
PHYSICAL REVIEW B 103, 094301 (2021)

Bending-wave localization and interaction band gaps in quasiperiodic beams
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Aperiodic metamaterials can host topological or localized wave modes, and gradually changing structures
are known to induce conversion between elastic wave types. This work describes a family of one dimensional,
aperiodic elastic structures that can host localized modes or achieve low-frequency attenuation by varying a
single geometrical parameter, i.e., the ratio between the sizes of two interacting periodic structures. Two periodic
sets of slits on the top and bottom of a slender beam scatter bending waves. The thickness profile and cross
section of beams with a period ratio close to 1 varies slowly, resulting in localized wave modes. The localization
happens because of spatially confined band gaps and is only triggered for certain excitation locations, unlike
wave localization due to a local defect. If the periods differ more, broad band gaps appear at wave numbers equal
to linear combinations of the individual Brillouin zone edges of each set of slits. We call these interaction band
gaps, since they result from the interplay between two periodic sets of slits. Low-frequency wave attenuation is
achieved while maintaining a high overall bending stiffness.
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I. INTRODUCTION

Metamaterial research, be it in optics, acoustics, or dy-
namics, mainly focuses on periodic structures. This is evident
for photonic and phononic crystals, whose functionality de-
pends on wave interaction due to Bragg scattering [1]. The
advantage of unit cell modeling, which allows the prediction
of the dispersion relation with minimal calculation effort [2],
is often also exploited for locally resonant metamaterials [3].
Their efficiency, however, does not rely on a periodic place-
ment of the individual resonators, as long as they are placed
sufficiently close to each other [4]. In recent years, aperi-
odic metastructures have been receiving increasing attention.
Explicit models of large structures are in reach thanks to
high-performance computing. This allows the assessment of
boundary effects in finite metamaterials, or the effect of de-
fects in a periodic pattern. Aperiodic structures demonstrate
various interesting properties that cannot exist in periodic
arrays. A well-studied family of aperiodic metamaterials con-
sists of the assembly of two periodic structures. The sudden
jump in properties at the interface introduces a plethora of ef-
fects, such as wave localization [5,6], topologically protected
waves [7–9], and various quantum-like elastic waves [10–12].
Another class of aperiodic metastructures has a gradually
varying profile. Metawedges, for example, consist of an array
of slowly varying resonators that can lead to wideband “rain-
bow” trapping or mode conversion, depending on the direction
of incidence of the waves [13,14]. Thickness or stiffness mod-
ulation of beams and plates also leads to gradual, adiabatic
changes with topological wave effects [15,16]. Alternatively,
long-range periodicity can be broken in a controlled way using
the concept of quasicrystals [17–19]. Examples are known in
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one, two, or three dimensions, e.g., Fibonacci sequences [20],
modulation of a periodic sequence [15,21,22], or certain
tessellations [23]. Quasicrystals exhibit no translational pe-
riodicity, but they contain local symmetries interacting with
impinging wave fields [24].

The topic of this article is a family of one-dimensional
quasiperiodic metamaterials, achieved by superposing two
periodic arrays of slits on the top and bottom of an elastic
beam to scatter bending waves. The periodic arrays are chosen
in such a way that no periodicity is present within a finite
sample of 1 m length. The characteristics of the overall wave
propagation in these quasiperiodic beams are not a result of
Bragg scattering, which occurs in periodic lattices, but they
are affected by the interaction of both sets of scattering slits.
After introducing the geometry of the investigated aperiodic
beams, the effect of the slits on wave propagation is quali-
tatively described by an inquiry of the reciprocal space. The
following three sections address bending wave scattering in
three distinct cases: a periodic beam with a local defect, a
slowly varying aperiodic beam, and a quickly varying ape-
riodic beam. These cases are investigated numerically, using
finite-element models, after which the effects are validated
experimentally.

II. QUASIPERIODIC BEAMS WITH SUPERIMPOSED
SCATTERING SLITS

In a beam with thickness T , two sets of rectangular slits are
milled from the top and bottom surface, with a depth d < T/2.
Each set of slits is periodic with period p1 and p2, respectively.
Mathematically, the profile can be derived from a pulse wave
with duty cycle a and period p,

�a

(
2π

p
x

)
= �a(kx) =

{
1 if x mod p < a,

0 if x mod p > a.
(1)
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FIG. 1. Schematic presentation of the beam geometry, with two
periodic sets of slits (a). Experimental samples with period ratios,
from top to bottom, r1 = p1/p2 = 1, r2 = 1.028, and r3 = 1.405 (b).

The top (i = 1) and bottom (i = 2) profile of the beam can
now be written as

ti(x) = (−1)(i+1)

(
di�ai (kix + φi ) + T − 2d

2

)
. (2)

The thickness profile of the beam is given by

h(x) = t1(x) − t2(x) (3)

and can take four distinct values: T , T − d1, T − d2, and T −
d1 − d2. In this paper, the slit depths and duty cycles of the top
and bottom profile are chosen to be identical, and the phase
shift φ1 = φ2 = 0 so that each beam starts with a whole thick
section at x = 0. The quasiperiodic beam is thus fully defined
by the period ratio r = p1/p2.

If the ratio of the periodicities r is rational, say equal to
the irreducible fraction r = m/n with m, n ∈ N, a periodic
supercell can be identified with length ps = np1 = mp2. In-
commensurate sets of scatterers are defined by an irrational
value of r, in which case no supercell exists. The value of r can
nevertheless always be approximated by a rational number.
However, in either case the values of m and n can be so
high that the supercell is larger than the beam’s length and
no periodicity whatsoever occurs within a sample of realistic
size.

In this article, three distinct cases are identified depending
on the value of r, as shown in Fig. 1(b). The first is the well-
studied periodic beam with r1 = 1, with perfect alignment of
the slits. All thin sections coincide leading to a low bending
stiffness and therefore band gaps at relatively low frequencies.
Beam 2 is defined by a ratio slightly larger than 1, r2 = 1.028,
which leads to a slow variation of the thickness profile. The
thick sections at the start of the beam are aligned, and they
remain almost aligned for several slits. Locally, within a range
of up to five slits, the beam can be assumed to be periodic. On
a larger length scale, however, the relative position of the top
and bottom slit varies from perfectly aligned to completely out
of phase. Beam 3 has a periodicity ratio r3 = 1.405, leading

TABLE I. Geometry parameters of the three beams.

Beam r p1 (mm) p2 (mm)

1 1.000 97.9 97.9
2 1.028 37.0 36.0
3 1.405 51.6 36.7

to a quick variation in the thickness profile so that no local
periodicity can be found. In this case, a longer length scale
shows a certain translational symmetry: r3 can be approxi-
mated as 7/5, and sections with length 5p1 = 7p2 are almost
identical. The slit periodicity p2 = 36 mm is chosen so that
both quasiperiodic beams 2 and 3 would require excessive
lengths to form an actual supercell: 9.2 m for beam 2 and
10.3 m for beam 3, so that no periodicity can arise within
the chosen sample lengths of 1 m. The unit cell of beam 1
is optimized to have a first band gap at the same frequency
as beam 3, as will be shown later in the paper. An overview
of the parameters defining the beams’ geometries is given in
Table I.

For practical purposes, the beams in this study are made of
aluminum. Both arrays of slits have the same depth, resulting
in asymmetric beams as illustrated in Fig. 1(a) with thick sec-
tions (T = 17 mm), thin sections (t = 3 mm, resulting from
7 mm deep slits on either side), and medium sections (10 mm).
The slit width is chosen as 1/6 of the respective periods p1

and p2 in order to maintain a constant mass-per-length for
each choice of the period ratio r = p1/p2. The only parameter
affected by the quasiperiodicity is the overall static bending
stiffness of the beam. In beams with a significant portion of
thin sections, in particular beam 1, the static deflection is
evidently much higher than in the quasiperiodic beams. To
quantify this effect, the deflection of the beams under a 1 N
load at the right end, while keeping the left end clamped, was
modeled in Ansys 19.2. The total deflection was 25.14 mm for
beam 1, 9.88 mm for beam 2, and 5.24 mm for beam 3. The
average static bending stiffness is five times higher in the last
case compared to the periodic beam.

III. DISPERSION AND WAVE PROPAGATION IN BEAMS
WITH RANDOM THICKNESS PROFILES

In periodic beams, Bloch-Floquet boundary conditions can
be applied on a unit cell to predict bending wave disper-
sion [2]. This technique can to a certain extent be used for
quasiperiodic structures, if the sample is large compared to a
supercell. This is the approach of [15], to prove the existence
of localized wave modes in the presence of point scatterers
with modulated periodicity. The goal of this article, how-
ever, is to investigate the influence of the quasiperiodicity
parameter r on the dynamic response of beams much shorter
than a supercell. Under these circumstances, the theoretical
dispersion relation for infinite samples is not a viable analysis
approach. Moreover, the scatterers under consideration are
not pointlike (masses, springs, or resonators), but they have
a finite extent. This increases the modeling complexity, since
no analytical methods can be used as for point scatterers [25].
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Bragg scattering in (phononic) crystals arises when the
wave number k coincides with the reciprocal lattice of the
waveguide. Flexural waves in thin beams obey the Euler-
Bernoulli wave equation

∂2

∂x2

(
EI

∂2w

∂x2

)
+ ρA

∂2w

∂t2
= 0, (4)

where E is Young’s modulus, I = bh3/12 is the second mo-
ment of area for a rectangular beam cross section with width
b and thickness h, ρ is the mass density, and A = bh is the
cross-sectional area. In homogeneous thin beams made out of
one single material, the wave number is solely defined by the
square of its thickness. Therefore, we assume that for beams
with varying thickness h(x), the lattice responsible for wave
scattering is defined by the function h(x)2. The reciprocal
lattice H (k) can be approximated by the Fourier transform of
the squared values of Eq. (3):

H (k) = Fh(x)2 = F
(
t2
1 + t2

2 − 2t1t2
)
. (5)

The Fourier series of a rectangular function �a(kix) takes
nonzero values at k = nki, n being a whole number. Since
t1(x)2 and t2(x)2 are in turn rectangular functions, the Fourier
series of the thickness profile in this case consists of nonzero
values at k1, k2, and their linear combinations ak1 + bk2, a
and b being positive or negative whole numbers. The latter
wave numbers arise from the convolution of the reciprocal
lattices of the top and bottom beam profiles T1(k) ∗ T2(k). This
nonlinear interaction between the two sets of slits introduces
new high-symmetry points in reciprocal space, and thus Bragg
scattering at wave numbers differing from k1 and k2. The
additional scattering points will result in more band gaps,
which we call interaction band gaps.

The reciprocal lattice strongly depends on the period ratio
r and duty cycle a, as shown in Figs. 2(a) and 2(b). The
graphs were calculated as the fast Fourier transform of a finite
beam of 2 m. If r is close to whole values, only the Brillouin
zones of the independent slit arrays can be distinguished. At
fractions leading to short supercells, e.g., 3/2 or 4/3, one or
two additional wave numbers can be found within the first
Brillouin zone. Ratios leading to long supercells can lead to
four or five additional interaction scattering wave numbers in
the first Brillouin zone. Values around r = 1.4 and 1.6 show
several distinct peaks below 40 rad/m. The prominence of
these scattering wave numbers depends on the duty cycle as
well. Panel (b) shows that three out of four peaks associated
with r = √

2 disappear at a = 0.5. The value a = 5/6 leads
to four more or less equally prominent interaction scatterers
within the smallest Brillouin zone. The phase shift between
the two sets of slits does not play a significant role in the
reciprocal lattice, as shown in panel (c). It will be shown in
Sec. V, however, that the dynamic response of the finite beam
depends on the excitation location, and thus on the local phase
between the two sets of scatterers.

The choice of the three prototypes described in the pre-
vious section follows from this analysis. The choice for r =
1.028 is sufficiently close to r = 1 so that no interaction
scattering wave numbers can be distinguished. The case r =
1.405 should show a maximum amount of interaction band
gaps. Their reciprocal lattices are shown in Fig. 5(c).
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FIG. 2. Reciprocal lattice of beams with a double array of slits, as
a function of (a) period ratio with duty cycle a = 5/6, (b) duty cycle
for r = √

2, and (c) phase shift of the bottom array with respect to
the top array for r = √

2 and a = 5/6. Panel (a) shows the edge of
the first Brillouin zone of both arrays as black dashed lines. The full
thickness of the beam is T = 17 mm, the slit depth is d = 7 mm.

The frequency-wave number relation of waves propagating
in any random sample can be calculated using the frequency
response function (FRF) along a straight line of points [26].
The most straightforward way is to calculate the (spatial) fast
Fourier transform (FFT) of the complex FRF s(x, fm) mea-
sured along the beam at each frequency fm. The spatial FFT
for each frequency line is normalized to a maximum value
of 1 in order to reduce the effect of the frequency-dependent
amplitude of the waves. Since the FFT method only provides
the real part of the wave number, the inhomogeneous wave
correlation (IWC) method can alternatively be used to assess
the imaginary part [26]. This method optimizes the correlation
between the measured profile s(x, fm) with an inhomogeneous
damped propagated wave ô = exp (i(k + ig)x), with k and g
being the real and imaginary part of the wave number, respec-
tively. This has to be repeated for all frequencies f0, in which
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FIG. 3. Benchmark periodic sample with p1 = p2 = 97.9 mm (a). Dispersion relation retrieved from a finite-element simulation (b) and
experimentally (c). The black dashed curve is the analytically predicted dispersion. Mode conversion from flexural to longitudinal waves can be
clearly seen in the second band gap of the experimental results. The effect of a localized mass perturbation (d) is visible as sharp perturbations
of the pristine beam above 10 kHz (e). An example of a localized mode with high velocity amplitude around the mass perturbation for
f = 10.2 kHz is shown in (f).

case the maximum of the function

IWC(k, g) = | ∫ s(x, f0) · ô∗(x, k, g)dx|√∫ |s(x, f0)|2dx · ∫ |ô(x, k, g)|2dx

is the best match between the measured and predicted attenu-
ated wave.

For this work, the FRFs along the three beams are retrieved
both numerically and experimentally. The beams are excited
at one side under free-free boundary conditions, thereby
avoiding excitation in a vibration node. The numerical model
of the harmonic response was created in Ansys 19.2, with
2000 frequency steps from 50 to 15 000 Hz. The mesh con-
tains hexahedral elements with a maximum size of 5 mm.
The predicted maximum wave number for each geometry at
15 kHz is approximately 100 m−1, meaning a minimum wave-
length of 31 mm. The choice of the element size ensures at
least six elements per wavelength along the propagation direc-
tion, which is sufficient to avoid numerical dispersion effects.
The material properties were defined as ρ = 2770 kg/m3

for the mass density and 71 GPa for Young’s modulus. The
harmonic analysis uses a 1 N force on the left edge, and the
right edge can move freely. The complex frequency response
function was exported for all nodes along the central axis.

The FRF of the three beams, placed on two soft pads to
approximate free boundary conditions, was measured using
the velocity response to a dynamic force input. A shaker
excited one end of the beam with a linearly swept sine signal
(50–15 000 Hz), using a PCB 208C01 sensor to measure the
force. The out-of-plane velocity was measured by a Poly-
tec PSV-400 scanning vibrometer in 10 mm steps along the
length of the beam. This is in accordance with the Nyquist

sampling criterion, which requires a measurement in points
maximum half the smallest wavelength apart. The Polytec
system was used to generate the excitation signal and acquire
the force sensor data, and to calculate the H1 FRF estimation
(velocity/force). The data acquisition was set to a bandwidth
of 20 kHz, measuring 102 400 FFT lines in a 5.12 s signal. The
measurement was repeated six times in each point to reduce
the noise of the FRF.

IV. WAVE LOCALIZATION IN A PERIODIC BEAM
WITH MASS DEFECT

The method described in the previous section to calculate
the dispersion in finite beams is validated by the analytical
results for a periodic beam, as shown in Figs. 3(b) and 3(c).
For the unit cell in Fig. 3(a), the dispersion relation of an infi-
nite beam can be calculated using the transfer-matrix method
as described in [27]. The resulting black dashed lines overlap
with results of the numerical and experimental data, showing
that the method is accurate for samples of this size, containing
12 periods.

A single local defect or imperfection in a perfectly periodic
sample always leads to energy accumulation and therefore
local modes at the defect location [28]. Such modes are not
topologically protected, and slightly changing the defect itself
or the surrounding material leads to completely different re-
sults. They are mostly unwanted, since they can lead to high
amplitudes in a confined area, as seen in Fig. 3(f). The effect
of the band gap, leading to decreasing amplitude away from
the source at the beam’s left edge, is annihilated close to the
mass perturbation at x = 0.4 m.

094301-4



BENDING-WAVE LOCALIZATION AND INTERACTION … PHYSICAL REVIEW B 103, 094301 (2021)

5

10

15

Fr
eq

ue
nc

y 
(k

H
z)

5

10

15

20

25

Unit cell

0 50 100 150
Wave number (1/m) 

0

5

10

15

Fr
eq

ue
nc

y 
(k

H
z)

0.2

0.4

0.6

0.8

1

0 50 100 150
Wave number (1/m) 

0

5

10

15

Fr
eq

ue
nc

y 
(k

H
z)

0.2

0.4

0.6

0.8

1

-2

0

2

v z 
 (m

m
/s

)

0 0.2 0.4 0.6 0.8 1
Position (m)

-2

0

2

7300 Hz

9150 Hz

(a)

(b)

)e()d(

(c)

F1 F2

Im
 w

ave num
ber (1/m

)

FIG. 4. Adiabatically varying beam geometry (a) with r = 1.028 and p1 = 37.0 mm. Experimentally measured wave number-frequency
relationship for excitation point F1 (b) and F2 (c). Two localized modes measured for excitation point F1 (d), at frequencies highlighted in (b).
Band-gap efficiency as a function of the location of the bottom slit, assuming periodicity (e). The black dashed lines show the frequencies of
the localized modes in (d). At 9150 Hz, the band gap extends further into the beam, explaining why the localized mode appears 100 mm further
compared to the 7300 Hz mode.

V. WAVE LOCALIZATION IN ADIABATIC BEAMS

Varying the period ratio r does not cause local defects like
a point mass, but the bending wave propagation is affected by
a gradually changing thickness profile. As described in [16],
the phase between the slit patterns changes slowly, leading
to topological effects. In this case, the beam geometry varies
slowly if r is close to 1, and a random section with length p1 �
p2 is almost identical to the neighboring sections. Such slow
variations are also referred to as adiabatic [29]. In reciprocal
space, the interaction wave numbers cannot be discerned, as
can be seen in Fig. 2(a). The high-symmetry wave numbers
are slightly smeared out compared to the perfectly periodic
beam.

Beam 2 is an example of this case, with p1 = 37.0 mm
and r = 1.028 as presented in Fig. 4(a). Since the beam can
be considered periodic at each location, the imaginary part of
the Bloch wave number can be calculated using the transfer-
matrix method [27]. The variation of the band-gap location
and depth is shown in Fig. 4(e) for various locations of the
bottom slit. The first band gap gradually shifts to higher fre-
quencies if the slit shifts from perfect alignment with the top
to its extremal location in the middle between top slits. This is
similar to the rainbow trapping mechanism of metawedges,
where gradually changing local resonators are placed on a
wave guide. Harmonic waves can propagate up to the point
where the band gap for their particular frequency opens. This
is made clear from the wave number-frequency diagrams mea-
sured for two excitation points, F1 and F2 in Fig. 4(a). The
geometry close to point F1 has a band-gap opening below

5 kHz, leading to a noisy signal and mode conversion in the
approximated dispersion diagram [Fig. 4(b)]. If, on the other
hand, the beam is excited in F2, waves do not immediately
encounter a band gap below 15 kHz [Fig. 4(c)]. They can
freely propagate over a large section of the beam, with an al-
most ideal parabolic dispersion. Wave propagation is expected
to be symmetric in infinitely long beams, since there is no
disturbance of the time parity or space-time modulation [30].
The perceived difference of dynamic responses of the same
beam is purely an effect of the boundary conditions, especially
the location of the excitation force.

As an effect of the wide band gap for an excitation in
point F1, several localized modes can be identified. Above
5 kHz, some sharply defined frequency excitations lead to
dispersion points along the standard parabola. Two of them
are highlighted in Fig. 4(b), and the measured velocity profile
along the beam is shown in Fig. 4(d). Although the beam is ex-
cited at frequencies generating bending waves that are highly
attenuated close to the source, sufficient energy is pumped
into the remainder of the beam to build up a localized mode.
The higher frequency mode starts farther right, in accordance
with the band-gap efficiency for that section, as shown by the
dashed black lines in Fig. 4(e).

VI. INTERACTION BAND GAPS IN BEAMS WITH A
QUICKLY VARYING THICKNESS PROFILE

So far, the predicted and measured effects of quasiperiodic
beams are in accordance with known results in metawedges
and space-modulated point scatterers. If, however, the period
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FIG. 5. Measured (a) and modeled (b) wave number-frequency relation of an aperiodic beam with r = 1.405 and p1 = 51.5 mm, showing
interaction band gaps 1©, 2©, 3©, 4©. Fourier transform of the thickness function h2 of beams 2 and 3, showing exposed peaks at the location
of the interaction band gaps for a rapidly varying beam (c). Imaginary part of the wave number measured by the inhomogeneous wave
correlation method for a periodic and rapidly varying beam (d). Dots show measurements of beam 1 (gray) and beam 3 (red); solid lines are
the corresponding model results.

ratio gets larger, an interesting effect becomes evident in
reciprocal space. Several interaction wave numbers can be
clearly distinguished, all pointing out possible high-scattering
points for bending waves. To illustrate this, beam 3 has a
period ratio r = 1.405 and p1 = 51.6 mm. The Fourier trans-
form of h(x)−1/2 is shown in Fig. 5(b). Two high peaks are
visible at the Brillouin zone edges kB1 = π/p1 and kB2 =
π/p2. Due to the quickly varying thickness function h(x),
interaction peaks appear at linear combinations of these two
values ki = akB1 + bkB2, with a, b ∈ Z. Since a and b can be
negative, additional band gaps appear at wave-number values
below the first Brillouin zone kB1, shown as the peaks 1© (a =
−1, b = 1), 2© (a = 2, b = −1), and 3© (a = −2, b = 2). The
interaction band gaps are clearly visible in the approximated
dispersion diagram of Fig. 5(a).

The fact that no interaction band gaps are seen in the
slowly varying beam 2 can be appreciated from its Fourier
decomposition as well [Fig. 5(b), blue curve]. Both Brillouin
zone edges merge into one broad peak, but no exposed peaks
appear at interaction wave numbers. This puts a limitation on
the achievement of low-frequency band gaps. It might seem
logical that two slightly different periodic slit arrays would
result in a very low-frequency band gap due to the small
value of kB2 − kB1. Our results, however, show that individual
interaction peaks must be discernible in the beam’s h(x)2-
spectrum.

Based on the numerical model, the value of p1 was op-
timized so that the first large interaction band gap starts at
the same frequency as the first band gap of periodic beam
1. The question remains if the interaction band gaps of the
quasiperiodic beam are as efficient as the band gaps of a
periodic beam. To assess this, the imaginary part of the wave

number was measured using the IWC method. The results for
beam 1 and beam 3 are shown in Fig. 5(c). The aperiodic
beam 3 can be approximated by a beam with r = 1.4, resulting
in a supercell with length 5p1 = 7p2 = 258 mm. Applying
periodic boundary conditions on the unit cell of beam 1 and
the supercell of beam 3 according to [2] results in the solid red
and gray lines in Fig. 5(d).

The low-frequency band gaps appear to have an additional
advantage over the periodic beam. The measured values for
the periodic beam 1 are much affected by mode conversion,
and they do not reach the predicted high values from the
transfer-matrix method. This was already described in [31].
However, the interaction band gaps are narrow enough not to
suffer much from mode conversion, and the typical band-gap
pattern for phononic crystals can be measured for frequencies
up to 15 kHz. The difference between model and measure-
ments at higher frequencies is due to the approximation of
the true geometry by an infinite periodic beam. However,
the quality of the band gaps remains, even for aperiodic
structures.

VII. CONCLUSION

The dynamic response of quasiperiodic beams resulting
from two periodic sets of slits depends highly on the period
ratio. A ratio r = 1 leads to the well known case of a beam
with periodic thickness variation, with multiple efficient wide
band gaps but low overall stiffness due to the thin sections.
An adiabatically varying beam with a ratio r close to 1 be-
haves as a metawedge, trapping energy in the regions where
a particular frequency is allowed to propagate. This leads to
localized modes, and band-gap triggering depending on the
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location of the excitation point. Finally, beams with a larger
period ratio exhibit interaction band gaps, a phononic effect
that arises from linear combinations of the two main Brillouin

zone edges. In this way, effective low-frequency band gaps
can be achieved while maintaining a high bending stiffness,
which is an important feat for applications.
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