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Abstract 17 

Europium(III), i.e., Eu(III), is chemically analogous to the trivalent lanthanides (Ln) 18 

and actinides (An). A good understanding of the adsorption behaviour of Eu(III) on 19 

mica group minerals is critical to the safety evaluation of the radioactive 20 

contamination. Nevertheless, the structural complexity of micaceous minerals makes 21 

it difficult to draw a consistent conclusion in the study of Eu(III) migration. In this 22 

work, we contrastively studied Eu(III) adsorption on dioctahedral muscovite and 23 

trioctahedral phlogopite as functions of pH, ionic strength, background electrolytes, 24 

interaction sequence, and fulvic acid (FA). Batch experiments showed that Eu(III) 25 

adsorption on both micas was strongly dependent on pH but quite independent on 26 

ionic strength that is determined by Na+. Planar sites are available on both muscovite 27 

and phlogopite while interlayer sites only on phlogopite under Na+ and Ca2+ 28 

electrolytes (not for K+ and Cs+). An interlayer expansion of phlogopite, as indicated 29 

by a newly appeared diffraction peak at ~6o 2-theta, occurred along with Eu(III) 30 

adsorption, which was also confirmed by transmission electron microscopy. 31 

Furthermore, the initial Eu(III) concentrations, the concentration ratios between Eu(III) 32 

and Cs+, and the reaction sequences of Eu(III)-electrolytes-FA affected both the 33 

adsorption behaviour of Eu(III) and reversely the structural alteration of phlogopite. 34 

The sequential extraction showed that the adsorbed Eu(III) was mainly in the 35 

ion-exchangeable form while the addition of FA could increase the portion of 36 

coordinative species. The currently proposed Eu(III) adsorption mechanism can shed 37 

new light on predicting the migration of Ln/An(III) at the mica-rich solid-liquid 38 
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interface on a molecular scale. 39 
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1 Introduction 45 

The retention of radionuclides by the natural geosphere, in particular in the vicinity of 46 

nuclear waste temporary storage or repositories, is considered a critical and last 47 

pathway of radionuclides stabilization and also an ongoing concern for safety 48 

assessment of the repository and environmental research (Ma et al., 2020; Niu et al., 49 

2009; Sun et al., 2020; Zhang et al., 2020). The geological fate of radionuclides in the 50 

environment greatly depends on the interactions with host rocks and prevalent 51 

minerals. Surface adsorption and transformation (including redox and nonredox 52 

processes) occurring during the interactions contribute greatly to the immobilization 53 

of radionuclides (Chen et al., 2020; Jin et al., 2014; Pan et al., 2017). The adsorption 54 

behaviour at the solid-liquid interface is fickle as environmental conditions varying, 55 

such as pH, background electrolytes, coexisting ligands, natural organic matters 56 

(NOMs) (Fukushi and Fukiage, 2015; P. Li et al., 2017; Tan et al., 2018).  57 

Immobilization of trivalent actinides is critical to environmental protection due to 58 

their long half-life and strong radioactivity. Europium(III), i.e., Eu(III), is commonly 59 

considered as a chemical analogue for trivalent lanthanides (Ln) and actinides (An) 60 

due to the similar electronic and bonding properties (Takahashi et al., 1998a; 61 

Bradbury et al., 2002; Stumpf et al., 2002; P. Li et al., 2017; Pan et al., 2017). As such, 62 

the retention of Eu(III) on various potential barriers has been extensively investigated 63 

to provide fundamental data concerning the performance assessment of HLW 64 

repositories and the remediation of radioactive contaminations (Fan et al., 2015; 65 
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Fukushi et al., 2013; Jin et al., 2014; Pan et al., 2017; Qiu et al., 2018). It was reported 66 

that pH, ionic strength and NOMs largely influenced Eu(III) adsorption on muscovite, 67 

bentonite, illite, montmorillonite, granite, soil, etc. (Bradbury and Baeyens, 2009; Fan 68 

et al., 2013; Jin et al., 2014; Pan et al., 2017). Previous studies of Eu(III) adsorption 69 

on granite showed that Eu-enriched areas of biotite commonly contained less 70 

potassium, indicating that ionic exchange was the main process for Eu(III) adsorption 71 

on biotite (Fukushi et al., 2013). It has been reported that the influence of cations 72 

(mainly alkali and alkaline earth ones) on the ionic exchange process of mica group 73 

minerals is not only the competition on adsorption sites but also the steric effects on 74 

specific sites (Fan et al., 2014; Tamura et al., 2014). For instance, frayed edge sites 75 

(FESs) can be collapsed by cations having smaller hydrated ionic radii (K+, Cs+ and 76 

NH4
+), and unavailable interlayer sites can be expanded by cations that have larger 77 

hydrated ionic radii (Ca2+ and Mg2+). NOMs exist ubiquitously in the aquatic 78 

environment, affecting the adsorption of radionuclides mainly through complexing 79 

with radionuclides and further enhancing the solubility of radionuclides especially at 80 

pH 3-10 (Takahashi et al., 1998a; Tan et al., 2018). The combination of X-ray 81 

photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure 82 

(EXAFS) approaches indicated that complexation species were different for the 83 

different reaction sequences of fulvic acid (FA) and Eu(III) (Fan et al., 2008). More 84 

notably, it was confirmed that organic matters could enter and stably stay in the 85 

interlayers of expandable clay minerals (Dubbin et al., 2014; Park et al., 2017).  86 

So far, no mature model is available for describing the adsorption of Ln(III)/An(III) 87 
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under a wide range of chemical conditions, partially because of the lack of 88 

comprehensive study on mica group minerals. For instance, 2:1 phyllosilicate has 89 

shown strong decontamination ability, whereas the effects of the various structures 90 

and compositions on the adsorption of Eu(III) are rarely investigated on the molecular 91 

scale. Mica group minerals, like illite, muscovite, biotite, phlogopite, etc., serving as 92 

effective scavengers under either ambient air conditions or the geologic repository 93 

environment, always received extensive attention (Mukai et al., 2018; Pan et al., 2017; 94 

Wu et al., 2020). This is because mica group minerals are (i) widespread in the 95 

environment, (ii) the parent materials of clay minerals (smectite, vermiculite and their 96 

mixed-layer mineral, etc.), and (iii) the main components in the host rocks (both 97 

granite and clay) that inhibit the migration of radionuclides (Fukushi et al., 2013; H. 98 

Li et al., 2019; Wu et al., 2018b). According to the valence of filling ions in the 99 

octahedron, micaceous minerals can be divided into dioctahedral and trioctahedral 100 

types. The main adsorption sites on dioctahedral mica are planar sites (accounting for 101 

~80% of cation exchange capacity) while its interlayer sites are unavailable (Bradbury 102 

and Baeyens, 2000; Fan et al., 2014). On the other hand, the proportion of planar sites 103 

on trioctahedral mica (easily weathered) can be down to ~50% with the increase of 104 

interlayer sites (the interlayer distance can increase to ~14-20 Å) (Fan et al., 2014; 105 

Fan and Takahashi, 2017; Park et al., 2017). The frayed edge site is one kind of 106 

specific site on micas that has been confirmed highly selective to Cs+. Although its 107 

fraction is less than ~1%, it is very important for the further availability of interlayer 108 

sites (Fan et al., 2014; Wu et al., 2018b; Zachara et al., 2002). The octahedron of mica 109 
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is usually a mixture of both dioctahedron and trioctahedron in varying degrees in the 110 

environment. Therefore, it is very important to clarify the roles of pure dioctahedral 111 

and trioctahedral endmember structures in the process of radionuclides adsorption on 112 

mica group minerals. 113 

In this work, dioctahedral muscovite and trioctahedral phlogopite were employed to 114 

interact with Eu(III) under various conditions of pH, ionic strength, background 115 

electrolyte, and fulvic acid. We expected a better understanding of the adsorption 116 

processes of trivalent actinides on micas as well as a critical reference for the 117 

predictive model.  118 

2 Materials and methods 119 

2.1 Materials 120 

Muscovite and phlogopite powders (passed through a 325-mesh sieve) used in this 121 

work were purchased from the Shikan industrial area of Lingshou County (Hebei 122 

Province, China), which have been characterized in detail (Wu et al., 2020). Cation 123 

exchange capacities (CECs) of muscovite and phlogopite are 4.01 and 11.15 meq/100 124 

g, respectively. The XRD patterns, formulas and zeta potentials of micas are 125 

summarized in Fig. S1. According to the valence and amount of filling cations in 126 

octahedrons, muscovite (96.55% trivalent cations) and phlogopite (99.63% divalent 127 

cations) can be considered as pure dioctahedral and trioctahedral micas, respectively. 128 

The characteristic (001) and (003) diffraction peaks of both muscovite and phlogopite 129 
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are at 8o and 26o 2-theta, respectively. All chemical reagents of analytical grade were 130 

purchased and used without any further purification. All the solutions, including the 131 

Eu(III) stock solution that was prepared by dissolving an appropriate amount of 132 

Eu(NO3)3·6H2O (Aladdin, 99.9%), were made with ultrapure water (18.2 MΩ·cm, 133 

Millipore Co.). Salts of NaCl, CsCl and CaCl2 were used to prepare background 134 

electrolytes. The FA extracted from natural soil had been characterized previously 135 

(Fan et al., 2008). 136 

2.2 Batch adsorption experiments 137 

Batch adsorption experiments with single variable were carried out to compare the 138 

adsorption behaviours of Eu(III) onto muscovite and phlogopite. The effects of pH, 139 

ionic strength (I), background electrolytes, initial Eu(III) concentration, and FA were 140 

investigated, and the adsorption behaviours and sequential extraction were used to 141 

unravel the adsorption procedures, forms and mechanisms. 142 

All batch experiments were conducted under ambient air conditions. 1.0 g/L 143 

muscovite or phlogopite with different background electrolytes in the absence or 144 

presence of 50.0 mg/L FA was introduced into 10 mL polyethylene test tubes followed 145 

by a pre-equilibrium duration of 24 h without pH adjustment. Afterwards, an 146 

appropriate amount of Eu(III) stock solution was added to achieve the target 147 

concentrations. The pH values were then adjusted by adding a negligible volume of a 148 

HCl and/or NaOH solution (0.1 mol/L). After shaking in an air-bath shaker 149 

(BSD-TX270, Shanghai Boxun Medical Biological Instrument Corp.) at 298±1 K for 150 
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48 hours, the solid and liquid phases were separated by centrifuging (Thermo 151 

Scientific Sorvall ST16R, ThermoFisher scientific) at 10,000 rpm for 10 min. The 152 

solid was kept for further characterizations and the supernatant was further filtered by 153 

0.22 µm pore size membrane filters (Polycarbonate, Advantec). The aqueous Eu(III) 154 

concentrations after equilibrium (Ce, mol/L) were analyzed by the Inductively 155 

Coupled Plasma Optical Emission Spectrometer (ICP-OES, Agilent Technologies 156 

5100) at 420.504 nm wavelength. The concentrations of FA in the supernatant (mg/L) 157 

were analyzed at 200 nm by spectrophotometry methods (Dubbin et al., 2014). It has 158 

been verified that the presence of FA had an indiscernible effect on Eu(III) 159 

determination. Meanwhile, the pH values of the suspensions were measured by a pH 160 

electrode (LE422, METTLER TOLEDO). The adsorption percentage (%) of Eu(III) 161 

and FA, and the adsorption quantity (Q, mol/g) and the solid-liquid distribution 162 

coefficient (Kd, L/g) of Eu(III) were calculated using Eqs. (1)-(3): 163 

Adsorption (%) = (C0 – Ce) / C0 × 100%                (1) 164 

Q = (C0 – Ce) / (s/l)                            (2) 165 

Kd = Q / Ce                               (3) 166 

where C0 and Ce are the initial Eu(III) or FA concentration (mol/L or mg/L) and the 167 

equilibrium concentration in the filtrate (mol/L or mg/L), respectively; s/l (g/L) 168 

represents the solid-to-liquid ratio. All the experimental data were the averages of 169 

duplicate or triplicate experiments with a relative error of less than 5.0%. 170 
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2.3 Sequential extraction 171 

Pre-adsorption experiments of Eu(III) were performed in 50 mL polyethylene test 172 

tubes with total volumes of 30.0 mL as exactly described above. In the adsorption 173 

systems, the initial Eu(III) concentration was 5.0×10-5 mol/L and the pH was 174 

maintained at 5.3. Afterwards, the supernatant was isolated to determine the amounts 175 

of Eu(III) adsorbed, and the Eu-loaded solid samples were recovered and rinsed 176 

rapidly with ultrapure water for the subsequent extraction experiments. The 177 

adsorption products were subsequently soaked in solutions of CaCl2 (1.0 mol/L, pH 178 

5.3), NH4OAc (1.0 mol/L, pH 5.3) and HNO3 (pH 2). For each extraction procedure, 179 

30.0 mL extraction solution was used; the suspension was continuously shaken for 24 180 

h, then centrifuged and separated. The extraction amount of Eu(III) was calculated 181 

from the initial amount of Eu(III) adsorption on muscovite or phlogopite and the 182 

amount of Eu(III) in the extraction solutions. Extracted fractions were defined as 183 

follows: (i) fraction 1 (F1) extracted by 1.0 mol/L CaCl2 solution, (ii) faction 2 (F2) 184 

extracted by 1.0 mol/L NH4OAc solution, (iii) fraction 3 (F3) dissolved by HNO3 (pH 185 

2), and (iv) residual fraction (F4).  186 

2.4 Solid characterization 187 

Characterization was performed on the pristine and Eu-loaded mica powders. The 188 

Eu-loaded micas were obtained after adsorption experiments and then freeze-dried 189 

under vacuum at -80℃ by an FD-1D-80 vacuum freeze dryer (Beijing Boyikang 190 

Experiment Instrument Co., Ltd) for 24 h. X-ray diffraction (XRD) patterns of the 191 
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micas were collected using a powder X-ray diffractometer (X’ Pert PRO, Malvern 192 

PANalytical) operating at 40 kV and 30 mA with a step interval of 0.02o at a rate of 193 

4.0o/min. Transmission electron microscopy (TEM) characterization was performed 194 

using a Tecnai G2 F30 (FEI, U.S.) at an operating voltage of 300 kV. The samples for 195 

TEM were dispersed sufficiently in ethanol under ultrasonic treatment. After, the 196 

obtained homogeneous suspension was dropped onto a copper grid coated with a 197 

porous carbon support film, which was dried mildly before the measurement.  198 

3 Results and discussion 199 

3.1 Effect of pH 200 

Speciation calculations of 5.0×10-5 mol/L Eu(III) using PHREEQC (Parkhurst and 201 

Appelo, 1999) indicated that Eu3+ is the predominant species (more than 80%) below 202 

pH 5.7, and aqueous complex with carbonate, hydroxy and/or hydrated ligands prevail 203 

at pH >5.7 (Fig. 1A) (Takahashi et al., 1999). Above pH 5.7, ~50% of Eu(III) forms 204 

Eu2(CO3)3·3H2O (aq) in the pH ranges of 5.7-8.8, ~25% and >95% of Eu(III) forms 205 

EuOHCO3 (aq) and Eu(OH)3 (aq) in the pH ranges of 8.8-10.3 and 10.3-12.0, 206 

respectively. Meanwhile, the saturation indices of Eu2(CO3)3·3H2O, EuOHCO3, 207 

Eu(OH)3 are all less than zero (Fig. S2), which indicates that Eu(III) species are all 208 

soluble under the conditions. In addition, there are five complexes formed with 209 

chloride, hydroxyl, carbonate, and Eu(III) (EuCl2+, Eu2(OH)2
4+, EuOHCO3, 210 

EuOH(CO3)2
2- and Eu(OH)2CO3

-), which account for more than 1% at different pH 211 

values and is expected to affect considerably the migration behaviour of Eu(III) 212 
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especially at low Eu(III) concentration (Kyzioł-Komosińska et al., 2019).  213 

The adsorption of Eu(III) on muscovite and phlogopite as a function of pH are 214 

compared under 0.01 mol/L NaCl background electrolyte (Fig. 1B). At pH <5.0, 215 

pH-independent adsorption of Eu(III) on muscovite was observed with around 35% 216 

Eu(III) adsorbed constantly, which should be mainly controlled by ionic exchange 217 

and/or outer-sphere complexation (Fan et al., 2009; Pan et al., 2017). With increasing 218 

pH, the adsorption percentage of Eu(III) (from 35% to 99%) increased quickly in the 219 

pH range of 5.0–7.0, and then maintained a high uptake percentage (>99%) above pH 220 

7.0. According to the zeta potential of muscovite (Fig. S1B), it decreased sharply in 221 

pH ranged from 5.0 to 7.0. Combined with the speciation calculation, Eu(III) mainly 222 

forms Eu2(OH)2
4+, Eu2(CO3)3·3H2O (aq), EuOHCO3 (aq) and Eu(OH)3 (aq) above pH 223 

5.0 (Fig. 1A). The surface property of muscovite and Eu(III) species supposedly 224 

resulted in inner-sphere complexes of Eu(III) formed on mica surface (Takahashi et al., 225 

1998b; Stumpf et al., 2002), which may account for the remarkable increase of 226 

adsorption at this pH range. This phenomenon suggests that Eu(III) adsorption on 227 

muscovite enhanced the fixation of Eu(III) at pH >5.0, where the strong 228 

pH-dependent adsorption under slightly acidic and nearly neutral conditions should be 229 

mainly attributed to the adsorption of hydroxyl and/or carbonate surface complexes 230 

on muscovite (Sun et al., 2020; Zhou et al., 2020). Note that the surface compositions 231 

and properties of adsorbents affect largely the chemical species of Eu(III) during the 232 

adsorption process, which may differ from the calculated species in solution. In 233 

contrast to muscovite, the pH-dependent adsorption percentage of Eu(III) on 234 
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phlogopite increased from 80% at pH 2.0 to 97% at pH >5.0, which is much higher 235 

than the case of muscovite. The stronger adsorption on phlogopite can be attributed to 236 

the higher CEC and more negative zeta potential (Fig. S1B) than that on muscovite. 237 

And the pH-dependent adsorption on phlogopite implied that the adsorption 238 

mechanism of Eu(III) was more complex than that of muscovite. Above pH 7.0, the 239 

adsorption behaviours of Eu(III) on phlogopite was as similar as muscovite 240 

(adsorption percentage >99%). Further confirmation of adsorption forms on 241 

muscovite and phlogopite above pH 7.0 was conducted by the XRD results (Fig. S3). 242 

It cannot be observed clearly that Eu(III) precipitates generated at pH 8.4. This 243 

opinion was also supported by the saturation indices (Fig. S2) and the evidence from 244 

Takahashi et al. (1998b) and Stumpf et al. (2002). Although the structures (2:1 245 

phyllosilicates) and compositions (Fig. S1A) of muscovite and phlogopite are 246 

relatively close, an obvious difference in Eu(III) adsorption especially below pH 5.0. 247 

It is speculated that this phenomenon is due to not only the more negative zeta 248 

potential of phlogopite (Fig. S1B) but also the structural difference between 249 

dioctahedral and trioctahedral micas. 250 

According to the calculation of CEC, the capacities of muscovite and phlogopite were 251 

4.01×10-5 and 1.165×10-4 eq/L respectively, which were equal to 26.7% and 77.7% 252 

initial Eu(III) concentration (1.5×10-4 eq/L). Accordingly, Eu(III) adsorption under 253 

acidic conditions was not only controlled by ionic exchange and outer-sphere 254 

complexation, but also by inner-sphere complexation, which has been confirmed by 255 

laser fluorescence spectroscopy (Takahashi et al., 1998b; Stumpf et al., 2002). Thus, 256 
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the effect of high concentration of Eu(III) can be ignored, and the experimental 257 

system can be closer to the real environment, which was similar to the systems using 258 

radioisotope tracers (Fairhurst et al., 1995; Takahashi et al., 1998a). 259 

3.2 Effect of ionic strength 260 

As shown in Fig. 1B, the ionic strength manifested a significant difference in Eu(III) 261 

adsorption between muscovite and phlogopite, where a more obvious effect on 262 

muscovite. In the pH range of 2.0-7.0 with increasing ionic strength, the adsorption 263 

percentage of Eu(III) by muscovite decreased (i.e., from 0.01 to 0.1 mol/L NaCl), 264 

whereas it increased in the case of phlogopite. The result confirmed that ionic 265 

exchange and outer-sphere complexation contributed to the Eu(III) adsorption below 266 

pH 7.0. At pH >7.0, the effect of ionic strengths led to a negligible difference between 267 

muscovite and phlogopite with respect to Eu(III) adsorption (Pan et al., 2017), where 268 

the inner-sphere complexation controlled Eu(III) adsorption. 269 

Typically, the higher ionic strength is, the weaker Eu(III) adsorption is when the 270 

chemical interactions were controlled by ionic exchange and/or outer-sphere 271 

complexation (Fan et al., 2009; Pan et al., 2017). It can be seen that Eu(III) adsorption 272 

on muscovite was consistent with that on illite (Bradbury and Baeyens, 2009) and 273 

granite (Jin et al., 2014), where weaker adsorption under higher ionic strength 274 

resulting from the competition between cations and Eu(III) on the adsorption sites was 275 

observed (Zhang et al., 2020; Zhou et al., 2020). Meanwhile, the inhibitory effect of 276 

ionic strength on Eu(III) adsorption decreased with the increase in pH. It can be 277 
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concluded that Eu(III) adsorption on muscovite was controlled by ionic exchange 278 

and/or outer-sphere complexation under acidic conditions while inner-sphere 279 

complexation predominated under slightly acidic and neutral conditions (Stumpf et al., 280 

2002; P. Li et al., 2017; Pan et al., 2017). However, the opposite tendency for 281 

phlogopite in the pH range of 2.0-7.0 implies different mechanisms. Compared with 282 

muscovite, the dissolution of phlogopite released a larger number of cations (e.g., K+, 283 

Mg2+, and Ca2+, etc.). Meanwhile, the densities of dissolved cations are proportional 284 

to the solution acidity (Kalinowski and Schweda, 1996). As a result, phlogopite can 285 

provide more available sites and more negative electrostatic attraction for Eu(III), 286 

indicating that the availability of the sites on trioctahedral mica is higher than that of 287 

dioctahedral mica during the adsorption process (Wu et al., 2020). On the other hand, 288 

the release of cations (including K+, Mg2+ and Ca2+, etc.) from phlogopite was 289 

reduced by a higher Na+ concentration (Fig. S4), which weakened the competition 290 

between cations and Eu(III) and thus enhanced Eu(III) adsorption. Similar 291 

observations were reported by previous works (Wu et al., 2020; Yamaguchi et al., 292 

2018). 293 

3.3 Effect of cations  294 

The influence of cations on Eu(III) adsorption by muscovite and phlogopite is shown 295 

in Fig. 2. The presence of K+, Cs+ and Ca2+ inhibited Eu(III) adsorption in different 296 

degrees in the pH range of 2.0-7.0 compared with Na+. For muscovite, the effects of 297 

K+, Cs+ and Ca2+ on Eu(III) adsorption were comparable, where the percentage 298 
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increased slowly from ~5% at pH 2.0 to ~35% at pH 5.5, sharply to ~99% until pH 299 

7.0, and maintained at ~99% at pH >7.0 (Fig. 2A). Considering that the ionic 300 

exchange and/or outer-sphere complexation controlled the adsorption in the pH range 301 

of 2.0-5.5, it was proved that K+, Cs+ and Ca2+ are more competitive than Na+ for 302 

Eu(III) adsorption on muscovite. However, ionic exchange on planar sites alone 303 

cannot completely explain the experimental data under acidic conditions, which has 304 

been supported by the potentiometric and Eu(III) adsorption results on illite (Sinitsyn 305 

et al., 2000). The adsorption sites for Cs+ provided by clay minerals can be divided 306 

into four types, of which the planar sites prevail (~80% of the adsorption capacity) 307 

and frayed edge sites, edge sites and interlayer sites should not be neglected. 308 

(Bradbury and Baeyens, 2000; Fan et al., 2014; Wu et al., 2018b). According to the 309 

log K, K+, Cs+ and Ca2+ have stronger affinities towards planar sites of micas 310 

compared to Na+ (Onodera et al., 2017; Park et al., 2017).  311 

For phlogopite, results of pH effects showed that Eu(III) adsorption was inhibited 312 

following the order of Cs+ > K+ ≈ Ca2+ > Na+(Fig. 2B). In the pH range of 2.0-5.5, the 313 

adsorption percentages of Eu(III) in the presence of K+ and Cs+ were pH-independent 314 

and maintained at ~60% and ~35%, respectively, which showed a similar shape with 315 

that on muscovite under 0.01 mol/L Na+ (Fig. 2A). Combined with previous works 316 

(Mukai et al., 2018; Wu et al., 2018a), it can be speculated that the inhibition of Eu(III) 317 

adsorption was due to the occupation of frayed edge sites by K+ and Cs+, which 318 

interrupted the interlayer expansion under acidic conditions. On the other hand, Eu(III) 319 

adsorption on phlogopite under Ca2+ electrolyte was pH-dependent and increased 320 
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stepwise from ~60% to 99% in the pH range of 2.0-7.0 (Fig. 2B). The results 321 

supported that the decrease in K+ and Ca2+ concentrations could weaken Eu(III) 322 

adsorption on phlogopite under higher ionic strength (0.1 mol/L Na+) (Fig. 1B). 323 

The different adsorption behaviours of Eu(III) on muscovite and phlogopite can be 324 

further interpreted by their XRD patterns at pH 5.3 (Fig. 3). After interacting with 325 

Eu(III) under different electrolytes, the main characteristic peaks remained for the 326 

muscovite such as (001) and (003) at 8.3o and 26.2o 2-theta respectively (Fig. 3A), 327 

which were consistent with that of the pristine minerals (Fig. S1A). It suggested that 328 

the muscovite structure was almost unchanged. As mentioned above, planar sites 329 

contributed mainly to the retention of Eu(III) by muscovite whereas it was not the 330 

case for phlogopite. As reported previously, the interlayer K+ of phlogopite tended to 331 

be replaced by cations with larger ionic potentials or smaller hydrated ionic radii, 332 

leading to an interlayer expansion or collapse (Tamura et al., 2014). The XRD 333 

patterns of phlogopite (Fig. 3B) can be classified into two kinds: one is consistent 334 

with the pristine phlogopite (Fig. S1A) under K+ and Cs+ electrolytes, the other shows 335 

new features at 6o 2-theta under Na+ and Ca2+ electrolytes. Without the interlayer 336 

expansion, Eu(III) adsorption on phlogopite under K+ and Cs+ electrolytes confirmed 337 

the main contribution from planar sites. Considering no obvious difference in XRD 338 

patterns was observed after contacting with Cs+ and K+ electrolyte, the ~30% gap for 339 

Eu(III) adsorption on phlogopite (Fig. 2B) demonstrates that Cs+ is more competitive 340 

than K+ on planar sites of phlogopite (Bradbury and Baeyens, 2000; Fan et al., 2014). 341 

Moreover, the same proportion of pH-independent Eu(III) adsorption was kept 342 
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between phlogopite under 0.01 mol/L Cs+ and muscovite under 0.01 mol/L Na+, 343 

which indicates the important contribution of interlayer sites and planar sites of 344 

phlogopite. On the contrary, a new (001) diffraction peak at 6o 2-theta (indicating an 345 

interlayer distance of 15 Å) caused by Eu(III) adsorption suggested that the interlayer 346 

sites of phlogopite largely contributed to Eu(III) retention (Kyzioł-Komosińska et al., 347 

2019). Compared to Na+, the stronger diffraction peak at 6o 2-theta in the case of Ca2+ 348 

(Fig. 3B) should result from the stronger competition ability of divalent Ca2+ towards 349 

the interlayer sites of phlogopite. As illustrated in Fig. 2B, the percentage of Eu(III) 350 

adsorption with Ca2+ is smaller than the Na+ case at pH 5.3, confirming that the strong 351 

adsorption competition between Ca2+ and Eu3+ should be responsible for the interlayer 352 

expansion of phlogopite. Moreover, the pH-dependent expansions have been also 353 

observed during the adsorption of Th(IV) and Sr(II) on phlogopite (Wu et al., 2020; 354 

2018a).  355 

The selected area electron diffraction (SAED) patterns and the TEM images of 356 

Eu(III)-loaded muscovite and phlogopite were shown in Fig. 4. The typical hexagonal 357 

structure of muscovite after Eu(III) adsorption (Fig. 4A) was confirmed by the SAED 358 

pattern (Yu et al., 2006), demonstrating that Eu(III) adsorption did not change the 359 

structure of muscovite. In contrast, the layers on the edge of phlogopite powder were 360 

thinner than the central part after adsorbing Eu(III) (Fig. 4B). Besides, the 361 

corresponding diffraction rings (Fig. 4C) and ordered diffraction spots (Fig. 4D) 362 

confirmed that the crystallinity degree of phlogopite, especially of its layer edge, was 363 

decreasing (L. Wang et al., 2016). This is in good agreement with its weakly diffuse 364 
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XRD peaks and the appearance of new diffraction at 6o 2-theta (Fig. S5), suggesting 365 

that phlogopite vermiculized during Eu(III) adsorption (L. Wang et al., 2016). 366 

Therefore, the synergistic adsorption and structural alteration could play key roles in 367 

the retardation of radionuclides on trioctahedral micas rather than dioctahedral ones 368 

under real environmental conditions. 369 

3.4 Effects of Eu(III) concentration 370 

The concentration of Eu(III) is often a key factor affecting the adsorption behaviour. 371 

Considering that no significant difference was observed in the XRD patterns of 372 

muscovite samples in Fig. 3B, this section mainly focuses on the structural change of 373 

phlogopite potentially related to the initial Eu(III) concentration. At pH 5.3, the values 374 

of Kd at different initial concentrations of Eu(III) on phlogopite were 4.3, 29.9 and 375 

180.8 L/g, respectively (Fig. S5A). The corresponding XRD patterns are shown in Fig. 376 

S5B, illustrating that the larger the Kd is, the higher the relative intensity of the 377 

diffraction peak at 6o 2-theta is. Nevertheless, the Kd value is determined not only by 378 

the interlayer sites that can be reflected by the position and intensity of the diffraction 379 

peaks along the (001) direction, but also by the large contribution of the planar sites. 380 

Since the contributions from the two types of sites are hard to be separated, the 381 

quantitative relation between the relative intensity of diffraction peak at 2-theta 6o and 382 

the capacity of interlayer sites cannot be established directly. 383 

As discussed above, the addition of Cs+ could hinder significantly the interaction 384 

between Eu(III) and phlogopite. Thus, it is critical to investigate the effect of the 385 
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addition order of Cs+ and Eu(III) on the adsorption capacity and the structural 386 

alteration of phlogopite. Fig. 5A shows the effect of the reaction sequence on the 387 

interaction between Eu(III) and phlogopite. Three typical cases were investigated: (i) 388 

adding Cs+ after Eu(III) interacting with phlogopite for 24 h and then reacting 389 

together for 24 h; (ii) adding Eu(III) and Cs+ together into the phlogopite suspension 390 

and reacting for 48 h; (iii) adding Eu(III) after Cs+ equilibrating with phlogopite for 391 

24 h and then reacting together for 48 h. Accordingly, all the three adsorption 392 

behaviours of Eu(III) at pH 2.0-7.0 showed different shapes: (i) Eu(III) adsorption 393 

increases from ~45% at pH 2.0 to ~97% at pH 7.0, which is similar to that of 394 

phlogopite under Na+ background (Fig. 1B); (ii) the adsorption of Eu(III) on 395 

phlogopite under Cs+ background, as discussed above, is nearly the same with that of 396 

muscovite under Na+ background (Fig. 2A); (iii) the percentage of Eu(III) adsorption 397 

firstly increases from ~5% at pH 2.0 to ~40% at pH 4.0 and maintains at ~40% in the 398 

pH range of 4.0-6.0, and then rises steeply to ~97% at pH 7.0.  399 

It can be seen that the pre-equilibrium of phlogopite with Cs+ led to a very low 400 

adsorption percentage of Eu(III) at pH < 4.0. Cs+ can prevent the interlayer expansion, 401 

occupy the effective sites of phlogopite, and weaken the electrostatic attraction of 402 

phlogopite to Eu3+ (Fan et al., 2014; Mukai et al., 2018). Subsequently, Eu(III) 403 

adsorption at pH 4.0-7.0 shows that the competitiveness of Eu(III) on the available 404 

sites of phlogopite becomes stronger with increasing pH. Previous works on Th(IV) 405 

(less than 5.0×10-5 mol/L) also showed a strong affinity towards phlogopite via 406 

occupying the interlayer sites (Fan et al., 2014; Wu et al., 2020; 2018a). Likewise, this 407 
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process can be inhibited by Cs+ through collapsing frayed edge sites of phlogopite 408 

(Fan et al., 2014; Wu et al., 2020; 2018a).  409 

In addition to the reaction sequence, the concentration ratio of Eu(III) to Cs+ (Eu/Cs 410 

ratio) also affects the structure of phlogopite. Fig. 5B shows the XRD patterns of 411 

phlogopite after Eu(III) adsorption under Cs+ background with two different Eu/Cs 412 

ratios. At Eu/Cs ratio of 100 (1.0×10-4 mol/L Eu(III) to 1.0×10-6 mol/L Cs+) the 413 

relative intensity of the diffraction peak at 6o 2-theta is nearly 100%. Whereas, this 414 

diffraction peak is almost invisible with an Eu/Cs ratio of 0.005 (5.0×10-5 mol/L 415 

Eu(III) to 0.01 mol/L Cs+), indicating that the interlayer of phlogopite was not 416 

enlarged. It is commonly known that the capacity of frayed edge sites is ~10-7 mol/g 417 

(Bradbury and Baeyens, 2000; Fan et al., 2014), thus Cs+ with a higher concentration 418 

than the site capacity can collapse the frayed edge sites. In this work, we found that 419 

the interlayer sites could be also affected and expanded significantly at high Eu/Cs 420 

ratios. 421 

3.5 Effects of FA 422 

The effect of FA (one of the common NOMs) is also a key factor that is worth 423 

investigating thoroughly (Stockdale and Bryan, 2013; Tan et al., 2018; Zhang et al., 424 

2020). The purification and preparation of the natural FA in this work have been 425 

described in detail in previous work (Fan et al., 2008), and the major element 426 

composition (mass%) is C (50.15), H (4.42), N (5.38), O (39.56) and S (0.49). The 427 

effects of FA on Eu(III) adsorption under different background electrolytes are shown 428 
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in Figs. 6A (muscovite) and 6B (phlogopite). In the presence of FA, the adsorption of 429 

Eu(III) on muscovite (Fig. 6A) was suppressed (especially above pH 6.0) and showed 430 

a similar trend under both Na+ and Cs+ background from pH 2.0 to 11.0. It gradually 431 

increased from ~5% at pH 2.0 to ~60% at pH 6.5, and then decreased gradually to less 432 

than 5% at pH 11.0 (Fairhurst et al., 1995; Takahashi et al., 1999; X. Wang et al., 433 

2016). An opposite phenomenon occurred on phlogopite below pH 6.5, that is Eu(III) 434 

adsorption was enhanced by FA (Fig. 6B) characterized with a sharp increase under 435 

Cs+ background and a slight increase under Na+ background. Above pH 6.5, Eu(III) 436 

adsorption under both Na+ and Cs+ electrolytes decreased in the presence of FA (a 437 

subsequent decrease from ~98% at pH 6.5 to ~40% at pH 11.0). Generally, NOMs and 438 

lanthanide ions have strong binding abilities and form thermodynamically stable 439 

species via sharing oxygen atoms (Takahashi et al., 1999; Tan et al., 2018), i.e. 440 

Ln-NOMs hybrids. The strong complexation strength in soluble Eu-FA hybrids results 441 

in significant changes in the adsorption behaviours of Eu(III).  442 

The adsorption behaviours of FA on muscovite and phlogopite (Fig. 6C) are expected 443 

to provide more clues for understanding the effect of FA on Eu(III) adsorption and the 444 

relevant mechanisms. FA showed a stronger affinity towards phlogopite compared 445 

with muscovite. With increasing pH, the removal percentage of FA on phlogopite 446 

increased slowly from ~90% to ~95% while that on muscovite maintained around 60% 447 

followed by an obvious decrease to ~40% at pH above 10.0. As can be seen, the 448 

stronger adsorption capacity of phlogopite compared to muscovite, which is 449 

determined by the differences in surface charges and functional groups of the 450 
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dioctahedral and trioctahedral micas (Kitayama et al., 2020), is also effective for FA. 451 

In the ternary systems, the adsorption percentage of FA gradually decreased from ~60% 452 

(for muscovite) and ~90% (for phlogopite) at pH 2.0 to ~5% at pH 11.0. The 453 

enhancement of Eu(III) adsorption on phlogopite below pH 6.5 can be explained by 454 

taking into account the high proportion of FA adsorbed to the mica surface (Fig. 6C) 455 

in the presence of Eu(III). Combined with inhibition by FA on Eu(III) adsorption on 456 

both muscovite and phlogopite under alkaline conditions (Figs. 6A and 6B), it 457 

suggested that soluble Eu-FA hybrids preferred retaining in the liquid phase (Fairhurst 458 

et al., 1995; Takahashi et al., 1998a and 1999; Z. Li et al., 2019; Tan et al., 2018), 459 

especially in the case of muscovite.  460 

Remarkably, although FA reduced Eu(III) adsorption on both micas under alkaline 461 

conditions, under acidic conditions it enhanced the Eu(III) adsorption on phlogopite 462 

but inhibited that on muscovite. Besides, the enhancement effect of FA in the case of 463 

phlogopite was more apparent under Cs+ electrolyte (Fig. 6B). Previous work reported 464 

that NOMs could hinder the adsorption of Cs+ on frayed edge sites, thus further 465 

reduce the availability of interlayer sites (Fan et al., 2014). XRD patterns in Fig. 6D 466 

suggested that Eu(III) adsorption on phlogopite that was pre-equilibrated with the FA 467 

would not induce interlayer expansion (0.01 mol/L Na+, at pH 5.3). On the contrary, 468 

the interlayer expansion of phlogopite occurred when Eu(III) was introduced prior to 469 

the FA. The relative intensity of diffraction peak at 6o 2-theta is stronger than that in 470 

the absence of FA (Fig. 3B). This phenomenon implies that FA might facilitate the 471 

interlayer expansion of phlogopite after Eu(III) occupied the interlayer sites, whereas 472 
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it may block the access and restrain the further expansion of phlogopite before adding 473 

Eu(III) (Dubbin et al., 2014; Wu et al., 2018a). Therefore, the enhancement of Eu(III) 474 

adsorption by FA when using Cs+ as the background was mainly attributed to the 475 

formation of Eu-FA hybrids on the planar sites of phlogopite (Fan et al., 2009; X. 476 

Wang et al., 2016). These results confirmed that NOMs can significantly influence the 477 

mobility and bioavailability of Eu(III), and also the interlayer expansion of 478 

trioctahedral micas.  479 

3.6 Sequential extraction 480 

Sequential extraction was performed to identify the adsorption forms of Eu(III) on 481 

muscovite and phlogopite based on the well-developed method (Martin et al., 1998; 482 

Rauret et al., 1999). As shown in Fig. 7, the results of Eu(III) extracted yield (%) from 483 

Eu-loaded muscovite and phlogopite under different background electrolytes (Na+ and 484 

Cs+) in the absence or presence of FA were compared. By calculation, the percentages 485 

of residual fraction (F4) are less than 5%, suggesting that almost all the adsorbed 486 

Eu(III) was extracted by three-step sequential experiments. Regents of Ca2+ and NH4
+ 487 

were used to extract the adsorbed Eu(III) species of the ionic exchange forms and/or 488 

outer-sphere complexation, while HNO3 (pH 2) was employed to dissolve the 489 

inner-sphere complexes and/or surface precipitate of Eu(III) (Martin et al., 1998; 490 

Rauret et al., 1999). Fig. 7A showed that more than 90% of Eu(III) on muscovite 491 

under Na+ electrolyte was in the exchangeable form, whereas it decreased to ~80% 492 

and ~50% in the presence of Cs+ and FA, respectively. For phlogopite, ~80% of Eu(III) 493 
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was in the exchangeable form under both electrolytes of Na+ and Cs+ (Fig. 7B), 494 

suggesting that phlogopite had a stronger affinity towards Eu(III) than muscovite. 495 

Meanwhile, F3 accounted for 4%-20% under Na+ and Cs+ electrolytes supported the 496 

view of adsorption mechanism below pH 6.5, that is inner-sphere complexation 497 

participated in Eu(III) adsorption. In addition, the presence of FA increased the 498 

percentage of inner-sphere Eu(III) complexes to ~40%, which was slightly higher 499 

than that on muscovite. It can be concluded that the mobility of Eu(III) was largely 500 

controlled by the structure configurations of micas, background electrolytes and 501 

NOMs. It can be concluded that trioctahedral phlogopite is an effective adsorbent to 502 

inhibit the migration and bioavailability of Eu(III), especially in the presence of FA in 503 

the pH range of 2.0-7.0.  504 

4 Conclusions 505 

This work mainly investigated the adsorption and mechanism of Eu(III) on 506 

dioctahedral muscovite and trioctahedral phlogopite under weakly acidic conditions, 507 

in the terms of the corresponding alteration in mica structures and the influence of 508 

background electrolytes, interaction sequence and FA. The adsorption quantity of 509 

Eu(III) on micas ranged from 8.83×10-10 to 4.9×10-8 mol/kg, where the result of trace 510 

concentration was significant to the real environment. Results showed that 511 

trioctahedral phlogopite provided superior adsorption capacity for Eu(III) than 512 

dioctahedral muscovite, especially at pH 2.0-7.0 (from ~80% to ~97% adsorption). 513 

Limited by the fixed amount of planar sites and the unavailable interlayer sites, 514 
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dioctahedral muscovite showed a quite weak affinity towards Eu(III) and resulted in 515 

~30% removal in the pH range of 2.0-5.0. The Eu(III) adsorption on dioctahedral 516 

muscovite was strongly pH-dependent but weakly dependent on ionic strength (Na+), 517 

while on trioctahedral phlogopite it was nearly independent on both pH and ionic 518 

strength (Na+). High ionic strength (Na+) enhanced Eu(III) adsorption on phlogopite 519 

slightly, which supported the inhibition of adsorption by other cations (Ca2+, K+ and 520 

Cs+). The XRD analysis also verified that Eu(III) can intercalate into the interlayer of 521 

phlogopite under Na+ and Ca2+ background electrolytes, whereas it cannot lead to the 522 

interlayer expansion under K+ and Cs+ backgrounds but the collapse of the frayed 523 

edge sites. The comparison among SAED patterns of micas further confirmed that 524 

Eu(III) adsorption occurred on the planar sites of muscovite and both planar sites and 525 

interlayer sites of phlogopite. Moreover, the expansion extent of phlogopite interlayer 526 

was positively correlated to the Kd of Eu(III) under 0.01 mol/L NaCl; 180.8 L/g 527 

Eu(III)-loaded phlogopite resulted in the maximum relative intensity of the diffraction 528 

peak (at 6o 2-theta) corresponding to the enlarged interlayer spacing. Eu/Cs ratio is 529 

also a key factor to control the interlayer expansion of phlogopite. The relative 530 

intensities of XRD peaks of the expanded interlayers were found to be nearly 100% 531 

and 0% at Eu/Cs ratios of 100 and 0.005, respectively. Apart from the electrolyte 532 

cations and Eu(III) concentrations, FA can influence Eu(III) adsorption and the 533 

expansion of trioctahedral phlogopite simultaneously. The soluble Eu-FA hybrids are 534 

expected to be more stable than the surface complexes of Eu(III) under alkaline 535 

conditions. The subsequent addition of the FA into the pre-equilibrated system of 536 
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Eu(III) and phlogopite enhanced the interlayer expansion, suggesting that NOMs were 537 

able to occupy interlayer sites of trioctahedral mica. The pseudocolloid composed of 538 

Eu(III) and FA is expected to be immobilization only by trioctahedral phlogopite 539 

below pH 6.0 in the environment. The comprehensive and systematic study on Eu(III) 540 

adsorption at micas/water interfaces addressed currently could provide important 541 

insights into a reliable prediction of Ln/An(III) migration behaviours in dioctahedral 542 

or trioctahedral mica-rich environments. 543 
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Figures 721 

 722 

Fig. 1. (A) The dominant species of 5.0×10-5 mol/L Eu(III) calculated by PHREEQC, 723 

1-Eu3+, 2-EuCl2+, 3-Eu2(OH)2
4+, 4-EuOH2+, 5-EuCO3

+, 6-EuOHCO3, 724 

7-Eu2(CO3)3·3H2O (aq), 8-EuOH(CO3)2
2-, 9-Eu(OH)2CO3

-, 10-EuOHCO3 (aq), 725 

11-Eu(OH)3 (aq) (T = 298±1 K, I = 0.01 mol/L NaCl, P(CO2) = 10-3.42 atm) and (B) 726 

Effects of pH and ionic strength on Eu(III) adsorption by muscovite and phlogopite (T 727 

= 25±1 ℃, s/l = 1.0 g/L, [Eu(III)]initial = 5.0×10-5 mol/L, 48 h). 728 
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 729 

Fig. 2. Effect of the background electrolyte on Eu(III) adsorption by (A) muscovite 730 

and (B) phlogopite (T = 25±1 ℃, s/l = 1.0 g/L, [Eu(III)]initial = 5.0×10-5 mol/L, 48 h). 731 

0 2 4 6 8 10 12

0

20

40

60

80

100

 0.01 mol/L Na+

 0.01 mol/L Ca2+

 0.01 mol/L K+

 0.01 mol/L Cs+

E
u 

ad
so

rp
tio

n 
(%

)

pH

(B)

0 2 4 6 8 10 12

0

20

40

60

80

100

 0.01 mol/L Na+

 0.01 mol/L Ca2+

 0.01 mol/L K+

 0.01 mol/L Cs+

(A)
E

u 
ad

so
rp

tio
n 

(%
)

pH

Jo
urn

al 
Pre-

pro
of



38 
 

 732 

Fig. 3. Effect of the background electrolyte on the structures of Eu(III)-loaded (A) 733 

muscovite and (B) phlogopite (T = 25±1 ℃, s/l = 1.0 g/L, [Eu(III)]initial = 5.0×10-5 734 

mol/L, pH = 5.3±0.1, 48 h). 735 
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 736 

Fig. 4. The TEM images of Eu(III)-loaded micas. (A) The SAED of muscovite and (B) 737 

TEM of phlogopite with (C and D) the magnified FFT images (SAED) indicated by 738 

the white square. (T = 25±1 ℃, s/l = 1.0 g/L, I = 0.01 mol/L NaCl, [Eu(III)]initial = 739 

1.0×10-4 mol/L, pH = 5.3±0.1, 48 h)   740 
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 741 

Fig. 5. Effect of Cs+ on Eu(III) adsorption by phlogopite (T = 25±1 ℃, s/l = 1.0 g/L). 742 

(A) Eu(III) adsorption in different reaction sequences ([Eu(III)]initial = 5.0×10-5 mol/L, 743 

I = 0.01 mol/L CsCl) and (B) XRD patterns of the Eu(III)-loaded phlogopite in 744 

different [Eu(III)]-to-[Cs+] ratio at pH 5.3.  745 
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 746 

Fig. 6. Effect of the FA on Eu(III) adsorption by micas (T = 25±1 ℃, s/l = 1.0 g/L, I = 747 

0.01 mol/L NaCl or CsCl, [Eu(III)]initial = 5.0×10-5 mol/L, [FA] initial = 50.0 mg/L, 48 748 

h). (A) Eu(III) adsorption on muscovite, (B) Eu(III) adsorption on phlogopite, (C) FA 749 

adsorption on muscovite and phlogopite in the absence and presence of Eu(III), and 750 

(D) effect of reaction sequences of Eu(III) and FA on the structures of phlogopite 751 

samples at pH 5.3.   752 

0 2 4 6 8 10 12

0

20

40

60

80

100

 Na+ +FA
 Cs+ +FA

(B)

 Na+

 Cs+

E
u 

ad
so

rp
tio

n 
(%

)

pH

0 5 10 15 20 25 30 35

(D)

N
or

m
al

iz
ed

 In
te

ns
ity

2-Theta

first Eu, then FA

first FA, then Eu

(001), 15 Å

(001), 10 Å

0 2 4 6 8 10 12

0

20

40

60

80

100 (C)

 Muscovite
 Muscovite + Eu
 Phlogopite
 Phlogopite + Eu

F
A

 a
ds

or
pt

io
n 

(%
)

pH

0 2 4 6 8 10 12

0

20

40

60

80

100 (A)

 Na+

 Na+ +FA
 Cs+

 Cs+ +FA

E
u 

ad
so

rp
tio

n 
(%

)

pH

Jo
urn

al 
Pre-

pro
of



 

42 
 

 753 

Fig. 7. Sequential extraction of Eu(III) from (A) Eu-loaded muscovite (Ms) samples 754 

and (B) Eu-loaded phlogopite (Phl) samples (T = 25±1 ℃, s/l = 1.0 g/L, I = 0.01 755 

mol/L NaCl or CsCl, [Eu(III)]initial = 5.0×10-5 mol/L, [FA] initial = 50.0 mg/L, pH = 756 

5.3±0.1). F1: extracted by 1.0 mol/L CaCl2; F2: extracted by 1.0 mol/L NH4OAc; F3: 757 

extracted by HNO3 of pH 2; F4: residual fraction. 758 
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Highlights 

� Dioctahedral and trioctahedral endmember micas were comparatively studied 

� Cs+ could decrease Eu adsorption capacity of phlogopite to the level of muscovite 

� Eu(III) intercalated into interlayer sites of trioctahedral phlogopite 

� The extent of interlayer expansion was positively correlated with Eu(III) loadings 

� FA occupied interlayer sites of phlogopite and competed with interlayer Eu(III) 
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