electrodes using Na₃PS₄ or BM-Na₂ZrCl₆ before cycling and after charge. ## 2. Supporting Tables Table S1. Selected interatomic distances (Å) in the structure of Na₂ZrCl₆ at room temperature. | Na-Cl | $2.860 (1) \times 2$
$2.764 (5) \times 2$
$2.669 (5) \times 2$ | |--------|--| | Zr1-Cl | 2.511 (4) × 6 | | Zr2-Cl | 2.453 (5) × 3
2.475 (5) × 3 | **Table S2.** Fitted results of the EIS data shown in Figure 4d, e, g, h. Equivalent circuit model is shown in Figure S8. | Electrode | SOC | $R_1[\Omega]$ | $R_{electrode}\left[\Omega\right]$ | Density of electrode [g cm ⁻³] | Na ⁺ conductivity of
electrode [S cm ⁻¹] | |---|--------------------|---------------|------------------------------------|--|--| | NaCrO ₂ /Na ₃ PS ₄ | Pristine | 1632 | 374 | 3.12 | 7.3×10^{-6} | | | After
1st cycle | 1472 | 339 | | 8.0×10^{-6} | | NaCrO2/Na2ZrCl6 | Pristine | 1632 | 760 | 3.28 | 3.4×10^{-6} | | | After
1st cycle | 1483 | 213 | | 1.2×10^{-5} | | RuO ₂ /Na ₃ PS ₄ | Pristine | 1297 | 3934 | 5.55 | 3.9 × 10 ⁻⁷ | | | After charge | 1547 | 7220 | | 2.1×10^{-7} | | RuO2/Na2ZrCl6 | Pristine | 1323 | 3978 | 5.61 | 3.8×10^{-7} | | | After charge | 1640 | 4199 | | 3.6×10^{-7} |