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Abstract Cracks in asphalt pavements create irre-

versible structural and functional deficiencies that

increase maintenance costs and decrease lifespan.

Therefore, it is important to understand the fracture

behavior of asphalt mixtures, which consist of

irregularly shaped and randomly oriented aggregate

particles and mastic. A two-dimensional clustered

discrete element modeling (DEM) approach is imple-

mented to simulate the complex crack behavior

observed during asphalt concrete fracture tests. A

cohesive softening model (CSM) is adapted as an

intrinsic constitutive law governing material separa-

tion in asphalt concrete. A homogenous model is

employed to investigate the mode I fracture behavior

of asphalt concrete using a single-edge notched beam

(SE(B)) test. Heterogeneous morphological features

are added to numerical SE(B) specimens to investi-

gate complex fracture mechanisms in the process

zone. Energy decomposition analyses are performed

to gain insight towards the forms of energy

dissipation present in fracture testing of asphalt

concrete. Finally, a heterogeneous model is used to

simulate mixed-mode crack propagation.

Keywords Discrete element method �
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1 Introduction

The development of micromechanical models was

initiated more than a hundred years ago. Microme-

chanical models that predict global material behavior

based upon the properties of the individual constit-

uents have been developed from 1880s. In general,

micromechanical models can be grouped into two

broad categories: non-interacting particles and

interacting particles. As a further subclassification,

non-interacting particle models can have specified

geometries or non-specified geometries. Table 1

illustrates the model categories and applications to

cementitious materials.

In asphalt concrete, there are a number of param-

eters that need to be considered in order to describe

the system which contains one or more disperse

phases embedded in a continuous matrix. These

parameters include: (1) particle shape; (2) size and

size distribution of particles; (3) concentration and

concentration distribution of particles; (4) orientation

of particles; (5) spatial distribution of particles; (6)
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composition of disperse phase; (7) composition of

continuous phase, and; (8) bond between the contin-

uous and disperse phases. Initially, these parameters

should be incorporated into the analysis of asphalt

concrete. Once a better understanding is reached,

homogenization techniques at selected length scales

can be used to simplify the final model. The need to

consider interacting particles for the accurate predic-

tion of asphalt concrete stiffness properties was

demonstrated from 1990s [1]. The complex morpho-

logical features at the meso-scale, namely the contact

of irregularly shaped aggregates require numerical

methods to account for the particle structure. This has

been addressed using various numerical methods,

such as finite element method [2], Lattice model [3],

and discrete element method [4].

Micromechanical models have been applied to

rigorously analyze the fracture behavior of cemen-

titious materials since the early 1990s. Fracture

studies in the area of Portland cement concrete

materials have utilized homogenized discrete frac-

ture models [5] and simplified heterogeneous

fracture models [6]. However, research on the

fracture behavior of asphalt concrete materials has

been limited even though cracking is one of the

most important structural and functional deficien-

cies. Several experimental investigations of fatigue

crack propagation in asphalt concrete were reported

over the past several decades, mainly using phe-

nomenological models to link laboratory results to

field performance [7]. The J-integral concept to

study fatigue and fracture of asphalt mixtures in

conjunction with disk-shaped specimens was

reported [8]. A three point bending test was used

to explore fracture behavior of asphalt concrete and

to evaluate fracture toughness of asphalt concrete at

low temperatures [9]. Paris’ law has been employed

to analyze cracking in asphalt concrete and to obtain

more insight into the crack propagation and fracture

resistance of asphalt mixes [10].

Table 1 Evolution history of micromechanical models for fracture and non-fracture analyses of cementitious materials

Non-fracture Fracture

Feature Development or application Application

Non-interacting particles (closed-form solution)

Non-interacting particles, geometry NOT specified

+ =

1880s–1930s Homogeneous models

(FEM, DEM, BEM)

Non-interacting particles, geometry specified 1960s–1970s

Particle interacting allowed (numerical method)

Simplified geometry specification (FEM, Lattice model) 1990s 1990s

Complex geometry specification (FEM, DEM) 2000s 2000s
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Most studies in fracture of asphalt concrete have

been limited to either experimental investigations or

the study of stationary cracks. For more progressive

crack propagation and numerical studies, homoge-

neous fracture models have been applied based on the

cohesive zone model or Lattice model in conjunction

with the continuum-based model [11, 12]. However,

asphalt concrete is a quasi-brittle composite material

which is composed of brittle aggregates and viscous

mastic. The fracture of heterogeneous solids is a

difficult problem to handle numerically due to the

creation and continuous movement of new cracked

surfaces. The use of nonlinear fracture mechanics to

analytically describe these mechanisms can be

extremely challenging, since the fracture patterns

typically consist of a main crack, crack branches,

secondary cracks and micro-cracks. Recently, more

realistic fracture modeling with heterogeneous micro-

structure in asphalt concrete has been studied using

advanced Lattice models and the discrete element

method [13, 14].

The present study seeks to illustrate the potential

usefulness of a new approach for studying crack

behavior in asphalt concrete by directly accounting for

the contribution of the material’s heterogeneity by

modeling discrete aggregate particles and the asphalt-

aggregate mastic. A clustered distinct element

modeling approach was implemented in the two-

dimensional particle flow software package (PFC-2D)

to study the complex crack behavior observed in asphalt

concrete fracture tests [15]. In this work, an powerful

integration of experimental test and numerical scheme,

involving the cohesive softening model (CSM) and

image analysis, is introduced to investigate the fracture

behavior of asphalt concrete and to simulate crack

nucleation, initiation and propagation including both

mode I and mixed-mode behavior.

2 Discrete element method

The discrete element method (DEM) originally

developed by Cundall [16] has proven to be a power

and versatile numerical tool for modeling the behavior

of granular and particulate systems, and also for

studying the micromechanics of materials such as soil

at the particle level. Also, the method has the

potential to be an effective tool to model continuum

problems, especially those that are characterized by a

transformation from a continuum to discontinuum.

The DEM discretizes a material using rigid elements

of simple shape that interact with neighboring

elements according to interaction laws that are applied

at points of contact.

The analysis procedure consists of three major

computational steps: internal force evaluation, in

which contact forces are calculated; integration of

equations of motion, in which element displacement

are computed; and contact detection, where new

contacts are identified and broken contacts are

removed. In a discrete element analysis, the interac-

tion of the elements is treated as a dynamic process

that alternates between the application of Newton’s

second law and the evaluation of a force-displace-

ment law at the contacts. Newton’s second law gives

the acceleration of an element resulting from the

force acting on it, including gravitational forces,

external forces prescribed by boundary conditions,

and internal forces developed at inter-element con-

tacts. The acceleration is then integrated to obtain the

velocity and displacement. The force-displacement

law is used to find contact forces from known

displacement. The equations of motion are integrated

in time using the central difference method. Details of

this process are given in a paper by Cundall [16]. The

method can be computationally very demanding and

thus, efficient algorithms, especially for the internal

force evaluations and contact detection, must be used.

Computational effectiveness will be particularly

important for three-dimensional discretizations, the

use of which is inevitable for obtaining fully realistic

and accurate models for many applications.

In the absence of damping, the DEM equilibrium

equation at discrete time intervals for the system of

particles is following:

Maþ KDx ¼ Df ð1Þ

where, M is the mass matrix, a is the acceleration

vector, K is the stiffness matrix, Df is the incremental

force vector, and Dx is the incremental displacement

vector. The translational and rotational stiffnesses of

a particle relate increments of force and moment to

increments of displacement and rotation via the

matrix relations:

Dff g ¼ ½K� duf g ð2Þ

In a two-dimensional system, Eq. 2 can be

expressed as:
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The individual elements of this stiffness matrix

can be expressed for a particular contact in terms of

the particle radius R, the contact normal vector ni, and

the contact stiffnesses, i.e. Kn and Ks. Again, Eq. 2

can be expressed with the terms in a standard FE

frame work from Eq. 4 to Eq. 7:

Dff g ¼

Z

½B�T ½D�½B�dV

� �

duf g ð4Þ

ef g ¼ ½B� duf g ð5Þ

rf g ¼ ½D� ef g ¼ ½D�½B� duf g � Dr1 ð6Þ

Dff g ¼

Z

½B�TDr1dV ð7Þ

where, {Df} are the incremental force vectors, [K] is

the contact stiffness matrix, {du} are the contact

displacements, {e} are the contact strains, {r} are the

contact stresses, [B] is the strain matrix and [D] is the

elasticity matrix.

The elements of the stiffness matrix represent

primarily the normal and shear springs that are present

at the contact points. The stiffness matrix ([K])

changes during the analysis as contacts are formed

and broken. Discrete element simulations can there-

fore be classified as non-linear, dynamic analyses. The

principal difference between the available DEMs is

the time integration algorithm used to solve Eq. 1

[17]. Equation 2 is similar to the global equation

considered in continuum finite element modeling. An

analogy can therefore be drawn between a discrete

element framework and a finite element framework;

discrete element particles corresponding to the finite

element nodes and inter-particle contacts correspond-

ing to finite element as shown in Fig. 1.

The constitutive models used in the current 2-D

discrete element model application consist of three

parts: a contact stiffness model, a slip friction model

and a bonding model. The linear contact model is

defined by the normal and shear stiffness, Kn and Ks

(force/displacement), of the two contacting entities

(ball-to-ball or ball-to-wall) acting in series. The

details of the basic constitutive laws used to model

bulk material response (normal and shear stiffness and

frictional sliding) can be found in the PFC manual.

3 Cohesive fracture model

Dugdale [18] and Barenblatt [19] proposed cohesive

models to investigate ductile and brittle material

fracture behavior, respectively. The cohesive crack

concept was later extended by Hillerborg et al. [20] to

study nonlinear fracture processes in Portland cement

concrete. Furthermore, cohesive zone models

(CZMs) have been used to simulate the fracture

process in a number of material systems including

polymers, metallic materials, ceramic materials,

metal matrix composites, and fiber reinforced plastic

composites under varying loading conditions, e.g.

static, dynamic, and cyclic. The first application of a

cohesive zone model to simulate asphalt materials

was made by Jenq and Perng [11] although material

microstructure was not considered in their study.

Discrete element models can also be used to simulate

material fracture by utilizing more sophisticated

bonding models, including softening-type constitu-

tive models. These tools can be used to simulate

crack initiation and propagation in a manner similar

to the cohesive zone modeling approach as shown in

Fig. 2. The cohesive crack models provide the

capability to simulate the crack propagation occur-

ring in a process zone located ahead of a crack tip.

The cohesive approaches involve nonlinear constitu-

tive laws described by the displacement jump and the

corresponding traction along the contact interfaces.

The area under this local cohesive model curve is a

fracture energy, which is needed for creating the

crack surface. As shown in Fig. 2, the initial slope of

local cohesive softening model represents material

modulus. The material strength can be determined by

Fig. 1 Schematic diagram illustrating DEM-FEM analogy. (a)

Elements and nodes (FEM) and (b) particles and contacts

(DEM)
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the radius of particle and the thickness in a two-

dimensional discrete element model [21].

The softening slope is varied with the distance of

the center locations of adjacent particles (h), as

shown in Fig. 1, in order to maintain a constant

fracture energy dissipation rate and ensure the mesh

objectivity as shown Eq. 8 [22].

Es ¼
1

2Gf

f 2t h

� �

� 1
E

h i ð8Þ

where, Es is the softening modulus, Gf is the cohesive

fracture energy dissipation rate.

Cohesive softening models are described by three

parameters (two are independent), namely the cohe-

sive fracture energy dissipation rate, Gf, the cohesive

strength, ft, and the separation/critical length, dsep. In

general, cohesive energy is obtained from experi-

ments and is generally assumed to be equivalent to

the work of fracture U. The cohesive energy potential

is simply:

Gf ¼

Z

dsep

0

rcðdÞdd ð9Þ

The verification of cohesive fracture model was

already conducted using a double cantilever beam

and the results were almost identical to the analytical

solution [14, 23].

4 Governing equation of energy determination

For more detail fracture analysis, the energy flow of

micromechanical facture model needs to be calcu-

lated. The energy in the entire particle assembly can

be tracked with respect to the following five

partitions. They are boundary, strain, friction, kinetic,

and fracture energy.

4.1 Boundary energy

Boundary energy is total accumulated work, Ew, done

by all walls, which were used for applying the

external load, on the assembly.

EW ¼ EW �
X

NW

FiDUi þM3Dh3ð Þ ð10Þ

where, Nw is the number of walls; Fi and M3 are the

resultant force and moment acting on the wall at

the start of the current time step; and DUi and Dh3 are

the applied displacement and rotation occurring

during the current time step. Also note that Ew may

be positive or negative, with the convention that work

done by the walls on the particles is positive.

4.2 Strain energy

Strain energy is the total accumulated strain work

done across the entire assembly.

ES ¼
1

2

X

NC

Fn
i

�

�

�

�

2
=Kn þ Fs

i

�

�

�

�

2
=Ks

� �

ð11Þ

where, Nc is the number of contacts; Fn
i

�

�

�

� and Fs
i

�

�

�

� are

the magnitudes of the normal and shear components

of the contact force. In the case of the bulk material

behavior, this energy is stored and can be recovered

upon unloading. This will be apparent when we

examine the decomposition of energy as the crack

progresses through the specimen in a later section. As

the specimen becomes fully cracked, resembling a

hinged, two-piece structure, the bending of the bulk

material becomes negligible as evidenced by the

reduction in stored strain energy.

4.3 Frictional energy

Frictional energy is total energy, Ef, dissipated by

frictional sliding at all contacts:

Ef ¼ Ef �
X

NC

Fs
i

� �

DUs
i

� 	slip
� �

ð12Þ

where, Nc is the number of contacts; Fs
i

� �

and

DUs
i

� 	slip
are the average shear force and the

increment of slip displacement, respectively, at the

contact for the current time step.

Fig. 2 Concept of cohesive softening model
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4.4 Kinetic energy

Kinetic energy is total kinetic energy, Ek, of all

particles accounting for both translational and rota-

tional motion. Ek can be expressed in terms of the

generalized mass, MðiÞ, and velocity, VðiÞ, of each of

the Np particles as:

Ek ¼
1

2

X

Np

X

3

i¼1

MðiÞV
2
ðiÞ ð13Þ

4.5 Fracture energy

Fracture energy can be determined by subtracting all

other energies from the total (or boundary) energy

easily.

Cc ¼ Ew � Es � Ef � Ek ð14Þ

5 Single-edge notched beam test

The selection of the specimen geometry was the first

step in developing a fracture test for asphalt concrete

to use for integrating with numerical models. Several

parameters were defined when selecting the specimen

geometry, such as test simplicity (specimen fabrica-

tion, test fixtures, etc.), amenable stress states (simple

stress fields, minimal end effects), and the ability to

obtain fracture energy. The single edge notched beam

(SE(B)) geometry (Fig. 3) can be readily fabricated

from laboratory compacted beams or slabs. The

loading configuration (three-point bend) allows for

simple stress states and ease of test control with

closed-loop servo-hydraulic equipment. Moreover, by

simply offsetting the mechanical notch location (see

Fig. 4), the notched beam test can be used to charac-

terize mixed-mode fracture characteristics. Further

details of the notched beam fracture test for asphalt

concrete can be found in an author’s publication [24].

The asphalt concretemixture utilized for this study is

a typical central Illinois surface mixture that consists of

a 9.5 mm nominal maximum aggregate size and a PG

(Performance Grade) 64-22 asphalt binder. The grada-

tion plot for the mixture is shown in Fig. 5. This

particularmixture has been extensively characterized by

Wagoner [25] including the bulk material properties

required for thematerial inputs for the numericalmodel.

6 Mode I fracture simulations

6.1 Geometry of numerical model

Figure 6 illustrates a simply-supported, single-ended

notched beam with a length of 376 mm, a height of

19 mm

375 mm 

330 mm 

75 mm

100 mm 

Fig. 3 SE(B) Geometry and dimensions for asphalt concrete

S

γ*S/2

Fig. 4 Mixed-mode test geometry using offset notch method
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Fig. 5 Gradation plot of asphalt mixture
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100 mm and a thickness of 75 mm. A mechanical

notch was then inserted with a length of 19 mm,

giving a notch to depth (a/H) ratio of 0.19. The depth

of the notch was selected to be long enough to ensure

adequate stress intensity at the notch tip to initiate a

crack, but short enough to ensure a ligament of

adequate length for test repeatability and to prevent

crack initiation under self-weight. Constant velocity

(or displacement) boundary conditions are imposed at

the center of the top edge of the model in order to

predict stable fracture behavior. Figure 6 shows a

discrete element configuration for the small region

around crack tip along the middle of the specimen

respectively. Two-dimensional cohesive contact

models are inserted only along the center of the

specimen. The bulk material is modeled as elastic,

homogeneous, and isotropic with a face-centered

arrangement.

6.2 Material parameters

Two experimental fracture properties, material

strength and fracture energy, are evaluated herein as

material inputs into the cohesive fracture model,

which can be calibrated. The first-failure tensile

strength determined from the indirect tension test at

-10�C and 1 Hz is defined as the material strength.

The procedure for determining the first-failure tensile

strength is outlined in the AASHTO T322-03 speci-

fication [26]. The material tensile strength of

3.56 MPa was obtained in the IDT test for the

dense-graded limestone-dolomite asphalt mixture

studied herein. The notched beam fracture test was

used for determining the fracture energy of the

mixture under investigation. In this experiment, the

crack mouth opening displacement (CMOD) was

increased at a linear rate. The fracture energy was

then determined by calculating the area under the

load-displacement curve and normalizing by the

cross-sectional area of the beam. A fracture energy

of 344 J/m2 was obtained from the notched beam test.

Because the fracture energy obtained in this method

currently overestimates the energy associated with

the material separation, it is convenient and logical to

adjust this parameter for model calibration.

6.3 Homogeneous fracture analysis

For the homogenous model, 37,981 particles with

0.5 mm radius and 75,442 contacts are used across

the entire specimen, while 81 cohesive contacts are

inserted along the middle of specimen. Young’s

modulus of 14.2 GPa was assigned for bulk material

and the calibrated strength for cohesive fracture

model was 3.21 MPa. The calibrated fracture energy

was 241 J/m2. A parametric study was conducted to

determine the sensitivity of the particle size on the

numerical results. Three different particle radii

(0.25 mm, 0.5 mm and 1.0 mm) were utilized in

the simulations. The result demonstrates that within

the selected size range used in the fracture study,

global fracture response is independent of particle

size [27]. However, the selection of different particle

size in heterogeneous fracture model will affect to the

distribution of microcracks so it is an important

aspect in the applications of heterogeneous fracture

models [28]. Figure 7 represents the experimental

and numerical global results as expressed in terms of

force versus CMOD with asphalt mixtures with

9.5 mm nominal maximum aggregate size (NMAS).

In the calibrated model, the force versus CMOD

curve was quite reasonable as compared to experi-

mental results, which is not surprising, since non-

local material properties were used as inputs to the

Fig. 6 Mode I DEM

fracture model geometry

and mesh
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intrinsic cohesive softening model as a first-order

approximation (e.g. the tensile strength obtained from

the indirect tensile test and the fracture energy from

the notched beam test).

Figure 8 shows a decomposition of energy storage

and dissipation, which indicates that strain, fracture,

and friction energies are dominant in the fracture test,

while kinetic energy is essentially negligible. The

strain energy has the highest value when the applied

force reaches the peak load. After the peak point, the

stored strain energy in the specimen decreases as the

crack propagates and the energy becomes highly

localized in the remaining hinge-like ligament ahead

of the crack.

6.4 Heterogeneous fracture analysis

With high resolution optical image equipment and

powerful image processing techniques, a heteroge-

neous discrete element fracture model can be

constructed. The realistic microstructure can be

obtained and projected onto the discrete element

mesh using Image-Pro Plus [29] and a user-defined

visual basic program code. The detail analysis

procedure of image processing will not be discussed

in this paper due to the limitation of paper length.

However, it can be found in other publication [27].

Figure 9 represents the numerical heterogeneous

model geometry and crack propagation results. In this

model, 149,922 particles with 0.25 mm radius and

298,855 contacts are used across the entire specimen

and 61,717 particles and 105,236 contacts are used to

model aggregates; 88,205 particles and 158,042 con-

tacts for mastic, and; 35,577 contacts are used at the

interfaces between aggregate and mastic sub-particles.

Detailed model parameters used in the simulations are

provided in Table 2. The material parameters of

aggregate and mastic were obtained from indirect

tension and dynamic modulus tests [30]. The material

parameters of interface were assumed that they are

similar to the mastic but they should be continuously

verified by advanced tests and measurements in future

[31]. The fracture energies ofmastic and interfacewere

estimated from the inverse analysis and calibrated

based on the experimental fracture test data of mixture.

The stress concentration in the ligament along the

expected mode I crack path is significant and many

micro-cracks were predicted in the process zone prior

to crack propagation, as shown in Fig. 9b. Figure 9a

and b show many micro-cracks around an aggregate

in the top of notched crack tip. From the experimental

tests and numerical simulations, the powerful poten-

tial benefits of discrete fracture model can be

discussed. The fracture of asphalt concrete has very

different fracture mechanisms due to the non-homo-

geneity in the specimen such as micro-cracking,

crack branching and deflection, crack face sliding,

crack bridging, and crack tip blunting. The micro-

cracking phenomenon consumes a part of the external

energy caused by the applied load. Crack deflection

occurs when the path of least resistance is around a

relatively strong particle or along a weak interface.

Also, during the opening of a tortuous crack, there

must be some frictional sliding between the cracked

faces that causes energy dissipation through friction.

Based on these mechanisms in the fracture of asphalt

concrete, heterogeneous DEM fracture model can

have the ability to gain some insight towards fracture

toughening mechanisms in asphalt concrete.

Fig. 7 Experimental and homogeneous numerical results

(9.5 mm NMAS at -10�C)

Fig. 8 Energy balance of homogeneous DEM fracture model
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For the calibrated heterogeneous fracture simula-

tion, the overall trend resembled the experimental

result as shown in Fig. 10. Due to the presence of a

large aggregate just ahead of the simulated notch, the

force was predicted to experience a sudden decrease

before the peak load but then was recovered. This

phenomenon has been observed in experimental trial,

particularly when thin specimens with larger aggre-

gates are tested. Thus, the 2-D model herein tends to

exaggerate the effect of aggregates on the load-

displacement response, especially when compared to

experimental results obtained from specimens with

larger thicknesses-to-maximum-aggregate size ratios.

Thus, the need for three-dimensional modeling to

accurately capture material heterogeneity is apparent.

The strain and fracture energy in Fig. 11 also

shows the aggregate effect in the sudden jump in the

energy traces. A more detailed study of the fracture

zone size and fracture toughening mechanisms is the

focus of ongoing work. The difference in energy

decomposition in the homogeneous and heteroge-

neous simulations was due to assumed material

properties for the heterogeneous simulation. Like the

results of homogeneous fracture model, the stored

strain energy in the specimen decreases as the crack

propagates. The friction energy is varied based on the

friction coefficient of materials as well as the hetero-

geneity through the crack path. In this simulation, the

friction coefficient of 0.5 was used for all materials.

Fig. 9 Heterogeneous

DEM fracture model and

representations of cracks.

(a) Numerical SE(B)

specimen with

microstructure, (b) micro-

cracks and (c) macro-cracks

Table 2 Parameters for heterogeneous DEM fracture model (9.5 mm NMAS at -10�C)

SE(B) Material properties DEM contact properties

Phase Young’s modulus (GPa) Strength (MPa) Stiffness (GPa) Bond force (N) Separation displacement (m)

Aggregate 56.8 6.59 4.26 247.2 7.6E-8

Mastic 18.2 3.78 1.36 141.75 1.4E-4

Interface 18.2 3.44 1.36 136.18 4.5E-5

Fig. 10 Experimental and heterogeneous numerical results

(9.5 mm NMAS at -10�C)
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7 Mixed-mode fracture simulations

The mixed-mode fracture in a pavement system is

popular and significant due to the presence of

continuous dynamic and static traffic loads and

environmental conditions including temperature and

moisture. Using the calibrated cohesive parameters

and particle size 0.25 mm, the mixed-mode problem

was investigated herein using the beam fracture test

with an offset notch to create mixed-mode (i.e. mixed

with Mode-I and Mode-II) crack propagation. The

offset parameters, c, as defined in Fig. 12a, were 0.4,

0.5, and 0.55 resulting in offset lengths of 65 mm,

81 mm, and 89 mm from the middle of specimen.

Figure 12b presents the nomenclature used to be

described the components of crack displacement

around a notch with a propagating crack in the

middle of specimen. The global displacements

describing material separation are the crack mouth

displacement (CMD), crack mouth opening displace-

ment (CMOD), and crack mouth sliding displacement

(CMSD). The more localized displacements, which

are more closely tied to crack tip properties, are the

crack tip displacement (CTD), crack tip opening

displacement (CTOD), and crack tip sliding displace-

ment (CTSD). These are important response

indicators that can be obtained experimentally (with

some difficulty) and/or estimated though numerical

simulation. These parameters are important in model

calibration and validation.

Figure 13 illustrates the crack paths from several

beams tested with different offset lengths. The stress

state within the mixed-mode beams are such that as

the offset length increases, the shear component

increases while the tensile component decreases. The

experimental results show that the critical offset

length for this geometry and mixture is between

c = 0.5 and 0.55. The critical offset length is defined

as the length where the crack initiates and propagates

Fig. 11 Energy balance of heterogeneous DEM fracture

model

Fig. 12 Mixed-mode

SE(B) geometry with offset

notch. (a) Geometry of

mixed-mode SE(B) and

(b) composition of crack tip

displacement and crack

mouth displacement
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the centerline as opposed to the notch tip. The reason

for the difference in initiation location is that the

stress intensity at the notch tip reduces as the offset

length increases and the tensile stress at the bottom

centerline of the beam increases. The critical offset

length is dependent on the geometry of the beam, i.e.

span length and notch length. Figure 14 shows the

crack trajectory of heterogeneous fracture model with

0.55 offset. As shown Fig. 13, both numerical and

experimental crack trajectories are matched well for

the crack propagation although the crack path is not

exactly the same with experimental crack path.

The numerical crack trajectories with different

notch offsets (c = 0.4 and 0.55) were shown with the

micro-crack and macro-crack distribution both

locations of notched cracks in Fig. 15. The paths of

crack propagations by fracture models were the same

with the experimental test results. Competitions exist

as to where more critical conditions prevail that will

lead to macro-crack. The distributions of micro-

cracks will be dependent on the heterogeneity around

the critical locations and the features of offset notch.

Furthermore, the density of micro-cracks generally

decreases with increasing distance from the face of

the main crack.

For the beam with 0.4 notch offset, the macro-

crack initiated with mode-I fracturing in but the path

quickly began to meander at an angle towards the

loading point as the crack propagated. Before crack

initiation, inelastic effects at the crack tip in the

notched region and in the vicinity of the outer fiber of

bending at the bottom of the mid-span of specimen

are simultaneously occurring (Fig. 16).

8 Summary and conclusions

A numerical fracture model was constructed based on

the cohesive softening model and a image processing

technique for obtaining the microstructure of asphalt

concrete specimen. Material parameters of numerical

fracture model were determined from experimental

tests. Using inverse analysis, the multi-phase material

properties were obtained and applied into discrete

element fracture models. Both mode-I and mixed-

mode fracture behaviors based on notched beam tests

were investigated with the integration of experimental

test and numerical simulations. From heterogeneous

fracture models, the crack initiation and propagation

could be predicted well and it was found that the solid

aggregate can be broken at low temperatures if it is

along the fracture process zone. Also, macro- and

micro-crack distribution could be represented by a

Front

Back

γ = 0.55 

γ = 0.5 

γ = 0.4 

γ = 0.0 

Centerline

γ∗S/2 

S

Fig. 13 Experimental crack path with various notch offsets

Fig. 14 Numerical crack trajectories trajectory (c = 0.55)

Fig. 15 Numerical crack

distributions with micro-

and macro-cracks. (a) Crack

distribution (c = 0.4) and

(b) crack distribution

(c = 0.55)
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numerical tool and the crack competition between

critical tensile locations could be predicted in the

mixed-mode fracture simulation. Energy decomposi-

tions were accomplished from homogeneous and

heterogeneous fracture models but need to be validated

with robust measurement tools. The energy analysis

should ultimately be extended to include viscoelastic

material response in conjunction with material frac-

ture. Although much more works such as the interface

fracture test and measurement of micro-cracks are

needed to validate the numerical fracture models

presented herein, discrete element fracture modeling

approach appears to have significant potentials for

aiding in the understanding of fracture behavior in

asphalt concrete.
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