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A B S T R A C T   

The efficiency of processes involving frictional contacts between surfaces is often characterized by wear rates or 
friction coefficients. However, the classification and forecasting of wear rates in friction related processes is a real 
industrial challenge that is unsolved today. Hence, an on-line monitoring system able to classify wear rate can be 
crucial for many industries as it could help in preventing catastrophic failures. Applications include lifetime 
assessment of various industrial components where a range of wear failures occur such as scuffing (a typical 
sudden failure mechanism). These tribological processes can now be sensorized, and the corresponding sensor 
signatures can be modelled and monitored using state-of-the-art Machine learning (ML) algorithms. In this study, 
we use an Acoustic Emission (AE) sensor and ML frameworks to classify different wear categories simulated with 
a customized pin-on-disc tribometer. A real-time investigation of the wear track is necessary to find out the 
origins of the wear scar visible at the surface. To achieve this objective, the experiments were conducted on a pin- 
on-disc tribometer equipped with a Digital Holographic Microscope (DHM). Experiments were carried out using 
alumina and steel balls against steel discs at room temperature. Real-time DHM images of the wear track surface 
were recorded for each lap at the same position. An acoustic emission sensor recorded the AE signals during the 
complete duration of experiments. The AE signatures, in combination with the real-time DHM images, were 
correlated as input and ground truth labels for the ML algorithm. Several ML frameworks were compared; they 
are support vector machine, logistic regression, XGBoost, random forest, neural networks, k-Nearest Neighbor, 
quadratic discriminant analysis and Naive Bayes. The classifier was trained to differentiate the acoustic emission 
features of the different wear rates. Most ML algorithms had an average classification accuracy above 80%, and 
the highest was obtained with support vector machine (84.7%). The classification accuracy can be improved by 
combining two neighboring categories with limited differences in terms of wear rate. Hence, the proposed 
method has a significant industrial potential for in-situ and real-time quality monitoring of wear processes since it 
requires minimum modifications of commercially available industrial machines.   

1. Introduction 

Direct contact between solids surfaces in industrial components 
causes failures such as abrasive and/or adhesive wear depending on the 
type of contact (dry or lubricated) [1,2]. Abrasive wear occurs pre
dominantly when a hard surface or a particle is rubbed against a soft 
surface [3]. This is commonly observed in various industrial processes 
such as mining, drilling, grinding, digging, starved lubrication condi
tions and wherever third body particles are involved in lubricated solid 
contacts [4]. Under these circumstances, wear debris is generated in 

these contacts, and this acts as a third body abrasive; which affects the 
wear rates considerably depending on its size and properties. The choice 
of materials for industrial applications is often based on wear resistance, 
and so there is a need to quantify the wear characteristics. The wear in 
tribological contacts are estimated by measuring the weight loss of the 
materials in contact, wear rates [5], wear volumes and by observing 
changes in the wear scar width and depth [5–9]. 

Post-mortem quantification of wear rates is trivial as they differ 
across all frictional processes. The conventional post-process wear 
quantification techniques are profilometry, confocal microscopy and 
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interferometry. Unfortunately, these techniques do not give any insight 
into the dynamics of the wear process [10]. To have access to such in
formation and to understand the different transients between the initial 
and the final surface states, it is necessary to measure the wear in 
real-time. In other words, only an in-situ and real-time monitoring sys
tem will enable to detect abnormal and/or various wear behavior during 
the process. This also gives the opportunity to link the data acquired to 
the mechanisms. Wear monitoring is essential for a variety of industry 
contacts to identify the onset of severe wear to stop the process or to 
repair/replace the components [11]. Besides, the prediction of remain
ing useful lifetime of components could also be possible [12]. Real-time 
wear detection and monitoring will also strengthen the various hy
potheses proposed to wear mechanisms for different material pairs in the 
academic community. 

Real-time wear monitoring and measurement include direct and in
direct methods [10]. In the case of direct methods, wear is measured by 
electrical, optical or radioactive resistance sensors. Examples of optical 
methods include measurement of surface topography of the wear scar 
using microscopic techniques like Digital Holographic Microscope 
(DHM) [11] or Scanning Electron Microscope (SEM) [13]. Indirect 
methods of wear monitoring/measurement include wear evaluation 
based on parameters measured during Acoustic Emission (AE), Ultra
sonic testing, vibrations, electrostatic sensing, etc. [14–16]. AE tech
niques are currently the most widely used for monitoring and analysis of 
wear for a variety of frictional contact processes [17]. AE is based on the 
generation of acoustic waves, signatures from the solid materials in 
contact whenever they are stressed and relaxed [14]. Furthermore, AE 
signals can be recorded with acoustic emission sensors and then 
analyzed to generate useful information about the physics of the various 
wear processes [18–20]. 

AE has been widely used to monitor wear for various laboratory scale 
as well as industrial-scale frictional failures like scuffing, fretting, rolling 
contact, fatigue, etc. [18–27]. Jun Sun et al. studied wear monitoring of 
bearing steel on a pin-on-disc tribometer under dry sliding conditions 
with a combination of acoustic and electrostatic emission [16]. They 
were able to monitor various phases of delamination wear. Bones et al. 
showed that the time-dependent nature of the AE signal could detect the 
presence of anti-wear additives and predominant wear processes [28]. 
Sarychev et al. exploited AE signals in frictional processes to indicate the 
frictional state, quantity of solid and liquid layers in contacting surfaces 
in real-time as well as other information such as the intensity changes of 
wear and friction [29]. Literature also shows that AE signals could be 
generated from non-metallic materials, in particular, polymers, e.g. 
polyether ether ketone (PEEK) and plasma-sprayed coatings to monitor 
wear [15,29]. 

Acoustic emission signal analysis is a well-known method for iden
tifying wear based on the frequency signatures from different materials 
in order to classify and predict wear accurately [14,30,31]. Obviously, 
owing to the high temporal resolution of the AE, vast amounts of data 
are generated during AE experiments. However, few studies have been 
performed on the classification of different lubrication regimes and 
prediction of wear rates using AE signals and Machine Learning (ML) 
algorithms. Different methods are considered to analyze the acquired AE 
signals. They include statistical methods such as regression analysis and 
recent advanced machine learning methods; e.g. Support Vector Ma
chine (SVM), Artificial Neural Network (ANN) [8,12,32,33] etc. The 
significant research works carried out in various frictional processes to 
classify and predict wear by machine learning methods are summarized 
in Table 1. 

However, the combination of AE techniques to monitor abrasive 
wear in frictional processes and machine learning techniques to classify 
abrasive wear rates is not studied in detail. Therefore, we propose to 
study the AE and ML-based classification of abrasive wear in this work. 
For this purpose, experiments were conducted on a customized pin-on- 
disc tribometer equipped with DHM to capture in-situ real-time images 
of the wear scar surface. The wear scar depth profiles obtained from the 

reconstructed DHM images are used as the ground truth to divide the 
friction curve into five different wear categories. Acoustic features 
calculated from the domains such as time, frequency and time-frequency 
are labelled to the corresponding five wear categories. The feature 
corresponding to the five wear categories is introduced to various su
pervised machine learning classification algorithms. The robustness of 
the methodology is verified by comparing various machine learning 
classification algorithms. 

The paper is organized into four sections. Section 1 presents an 
overview of wear mechanisms and monitoring techniques based on ML. 
Section 2 discusses the tribological conditions, experimental setup, wear 
scar characterization and ML framework. Section 3 reports the results of 
the feature analysis, t-distributed stochastic neighbor embedding (t- 
SNE) visualization and classification accuracy using SVM. Finally, the 
conclusions of this research work are reviewed and discussed in Section 
4. 

2. Experimental methods 

In this section, experimental methods are presented including ma
terials, rigs, test conditions and characterization techniques as well as 
the machine learning framework. 

2.1. Pin-on-disc tribometer with DHM for real-time surface 
characterization of the wear scar 

The tribometer used in this work is a pin-on-disc customized high 
vacuum high-temperature tribometer developed by Anton Paar Tri Tec 
SA, as shown in Fig. 1. TriboX software controls all tribometer axis 
movements [11]. 

Table 1 
Summary of major research work in the classification and prediction of wear 
using machine learning.  

Simulated friction 
process 

Sensor Machine 
learning 
algorithm 

Research group Publication 
year 

Wear of journal 
bearings 

AE SVM Mokhtari et al. 
[34] 

2020 

Scuffing stages 
classification 

AE SVM Saeidi et al. 
[22,35] 

2016 

Scuffing prediction, 
failure in 
lubricated 
surfaces 

AE Random 
forest 

Wasmer et al. 
[23,27] 

2017 

Scuffing 
identification and 
prediction 

Force Recurrent 
neural 
networks 

Tyler et al. [36] 2017 

Bearing remaining 
useful life 

AE SVM Elforjani et al. 
[12] 

2015 

Classification of 
frictional wear, 
Wear detection 

AE SVM Baccar et al. 
[37,38] 

2016 

Biological joints – 
fretting wear 

AE SVM, ANN Olorunlambe 
et al. [39] 

2019 

Lubrication regime 
classification 

AE ANN, GA Sadegh et al. 
[40] 

2015 

Abrasive wear rates 
prediction 

Force LR & 
Random 
forest 

Kalentiev et al. 
[41] 

2018 

Predicting & 
analyzing 
abrasive wear 
rates 

Force ANN Thankachan 
et al. [42] 

2020 

Prediction of wear 
loss of Fe Alloys 

Force SVM, LR and 
GPR 

Altay et al. [43] 2020 

Prediction of wear 
loss in Mo 
coatings 

Force ANN Cetinel et al. 
[30] 

2006 

Prognosis of 
bearings 

AE SVM, LR and 
GPR 

Elforjani et al. 
[31] 

2018  
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The tribometer is additionally equipped with an in-situ DHM devel
oped by Lyncee Tec SA. The DHM allows pseudo real-time imaging of 
the wear track. A dual-wavelength (2 laser wavelengths of 415 ‘and 
485 nm) customized. 

DHM was selected for this purpose. Holograms are acquired with a 
1.4 Megapixel CMOS camera, which can be synchronized with the 
rotation of the disc holder via an external trigger. This ensures succes
sive image acquisitions at the same position for each lap, enabling long 
term monitoring of the wear track using the DHM Koala software [11]. 

2.2. Materials and test conditions 

The materials selected for the tribotests were mirror-polished steel 
discs (100Cr6) and alumina balls (6 mm diameter) pairs. The average 
surface roughness (Ra) for the steel discs prior to the experiment was 
25 ± 15 nm and 20 ± 10 nm for the alumina balls. The ball (pin) holder 
was the stationary part of the tribometer, and it was equipped with a 
load cell to apply the contact force. The tribotest conditions were 
selected to ensure that abrasive wear occurred on the surface of the steel 
disc. However, adhesive wear could also be present but to only a small 
extent. The experiment was carried out at a constant load of 1 N at 
ambient temperatures. Two tests were conducted with the same condi
tions to ensure the repeatability. As the steel disc and alumina balls were 
standard materials, elastic moduli provided by the manufacturer was 
used to calculate the Hertzian contact pressure. The elastic moduli of 
steel was 210 GPa, and that of alumina was 350 GPa. Therefore, ac
cording to the Hertzian theory of contact mechanics [44], the maximum 
contact pressure was 770 MPa. The rotational speed of the disc was set at 
10 cm/s, and the total sliding distance was 100 m. The tribotest condi
tions are summarized in Table 2. 

2.3. Abrasive wear monitoring – acoustic emission data acquisition 

Acoustic emission signals were recorded with a standard commercial 
Vallen acoustic emission acquisition system. Signals were collected in a 
continuous mode for the total duration of the experiment. The acquisi
tion was made with a GF Nano 30 miniature AE sensor from Physical 

Acoustics (PAC). It was fixed with a polymer glue on to the stationary 
ball holder to ensure that it remained stable for the complete duration of 
the experiment. The polymer adhesive allows good transmission of AE 
signals and was easily detachable after the test. The distance between 
the AE sensor and the sliding surface was around 4 cm. The sensor has a 
frequency response over the range of 125–750 kHz, and its peak sensi
tivity was 72 dB. This AE sensor was chosen, as mechanical wear 
mechanisms are known to occur in low-frequency ranges <1000 kHz 
[19]. The sampling rate during acoustic emission data acquisition was 
2 MHz. The amplitude of the AE signals generated during the friction test 
is low, and therefore, an amplifier with an integrated bandpass filter 
(2/4 preamplifier) was used. Two amplifier stages of 20 and 40 dB could 
be set. However, in this work, a 40 dB gain was selected as the friction 
signals have low amplitudes. This system consists of an in-built bandpass 
filter (bandwidth of 100–1000 kHz) which attenuates the extremely low 
and high frequencies generated during the experiment. 

The raw sensor data was split into fixed-width sliding windows of 
2500 μs. At a sampling rate of 2 MHz, each window of 2500 μs contains 
5000 points. A vector of several features corresponding to the time, 
frequency and time-frequency domains were extracted from each raw 
sliding window. Then, they were labelled into five categories based on 
the DHM ground truth wear images. The wear categories were selected 
according to the percentage of wear observed above the theoretical 
Hertzian wear scar width and from the reconstructed DHM images 
(depth profiles). The feature set was optimized by eliminating the non- 
informative and redundant features by recursive feature elimination 
based on logistic regression. Next, the new feature subset was intro
duced into the supervised machine learning classification algorithm; 
mainly an SVM framework. The model was trained with 75% of subset 
feature dataset, and the remaining 25% was used for testing. This 
approach simulated real-life conditions where the trained system has to 
operate with new input data. The robustness of the trained SVM model 
was verified by comparing the prediction of the model on the experi
mental set with the ground truth labels. This framework to classify wear 
is described in Fig. 2. 

Several ML frameworks have been selected to compare the SVM re
sults and test the robustness of the approach. They were logistic 
regression, XGBoost, Random Forest, neural networks, k-Nearest 
Neighbor, quadratic discriminant analysis and Naive Bayes. 

3. Results and discussions 

3.1. Friction results 

A representative friction curve for alumina ball on steel disc contact 
tribotest in the dry condition is shown in Fig. 3. The friction curve is 
divided into three stages: running-in, steady-state and severe abrasive 
wear failure. The first stage shown in red in Fig. 3 from 0 to 400 s (0–200 
laps) is defined as running-in and known from previous research works 
[45]. During this stage, the direct contact between the polished hard 

Fig. 1. Experimental setup for abrasive wear test with the acoustic emission sensor.  

Table 2 
General tribotest conditions used for tribotests on pin-on-disk tribometer.  

Parameters Values 

Materials Alumina ball (6 mm diameter), 
Steel disc (100 Cr6) (40 mm diameter) 

Temperature 25 ◦C 
Radius of rotation 16 mm 
Rotational speed 10 cm/s 
Sliding distance 100 m 

Duration of the test 2043 s 
Load 1 N 

Maximum pressure (Hertzian contact) 770 MPa  
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alumina ball and the softer steel disc makes the surface of the latter 
roughened. This marks the beginning of abrasive wear [3,46]. After the 
initial running-in, the friction coefficient fluctuates a little and then 
remains constant in the range of 0.5–0.6 between 400 and 900 s. This 
stage is labelled as the steady-state stage (201–450 laps) shown in green 
in Fig. 3 where roughening of the polished steel surface continues and 
the abrasive wear goes on increasing progressively. Wear debris is 
generated during this stage, but it does not affect the wear or friction 
coefficient considerably. After the steady-state stage, severe third body 
abrasive wear occurs due to the debris in the contact from 900 to 2000 s. 
This stage is labelled as severe abrasive wear failure (451–1000 laps). In 
this stage, the friction coefficient fluctuates regularly between 0.2 and 
0.9 and severe third body abrasive wear occurs due to the wear debris in 
the contact. The fluctuations in the friction coefficient are due to the 
steel debris moving in and out of the contact making the surface soft or 
hard. Depending on the generated contact pressures, friction coefficient 
changes (lower pressures – lower friction coefficient and higher pres
sures – higher friction coefficients). The five different wear categories 
are also shown in Fig. 3, and these are discussed later in Section 3.2. 

3.2. Wear categorization and real-time DHM images and profiles of the 
wear scar 

It is obvious from Fig. 3 that the wear categories do not correspond 
directly to the running-in, steady-state and severe wear stages. The 

reason is the classification task of the later stage has already been carried 
out [21,31]. Consequently, in this work, five wear categories were made 
based on percentage wear above theoretical Hertzian diameter (58 μm). 
The category 1 to category 5 are defined as < 100% wear, < 150% wear, 
< 200% wear, < 300% wear and >300% wear, respectively. The defined 
categories were later labelled and confirmed from the processed DHM 
images and the wear scar depth profiles as the ground truth. 

As discussed in the experimental methods in Section 2.1, real-time 
DHM images (holograms, phase and intensity images) were acquired for 
each lap at a specific location during the tribotest. The raw DHM holo
grams at specific laps in different wear categories are shown in Fig. 4 (a). 
The DHM phase images were processed using the Koala software from 
Lynceétec SA. From the recorded phase images, an image of the cross- 
section of the wear scar was reconstructed digitally. It was observed 
that the reconstruction of the phase images obtained for the few initial 
laps was relatively easier as the abrasive wear was just initiated and was 
minimal. 

The images in Fig. 4 (a) are processed and reconstructed, and the 
results are shown in Fig. 4 (b). From these images, it can be observed 
that the raw images for laps 253, 447 and 880 are incomplete, and this is 
due to extreme wear and particles stuck in the scratches of the wear scar. 
However, from the DHM processed phase images, we could measure the 
depth profiles accurately. In Fig. 4 (b) lap 880, the wear scar width is 
extremely large, and it almost crosses the maximum possible lateral 
width visible in an image which is around 200–220 μm. 

A typical wear scar depth profile per wear category is shown to 
highlight the differences in the wear scar width and depth in Fig. 5. It is 
evident that the width and depth of the wear scars increase considerably 
as the wear categories change. The depth profile for lap 12 (wear cate
gory 1) shown in Fig. 5 (red line scan) is minimal whereas the wear scar 
width is almost equal to the theoretically calculated Hertzian diameter 
of 58 μm [47]. This wear scar width is found to be well below 100 μm. In 
this wear category, the scratches and material removal occurring in this 
category is attributed to the initial running-in period. This is confirmed 
by the reconstructed 3-dimensional (3D) image shown in Fig. 6 (lap 12). 
The 3D DHM images of the wear scars in Fig. 6 are with a scale of 209 by 
209 μm. The wear scar depth profile for lap 107 in the wear category 2 in 
Fig. 5 (brown line scan) clearly shows an increase of the scratches depth 
as well as material removal. The scratch generation is manifested from 
the 3D image in Fig. 6 (lap 107). As the sliding continues, particles are 
removed from the surface of the steel disc and the already scratched 
solid material surface is influenced by a third body abrasive – steel 
particles. This was confirmed by a visual inspection of the alumina ball, 
showing no sign of wear. The presence of the third body increases the 
abrasive wear considerably. This is obvious from the friction coefficient 
fluctuations observed in Fig. 3 (400–2000 s) as the particles move in and 
out of the contact. 

Fig. 2. The framework to classify abrasive wear using machine learning classification models.  

Fig. 3. Friction curve for alumina on steel contact under dry sliding conditions.  
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In the wear category 3, the wear scar depth profile for lap 253 (green 
line scan) in Fig. 5 shows a different profile surface. On one half, there 
are deeper and wider scratches whereas, on the other half, the surface is 
quite flat. This is also corroborated by the 3D reconstructed image, and 
evidence of this is in Fig. 6 (lap 253). In this case, the wear scar width is 
increased to more than 150% above the theoretical Hertzian width. 
Further profiles in the wear category 4 and category 5, laps 447 and 880, 
respectively, are significantly different but both show an important 
augmentation of the wear depths to more than the bearable wear limits 
and the scratches have a depth ranging from around 2 to 5 μm. In 
addition, the wear scar widths are between 150 and 200 μm (more than 
200 or 300% wear as compared to the theoretical wear scar depth). The 
3D images shown in Fig. 6 confirm the high wear scar depths and widths 
for the laps 447 and 880 in the wear category 4 and category 5, respec
tively. As observed from these profiles and DHM images, it is clear that 
contact surface area changes (due to the increase in wear scar width and 

depth) during the test as the wear increases. However, as already 
mentioned, there is no observable sign of wear on the alumina ball after 
the test. Therefore, the changes in wear are solely related to the wear of 
the abrasive wear of the steel discs (100Cr6). 

The five wear categories defined previously are shown in Table 3. 
These categories are labelled and confirmed on the basis of the DHM 
images, wear scar profiles and 3D reconstructed images in Fig. 4, Fig. 5 
and Fig. 6. The wear categories are also marked on the friction curve in 
Fig. 3. It is clear that the divided wear categories are not exactly sensi
tive to the fluctuations in friction coefficients, but the real time DHM 
images which are used as ground truth play an important role in con
firming the defined categories. Also, this suggests that analyzing the 
wear only based on the changes in the friction coefficient are not 
enough. Consequently, the use of acoustic wave signatures from the 
sample could provide with more details of the physics of the frictional 
process. Therefore, in the next subsection, AE signals are correlated with 
wear categories and discussed. Classification of the wear categories is 
performed using ML algorithms from the processed AE signals. 

3.3. Acoustic emission signal analysis 

The AE signal recorded is resolved into statistical features corre
sponding to three domains, namely time, frequency and time-frequency 
(wavelet). The filtering of the AE signals is a necessary step before the 
feature extraction. It is performed via a bandpass filter, which is already 
prebuilt in the Vallen data acquisition system. The signal to noise ratio 
for the AE signals was found to be around 25 dB. The feature extraction 
and their analysis are discussed in the next sections. 

Feature extraction and analysis 
Fig. 7 presents examples of raw AE signals for a window of 2500 μs or 

5000 points (at 2 MHz) corresponding to the five defined wear cate
gories. A visualization of the raw signal indicates that the AE signal 
fluctuates significantly with time. But, by comparing the different cat
egories, no visual features typical for each category are distinguishable, 
making the classification task suitable for ML frameworks. A visualiza
tion of the raw signal indicates that the amplitude of the AE signals 
increases with the wear till category 4 and subsides after category 5. It is 
also observed that once the surface is re-smoothened around category 5; 
there is a considerable decrease in the AE amplitude as seen on the y-axis 
of the individual plots. 

Fig. 4. (a) Real-time raw holograms from the DHM obtained for various laps in different wear categories of the tribotest. (b) Processed phase images after 
reconstruction of the phase images for the same laps. 

Fig. 5. Profiles obtained from processed and reconstructed images for the laps 
12, 107, 253, 447 and 880 each in different wear categories. 
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Time-domain analysis 
The time-domain analysis gives the statistical features that are a 

function of the variation of the amplitude over time. Fig. 8 and Fig. 9 
show the RMS distribution and the skewness features, respectively, of 
the AE signals for the five categories (2500 μs window size has 5000 data 
points). The RMS distributions between the five wear categories are 
distinct, as evident from Fig. 8. The skewness distribution, depicted in 
the form of violin plots, as shown in Fig. 9, reveals that the wear cate
gories are skewed both positively as well as negatively. The distinct 

shape of the individual violin plot corresponding to the five wear cate
gories is encouraging to use them as an input feature in the ML algo
rithms. The statistical distributions of the features based on time-domain 
such as mean, kurtosis, median, crest-power, etc. were also analyzed for 
the five selected wear categories, and it was found that they also had 
similar discrete trend between the categories. 

Frequency domain analysis 
The periodical patterns that repeat itself with time in a signal can be 

identified when it is moved from the time domain to the frequency 

Fig. 6. 3D reconstructed DHM images for lap 12, 107, 253, 447 and 880 in different categories of wear.  

Table 3 
Wear categories based on the profiles obtained from reconstructed DHM images.  

Category Laps Timespan in the test 
[sec] 

Time span for the processed AE 
signals [sec] 

Hertzian diameter/wear scar 
width [μm] 

Wear scar depth 
[μm] 

[%] wear based on wear scar 
width 

1 0–105 0–210 17–24 58–110 <0.5 50–100 
2 106–250 211–511 215–225 110–130 <1 100–150 
3 251–440 512–900 520–528 120–160 1–2 150–200 
4 441–870 901–1777 913–923 150–180 2–4 200–300 
5 871–1000 1778–2043 1780–1880 >180 3–5 >300  

Fig. 7. Sample raw AE signals acquired for five different wear categories during tribotest.  
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domain. Decomposing a signal in a Fast Fourier Transforms (FFT) 
analysis reveals the details of these periodical components. For the AE 
signals acquired from the tribotest, distinct peaks were found between 
100 and 300 kHz and evidence of this is seen in Fig. 10 across the five 
wear categories. The Power Spectral Density (PSD) distribution in the 
FFT plots was calculated using the Welch method [48] for a window size 
of 2500 μs similar to the time-domain analysis. 

To understand the correlation between the energy of the signal on 
the five wear categories, the frequency range was resolved equally into 
five energy bands between 0 and 300 kHz. The maximum frequency was 
fixed at 300 kHz, which corresponds to maximum distinctive peaks 
found from an FFT analysis. Hence, the five energy bands were 
0–60 kHz, 60–120 kHz, 120–180 kHz, 180–240 kHz and 240–300 kHz. 
The results, in terms of cumulative energy values calculated for the five 
energy bands corresponding to each category, is presented in Fig. 11. 
The energies were calculated by the periodogram method [49]. From 
Fig. 11, we observed that the energies contents were concentrated 
within the frequency range of 120–240 kHz during the contacts of steel 
with the ceramic ball. In the case of wear category 5, where the wear scar 
width and depth are significantly high, and the wear is extreme, it is 
evident that the energy content in the energy band between 120 and 
180 kHz was significantly higher than the other categories. The fre
quency plots and energy distribution of the AE signals between the 
different bands suggest that the categories can be statistically separated. 
Besides, the discrete distribution between the categories gives the 
motivation to use them as input for classification algorithms for real-
time monitoring. 

Time-frequency domain analysis 
The resolution of the AE signals in the frequency domain along with 

its time localization can be carried out via Wavelet transformation (WT) 
[50]. Continuous Wavelet Transformation (CWT) was calculated on the 
filtered AE signals using Morlet [51] as mother wavelet with 500 scales. 
The 3D representation of the wavelet transforms are shown in Fig. 12. 
The wavelet coefficient values were predominantly in the range of 
100–300 kHz for the AE signals irrespective of the category, which are 
synonymous to the analysis performed in the sub-section frequency 
domain analysis. The distribution of the wavelet energy coefficients for 
the wear categories suggests that the time-resolved frequency features 
computed using WT can be used to distinguish the five wear categories. 

t-SNE visualization 
Establishing correlations between numerous features in the higher 

dimension is an arduous task. However, representing the features in 

Fig. 8. Distribution of AE RMS features for the five wear categories.  

Fig. 9. Skewness distribution plots of AE signals corresponding to all the five 
wear categories. 

Fig. 10. FFT plots for all the five wear categories.  
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lower dimensions helps to interpret the feature space. The dimensional 
reduction technique, such as t-distributed stochastic neighbor embed
ding (t-SNE), enables visualizing high-dimensional datasets in the lower 
dimension. The t-SNE is a nonlinear dimensionality reduction and 
visualization technique that maps the probability distribution of various 
neighboring points to a low dimensional space that follows a probability 
distribution as best as possible. As compared to other nonlinear 
dimensionality techniques, t-SNE is capable of retaining both the local 
and global structure of the data at the same time. The AE features from 
the time, frequency, and time-frequency domains listed in Table 4 were 
the inputs to perform the t-SNE computation. When performing the t- 
SNE computation, a perplexity value has to be selected. The perplexity is 
a hyper-parameter responsible for preserving the local and global 
structure of the data that determines the number of neighbors to be 
considered for embedding. In this study, a perplexity value of 10 was 
selected on an exhaustive search by visualizing the clusters in feature 
space. This value allows for understanding the feature space distribution 
of the AE signals recorded during the experiments, and the results are 

presented in Fig. 13. A movie showing different perspectives can be 
watched in the attached files with the submission. The t-SNE visualiza
tion results can be summarized as follows: the presence of clusters cor
responding to the five wear categories in the feature space demonstrates 
that the features extracted from the three domains (time, frequency, 
time-frequency domains) can be potentially combined with nonlinear 
ML algorithms for precise classification. 

Fig. 11. Comparison of the energy density between the five energy bands for the five wear categories.  

Fig. 12. 3D wavelet representation of the AE signal for five categories.  

Table 4 
Features for input to t-SNE with perplexity = 10.  

Domain Features 

Time Mean, RMS, Kurtosis, Skewness, Crest factor, Standard 
deviation, Minimum, Maximum, Median etc. 

Frequency Position of peaks with high intensity, Energy distribution in 
respective energy bands 

Time-frequency 
(Wavelet) 

Enthalpy, RMS, Kurtosis, Skewness, Standard deviation in 
respective decomposition levels etc.  
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3.4. SVM classification 

For classification tasks, building a classifier for the five wear cate
gories consists of three main steps: feature reduction, training of the 
classifier and testing robustness of the algorithm. A set of 304 features as 
listed in Table 4 were extracted for the sliding window length of 2500 μs 
(5000 points) prior to building the classifier. First, a recursive feature 
selection based on logistic regression was carried out to pick a subset of 
50 features from the original 304 features for training the classifier. 
Logistic regression-based feature selection technique tries to come up 
with a good subset of features (50 features in our case) iteratively on all 
possible combinations but without conceding on accuracy. The features 
that are redundant, non-informative and insignificant are eliminated at 
each iteration. The second step involves the training of the ML classifier. 
From the subset containing 50 features, 75% of the data is selected 
stochastically for the training and the other 25% for testing the devel
oped models. Prior knowledge of the features representation for the five 
wear categories in t-SNE visualization gave hints to select the SVM as ML 
technique. The reason is that SVM is ideal for solving nonlinear classi
fication problems via kernel trick with ease. Using kernel trick, linear 
separation can be achieved from nonlinear SVM by means of a mapping 
function [32,51,52]. SVM takes advantage of prior knowledge of the 
wear categories and constructs a hyperplane as a decision surface so that 
the periphery of the separation between the wear categories are sepa
rated. The Python open-source libraries SciPy [53] and scikit-learn [54] 
were used for achieving the necessary data transformation and training 
of the SVM classifier. The choice of hyper-parameters such as the reg
ularization parameter (C) and the kernel parameter (γ) for the SVM 
classifiers was also chosen based on an extensive grid search. Finally, the 
robustness of the trained SVM classifier was verified with a test dataset. 
The set of training parameters for SVM classifier used in this work are 
listed in Table 5. 

The classification results from the SVM are shown in Table 6. In this 
table, the wear categories (categories 1–5) (in rows) versus the ground 
truth (in columns) are given. The classification accuracies in the table 
are defined as the number of true positives divided by the total number 
of tests for each category. These values are given in the diagonal cells of 
the table (highlighted grey cells). The classification errors are computed 
as the number of the true negatives divided by the total number of the 
tests for each category. These corresponding values are filled in non- 
diagonal row cells. Based on these results, the classification confi
dence for the wear categories varies in the range of 58–100%. These 
results clearly show the potential of the proposed approach, in particular 
when taking into account a non-optimized setup. Hence, we can 
conclude that the AE signal processing with SVM can be a versatile 
approach for in-situ and real-time wear monitoring method. 

The analysis of the classification errors structure can be evaluated 
from the non-diagonal rows in Table 6. For example, the AE test signals 
from the wear category 1 were classified with an accuracy rate of 95%. 

The classification error is more or less equal between the wear category 2 
and category 4, 3 and 2%, respectively. The average accuracy of the SVM 
is high as 84.8% with most errors occurring due to misclassification 
between category 3 and category 4, as evident in Table 6. This overlap is 
certainly due to the similarities in wear scar widths and depths and so in 
the AE signals. Based on this statement, the classification accuracy could 
be significantly increased by combining the wear category 3 and category 
4. Actually, by doing so, the classification of the new category is as high 
as 96%. The fraction of the samples misclassified of the developed SVM 
model were minimum as depicted by the confusion matrix in Table 6. 

3.5. Comparison of the SVM with other ML algorithms 

In the previous section, we presented the classification results ob
tained with the SVM. In order to verify the robustness of the approach as 
well as the results, a comparison with the main state-of-the-art ML al
gorithm is performed. The choice of the ML algorithms is given in 
Table 7, with their average classification accuracy. All confusion 
matrices for the ML algorithms are given in Table A1 in the Appendix. 
Scrutinizing the confusion matrices in Table A1, it is important to note 
that the observations made for the SVM are still valid for the other ML 
algorithms. This is particularly true for the misclassification between the 
wear category 3 and category 4. This supports the observation that both 
wear categories are extremely close in terms of wear scar widths and 
depths and so in the AE signals and not due to the classification method. 
Thus, only the results of the average classification accuracy are 

Fig. 13. Two perspectives of a low-dimension representation of the feature space using the t-SNE with perplexity = 10 for the five wear categories.  

Table 5 
Training parameters of the SVM classifiers for predicting tool wear states.  

Parameters Values 

Kernel function Radial basis function 
Kernel scale Automatic 
Features 50 Subset features 
Multiclass method One-vs-One 
Standardize data True 
Regularization parameter (C) 0.1,1,10,100 
Kernel parameter (γ) 0.1,0.001,0.0001  

Table 6 
Confusion matrix of the SVM classifier corresponding to the five wear categories.  

Predicted label 
[%] 
Ground truth 
(true label) 

Category 
1 

Category 
2 

Category 
3 

Category 
4 

Category 
5 

Category 1 95.0 3.0 0.0 2.0 0.0 
Category 2 3.9 96.0 0.0 0.1 0.0 
Category 3 3.0 0.0 58.0 39.0 0.0 
Category 4 2.5 1.5 21.0 75.0 0.0 
Category 5 0.0 0.0 0.0 0.0 100.0  
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compared. Based on Table 7, it is seen that SVM has the highest average 
classification accuracy (84.7%) followed closely by logistic regression 
(83.9%), XGBoost (83.2%), Random Forest (83.1%), neural networks 
(82.1%) and k-Nearest Neighbor (81.1%). The less accurate ML algo
rithms were the quadratic discriminant analysis (75.4%) and Naive 
Bayes (73.8%). In view of the high classification accuracy of wear, the 
results can be considered as very promising, and they showed the 
feasibility of the in-situ wear monitoring using acoustic emission. 

4. Conclusions 

In this study, Acoustic Emission (AE) and Machine Learning (ML) 
based framework has been developed to monitor and classify in-situ 
abrasive wear in real-time. The method has been based on quantitative 
wear data from real-time surface analysis of the wear scar images as the 
ground truth. Pin-on-disc tribotests on alumina balls against steel discs 
have been used as a reference test. Hard alumina ball sliding against 
softer steel disc in dry conditions led to abrasive wear in the contact. 
Real-time observation of the wear scar surface was performed with a 
unique pin-on-disc tribometer equipped with Digital Holographic Mi
croscope (DHM) to quantify the wear data. The DHM phase images were 
post-processed, and 3D reconstruction of the images allowed observing 
the profiles for each lap. The DHM imaging of the wear scar depth 
profiles allowed in the division of the friction curve into five categories 
based on the percentage wear above the theoretical Hertzian wear scar 
width. AE signals corresponding to the five categories were processed 
and analyzed to extract time, frequency and time-frequency domain 
features. Various ML algorithms have been used to classify the abrasive 
wear categories, and the classification accuracies for each algorithm was 
obtained. 

A Nano AE sensor was connected to a standard AE signal acquisition 
Vallen system to record the AE signals obtained for the abrasive wear 

during the experiments. The frequency components of the AE signals for 
the steel and alumina combinations were in the range of 100–300 kHz. 
The features the three types of waveform analysis were used as input for 
training the classifiers. However, before training, redundant features 
were eliminated based on recursive feature elimination from 304 to 50 
features. Various classification algorithms based on machine learning 
such as SVM, Neural networks, Logistic regression, Random forest, 
Naive Bayes, k-Nearest neighbor, quadratic discriminant analysis, and 
XGboost were employed to classify the wear category during the tri
botest. It was found that the SVM classifies the wear categories with the 
highest accuracy of 84.7%. Apart from the quadratic discriminant 
analysis (75.4%) and the Naive Bayes (73.8%), the other ML reached 
high classification accuracies ranging from 81.0 to 83.9%. Regardless of 
the ML algorithm, the main source of classification error is between 
category 3 and category 4. This misclassification results from an overlap 
of the features between both wear categories. This was explained by the 
fact that category 3 and category 4 has similar wear scar widths and 
depths and so AE signals. To improve the classification accuracy 
significantly, we proposed to combine the category 3 and category 4. 

The proposed method of using processed DHM image wear scar 
profiles as ground truth labels and the ML framework achieves a 
competitive accuracy for classification of the wear categories during 
tribometer experiments. Consequently, we can conclude that the pro
posed method has significant industrial potentials for in-situ and real 
time wear monitoring of abrasive processes in real-world industrial 
applications since it requires minimum modifications of commercially 
available industrial machines. In this work, we have proposed an 
effective and robust framework to monitor abrasive wear stages using 
the DHM and then classify the different stages based on AE signals and 
machine learning algorithms. However, the AE signal acquisition has 
been made only in case of dry conditions of abrasive wear. Furthermore, 
we intend to use similar AE and ML-based methods to predict various 
friction failures like scuffing, fretting fatigue etc. 
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Appendix 

Classification results from different machine learning algorithms 

As mentioned in the article, various ML classification algorithms were tested with the feature subset data and the confusion matrix showing the 
classification accuracy (in %) for the wear categories are shown in Table A1. 

Table 7 
Prediction accuracies for the different machine learning classification 
algorithms.  

ML algorithms Average classification accuracy 

Support Vector Machines (SVM) 84.7% 
Neural Networks (NN) 82.1% 
Logistic regression (LR) 83.9% 
Random Forest (RF) 83.1% 
Naive Bayes (NB) 73.8% 
k-Nearest Neighbor (k-NN) 81.0% 
Quadratic Discriminant Analysis (QDA) 75.4% 
XGBoost (XGB) 83.2%  
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Table A1 
Confusion matrices for classification of wear categories using all ML classification algorithms. Table 6 is also repeated for direct comparison.   

Linear Regression (LR) Naive Bayes (NB) k- nearest Neighbor 

Predicted 
label [%] 
Ground 
truth (true 
label) 

Category 
1 

Category 
2 

Category 
3 

Category 
4 

Category 
5  

Category 
1 

Category 
2 

Category 
3 

Category 
4 

Category 
5  

Category 
1 

Category 
2 

Category 
3 

Category 
4 

Category 
5 

Category 1 94 4 0 2 0  88 10 0 2 0  89 8 0 3 0 
Category 2 6 94 0 0 0  6 94 0 0 0  6 94 0 0 0 
Category 3 4 0 60 36 0  12 1 20 67 0  7 0 58 35 0 
Category 4 3 1 24 72 0  23 4 3 70 0  8 2 26 64 0 
Category 5 0 0 0 0 100  0 0 1 0 99  0 0 0 0 100      

Quadratic Discriminant Analysis (QDA) Random Forest (RF) Neural Networks (NN) 
Category 1 90 8 0 2 0  92 5 0 3 0  92 5 1 2 0 
Category 2 5 95 0 0 0  4 96 0 0 0  4 96 0 0 0 
Category 3 10 0 21 69 0  6 0 61 33 0  2 0 68 30 0 
Category 4 19 4 4 73 0  4 2 29 65 0  19 4 4 73 0 
Category 5 0 0 1 0 99  0 0 0 0 100  0 0 0 0 100      

XGBoost Support Vector Machine (SVM) (repetition of Table 6)  
Category 1 94 4 1 1 0  95.0 3.0 0.0 2.0 0.0       
Category 2 5 95 0 0 0  3.9 96.0 0.0 0.1 0.0       
Category 3 4 0 61 35 0  3.0 0.0 58.0 39.0 0.0       
Category 4 4 2 29 65 0  2.5 1.5 21.0 75.0 0.0       
Category 5 0 0 0 0 100  0.0 0.0 0.0 0.0 100.0        
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