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One important goal of the Copernicus CO2 monitoring (CO2M) mission is to quantify CO2

emissions of large point sources. We analyzed the feasibility of such quantifications using
synthetic CO2 and NO2 observations for a constellation of CO2M satellites. Observations
were generated from kilometer-scale COSMO-GHG simulations over parts of the Czech
Republic, Germany and Poland. CO2 and NOX emissions of the 15 largest power plants
(3.7–40.3 Mt CO2 yr

−1) were quantified using a data-driven method that combines a plume
detection algorithm with a mass-balance approach. CO2 and NOX emissions could be
estimated from single overpasses with 39–150% and 33–116% uncertainty (10–90th
percentile), respectively. NO2 observations were essential for estimating CO2 emissions as
they helped detecting and constraining the shape of the plumes. The uncertainties are
dominated by uncertainties in the CO2M observations (2–72%) and limitations of the
mass-balance approach to quantify emissions of complex plumes (25–95%). Annual CO2

emissions could be estimated with 23–119% and 18–65% uncertainties with two and
three satellites, respectively. The uncertainty in the temporal variability of emissions
contributes about half to the total uncertainty. The estimated uncertainty was
extrapolated to determine uncertainties for point sources globally, suggesting that two
satellites would be able to quantify the emissions of up to 300 point sources with <30%
uncertainty, while adding a third satellite would double the number to about 600 point
sources. Annual NOX emissions can be determined with better accuracy of 16–73% and
13–52% with two and three satellites, respectively. Estimating CO2 emissions from NOX

emissions using a CO2:NOX emission ratio may thus seem appealing, but this approach is
significantly limited by the high uncertainty in the emission ratios as determined from the
same CO2M observations. The mass-balance approach studied here will be particularly
useful for estimating emissions in countries where power plant emissions are not routinely
monitored and reported. Further reducing the uncertainties will require the development of
advanced atmospheric inversion systems for emission plumes and an improved constraint
on the temporal variability of emissions using additional sources of information such as
other satellite observations or energy demand statistics.

Keywords: CO2M, CO2, NO2, emission quantification, mass-balance approach, plume detection, coal power plants,
imaging remote sensing

Edited by:
Jing Li,

Peking University, China

Reviewed by:
Xin Ma,

Wuhan University, China
Husi Letu,

Institute of Remote Sensing and Digital
Earth (CAS), China

*Correspondence:
Gerrit Kuhlmann

gerrit.kuhlmann@empa.ch

Specialty section:
This article was submitted to

Satellite Missions,
a section of the journal

Frontiers in Remote Sensing

Received: 01 April 2021
Accepted: 17 June 2021
Published: 06 July 2021

Citation:
Kuhlmann G, Henne S, Meijer Y and
Brunner D (2021) Quantifying CO2

Emissions of Power Plants With CO2

and NO2 Imaging Satellites.
Front. Remote Sens. 2:689838.
doi: 10.3389/frsen.2021.689838

Frontiers in Remote Sensing | www.frontiersin.org July 2021 | Volume 2 | Article 6898381

ORIGINAL RESEARCH
published: 06 July 2021

doi: 10.3389/frsen.2021.689838

http://crossmark.crossref.org/dialog/?doi=10.3389/frsen.2021.689838&domain=pdf&date_stamp=2021-07-06
https://www.frontiersin.org/articles/10.3389/frsen.2021.689838/full
https://www.frontiersin.org/articles/10.3389/frsen.2021.689838/full
https://www.frontiersin.org/articles/10.3389/frsen.2021.689838/full
https://www.frontiersin.org/articles/10.3389/frsen.2021.689838/full
https://www.frontiersin.org/articles/10.3389/frsen.2021.689838/full
https://www.frontiersin.org/articles/10.3389/frsen.2021.689838/full
http://creativecommons.org/licenses/by/4.0/
mailto:gerrit.kuhlmann@empa.ch
https://doi.org/10.3389/frsen.2021.689838
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://doi.org/10.3389/frsen.2021.689838


1 INTRODUCTION

The Paris Agreement on climate change aims to limit global
warming to well below 2.0°C above pre-industrial temperatures
(UNFCCC, 2015), which requires a rapid and drastic reduction in
global carbon dioxide (CO2) emissions in the coming decades
(Rockström et al., 2017). The majority of anthropogenic CO2

emissions is confined to emission hot spots such as large cities,
power plants, and industrial facilities. To monitor the emissions
of these hot spots and provide decision makers with independent
atmospheric information, CO2 observations from satellites with
imaging capability have been identified as a critical component in
a global CO2 emission monitoring system, which aims at
supporting the global stocktake agreed upon in the enhanced
transparency framework (ETF) established as part of the Paris
Agreement (Ciais et al., 2015; Pinty et al., 2018; Janssens-
Maenhout et al., 2020).

Therefore, the European Commission and the European Space
Agency (ESA), together with the European Organization for the
Exploration of Meteorological Satellites (EUMETSAT) and the
European Center for Medium-range Weather Forecasts
(ECMWF), are preparing the Copernicus CO2 Monitoring
(CO2M) mission, which is envisioned as a constellation of
satellites equipped with imaging spectrometers measuring CO2,
methane, and nitrogen dioxide (NO2) along a 250 km wide swath
with 4 km2 spatial resolution (Sierk et al., 2019; ESA Earth and
Mission Science Division, 2020). The satellites will carry
additional supporting instruments for aerosols and clouds. The
launch of the first satellite is planned for 2025 to contribute to the
second global stocktake of 2028, which addresses the emissions of
the year 2026.

Several observing system simulation experiments (OSSE) have
been conducted to analyze the potential of CO2 imaging
spectrometers to quantify emissions of cities and large point
sources (e.g., Bovensmann et al., 2010; Pillai et al., 2016; Broquet
et al., 2018; Kuhlmann et al., 2019a; Hill and Nassar, 2019;
Lespinas et al., 2020; Wang et al., 2020). Case studies have
also shown the potential to estimate CO2 emissions of point
sources from the narrow swath of the Orbiting Carbon
Observatory 2 (OCO-2, e.g., Nassar et al., 2017; Reuter et al.,
2019; Wu et al., 2020; Zheng et al., 2020).

Point source emissions can be estimated directly from satellite
observations in combination with wind information using
different flavors of data-driven methods that, for example, fit a
Gaussian plume or apply a mass-balance approach (e.g., Beirle
et al., 2011; Fioletov et al., 2015; Varon et al., 2018; Lorente et al.,
2019). The appeal of these methods is that they do not require
performing expensive atmospheric transport simulations, which
allows them to be applied globally to large amounts of satellite
observations. However, a thorough understanding of the
potential and limitations of these methods is still lacking,
especially in connection with the CO2M NO2 imaging
spectrometer, which can be used either qualitatively to guide
the detection of the CO2 plumes (Reuter et al., 2019; Kuhlmann
et al., 2019a; Kuhlmann et al., 2020a) or quantitatively by
converting NO2 emission estimates to CO2 estimates applying
an appropriate NOx:CO2 emission ratio (Reuter et al., 2014).

Mass-balance approaches have only been applied to a small
number of emission plumes and are likely biased toward cases
under favourable observation conditions, i.e., cloud-free scenes
without complex turbulent flow and with low variability in the
CO2 background field due to other anthropogenic sources or
biospheric fluxes. However, to quantify annual emissions,
frequent estimates are crucial to reduce the uncertainties
caused by hourly and daily fluctuations in emissions (Hill and
Nassar, 2019). Consequently, all quantifiable plumes should be
included for gaining a more representative annual estimate, even
those derived under less optimal conditions, which may limit the
individual accuracy of a mass balance approach (e.g., Kuhlmann
et al., 2020a; Wolff et al., 2020).

In this study, we investigate how well point source emissions
can be quantified with combined CO2 and NO2 images, whereas a
large number of sources was considered under different
observation conditions. The study is based on synthetic CO2M
observations that were generated in the SMARTCARB project
from high-resolution atmospheric transport simulations with the
COSMO-GHG model. The observations were generated for a
constellation of up to six CO2M satellites for a domain
encompassing parts of Germany, Poland and the Czech
Republic for the year 2015 (Brunner et al., 2019; Kuhlmann
et al., 2019a; Kuhlmann et al., 2019b; Kuhlmann et al., 2020b).
We estimate annual CO2 emissions of 15 large power plants either
directly from the CO2 observations or indirectly from the NO2

observations together with an estimate of the NOx:CO2 emission
ratio. The individual emission plumes are detected using a plume
detection algorithm and estimated using a mass-balance approach.
The mass-balance approach was chosen, because it makes fewer
assumptions about the shape of the plume than the Gaussian
plume inversion. We furthermore investigate the potential impact
of NOx emission reductions expected in the future due to more
stringent air quality regulations on the accuracy of CO2 emission
estimates.

The setup with synthetic observations and precisely known
emissions presented here provides new insights into the main
sources of uncertainty making it possible to analyze which factors
are driving the uncertainty in these estimates, and how well
annual mean emissions can be determined depending on the
number of satellites in the CO2M constellation.

2 DATA AND METHODS

2.1 Synthetic Satellite Observations
The study is based on synthetic satellite observations of the
CO2M mission generated from atmospheric transport
simulations. The simulations and synthetic observations are
described in more detail in Brunner et al. (2019) and
Kuhlmann et al. (2019a), and are publicly available: Kuhlmann
et al. (2020b). Here, only the essential characteristics of the
dataset are repeated briefly.

The imaging spectrometer on the CO2M satellites will sample
along a 250-km wide swath with a pixel size of 4 km2 (Sierk et al.,
2019). It will retrieve column-averaged dry air mole fractions of
CO2 (XCO2) from measurements in the near infrared (NIR) and
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shortwave infrared spectral range (SWIR) and NO2 tropospheric
column densities in the visible spectral range (Sierk et al., 2019;
ESA Earth and Mission Science Division, 2020). The mission will
also carry a Multi Angle Polarimeter (MAP) and Cloud Imager
(CLIM) for measuring aerosols and clouds to better characterize
the photon paths in order to minimize systematic errors in the
trace gas retrievals (Rusli et al., 2021).

Atmospheric transport simulations of CO2 and NOx were
performed with the COSMO-GHG model (Jähn et al., 2020) at
about 1 km × 1 km resolution for a domain encompassing parts of
Germany, Poland and the Czech Republic with hourly output for
the whole year 2015 (Figure 1). Lateral boundary conditions,
anthropogenic emissions and biospheric fluxes were accounted
for in great detail, in order to generate a “nature run” of CO2 and
NOx concentrations that should closely resemble true
atmospheric conditions. For computational efficiency, NOx

was simulated as an idealized tracer with a constant
exponential decay time of 4 h rather than explicitly accounting
for its complex photochemistry.

Synthetic observations were then generated from the high
resolution simulations for a hypothetical constellation of six
CO2M satellites using orbit simulations and applying different
levels of noise according to different precision requirements as
specified by ESA. The satellites were assumed to fly in a sun-
synchronous orbit with an overpass time of 11:30 local time. In
each constellation, satellites were spaced with equal angular
distance in a common orbit. As an example, Figure 2 shows a
constellation of six satellites. Constellations of two or three
satellites could then be composed, for example, of the satellites
“a” and “d” or “a”, “c” and “e”, respectively.

To generate the synthetic observations of XCO2 and
tropospheric columns of NO2, the simulated fields were
sampled along the 250 km wide swath of the six orbits and
mapped onto satellite pixels of the size of 2 km × 2 km. A low
and high-noise instrument scenario was created for both the

XCO2 and NO2 observations. For XCO2, random noise was
computed and added to the simulated XCO2 pixel values
using the error parametrization of Buchwitz et al. (2013) with
a single sounding precision of 0.5 and 0.7 ppm, respectively, for a
ground pixel with a spectral reflectance typical of vegetation and a
solar zenith angle (SZA) of 50 (VEG50 scenario). XCO2 random
uncertainties were computed as a function of surface reflectance
in NIR and SWIR channel and SZA. Systematic errors were not
included. The NO2 column densities were assumed to have a
single sounding precision of 1.0 and 2.0 × 1015 molecules per
cm−2 for clear sky conditions and higher errors for cloudy scenes,
approximately doubling at 30% cloud fraction. XCO2

observations were rigorously filtered for clouds using a cloud
threshold of 1%. A threshold of 30% was used for the NO2

observations, which can tolerate larger cloud fractions. Cloud
fractions were taken from the same COSMO-GHG simulation,
which also produced the CO2 and NO2 fields.

2.2 CO2 andNOx Emissions of Point Sources
Plume detection and emission quantification was performed for
the 15 largest point sources in the domain (all being power
plants), which are labeled in Figure 1 by their names. Their
annual mean CO2 and NOx emissions at satellite overpass time
(10:30 UTC) as used in the simulations are listed in Table 1. The
values are approximately 20% higher than true annual mean
emissions due to the diurnal cycle of the emissions prescribed in
the simulations and the CO2M overpass time. The three largest
power plants have CO2 emissions comparable or larger than those
of the city of Berlin with 20 Mt yr−1.

The CO2 and NOx emissions used in this study are based on
the TNO/MACC-3 inventory for the year 2015. However, since
2017 a new EU regulation is in effect that requires a significant
reduction of NOx emissions for large combustion plants
(European Commission, 2017, Table 3). For lignite-fuelled
power plants, the regulation requires new plants built after
ratification of the regulation to reduce NOx concentrations in
the flue gas to 50–85 mg m−3. Existing power plants need to
reduce flue gas concentrations to <85–150 mg m−3 by 2021. NOX

concentrations of up to 200 mg m−3 were allowed prior to the new
regulation.

FIGURE 1 | COSMO-GHG model domain with spatial distribution of the
largest point sources (white dots). The image shows an example XCO2 model
field on November 2, 2015.

FIGURE 2 | Sketch of a constellation of six CO2M satellites (a–f) equally
spaced in a common sun-synchronous orbit.
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Based on reported NOx flue gas concentrations for German
power plants (Tebert, 2017), we expect that for existing power
plants NOx emissions will be reduced by 20–50% compared to the
emissions assumed in our simulations. Power plants built after
2017 would have even lower emissions up to a third of the
assumed levels. To study the influence of a future reduction of
NOx emissions on our results, we scale anthropogenic NOx fields
in the simulations with factors of 0.3, 0.5, and 0.8.

Since CO2 emissions are not affected by these regulations,
CO2:NOX emission ratios will increase in the future. Table 1
shows that emission ratios (on a mass per mass basis) are
considerably lower in the Czech Republic (CZ) and Poland
(PL) than in Germany (DE), suggesting that stronger NOX

reductions will be required in these countries to fulfill the new
regulation. Supplementary Table S1 shows emission ratios for
2015 and 2017 based on self-reported emissions published in the
E-PRTR database in 2019. For many power plants higher
emission ratios are reported for 2017 compared to 2015 and
also compared to the ratios used in our study, likely because
operators already started strengthening emission reduction
procedures. Note that emissions of point sources in the TNO/
MACC-3 inventory can deviate somewhat from the E-PRTR
database, because emissions from point sources were scaled in
TNO/MACC-3 to resolve discrepancies between national totals
and the totals of all individual point sources within a country (H.
Denier van der Gon, personal communication).

2.3 Plume Detection Algorithm
A first version of our plume detection algorithm was presented in
Kuhlmann et al. (2019a). The algorithm identifies coherent
structures of satellite pixels of CO2 or NO2 that are
significantly enhanced above background, and assigns these
structures to a source. Emission plumes can either be detected
from CO2 or fromNO2 observations. With the first version of our
algorithm we could demonstrate that CO2 emission plumes can
be detected better from NO2 observations due to their higher

signal-to-noise ratio and lower sensitivity to clouds (Kuhlmann
et al., 2019a).

An important limitation of the first version was that the
background within the plume was derived from a simulated
background tracer. It thus relied on information that would
not be available from real satellite observations. Furthermore,
the algorithm required a large degree of fine-tuning and
visual control. In order to overcome these limitations, an
improved version was developed here, which does not depend
on model simulated background fields anymore.
Furthermore, the algorithm can now detect a predefined
list of sources instead of a single source, and automatically
recognizes overlapping plumes originating from multiple
sources.

The improved algorithm consists of four steps described in the
following. In the first step, pixels significantly enhanced above
background are detected based on a statistical test applied to the
following signal-to-noise ratio (SNR):

SNR � Xobs − Xbg���������
σ2
rand + σ2sys

√ ≥ zq (1)

where Xobs is the satellite observation, Xbg is the background field,
σrand and σsys are the local random and systematic errors in the
satellite image. The SNR can be used in a statistical z-test to
compute the likelihood that the XCO2 or NO2 value of a pixel is
enhanced above the background. zq is the threshold for which the
SNR is significant with a probability q assuming that the test
statistics can be approximated by a normal distribution (see
Kuhlmann et al., 2019a, for details). In this study, the
threshold zq was set to 2.33, which corresponds to a
probability q of 0.99 that the XCO2 or NO2 value is
significantly enhanced above the background.

Instead of taking Xobs as the value of the satellite pixel alone, it
is computed as a local mean averaged over surrounding pixels. In
the first version of the algorithm, the local mean was computed

TABLE 1 |CO2 and NOx source strengths at satellite overpass time (10:30 UTC) of the 15 largest point sources (>3.0 kt yr−1 annual mean) in the study area according to the
TNO/MACC-3 inventory. The values are total anthropogenic emissions in a COSMO grid cell (about 1 km × 1 km) and therefore can be somewhat higher than the
emissions from the facilities alone if there were other sources present in the grid cell. These 15 point sources represent 28 and 17% of total CO2 and NOx emissions in the
model domain, respectively.

Point
source (country code)

CO2 [Mt yr−1] NOx [kt yr−1] CO2:NOx Emission ratio

Jänschwalde (DE) 40.3 32.6 1,238
Boxberg (DE) 23.1 18.6 1,238
Lippendorf (DE) 18.5 14.9 1,238
Prunéřov (CZ) 13.4 13.2 1,012
Počerady (CZ) 10.9 10.8 1,012
Turów (PL) 10.6 15.9 665
Schwarze pumpe (DE) 9.9 8.0 1,238
Dolna odra (PL) 9.3 11.8 789
Opole (PL) 8.8 11.2 789
Patnów (PL) 7.1 10.6 665
Schkopau (DE) 7.0 5.5 1,257
Mělník (CZ) 6.1 6.1 1,012
Heyden (DE) 6.1 4.9 1,257
Staudinger (DE) 5.8 4.6 1,257
Chvaletice (CZ) 3.7 3.6 1,012
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using an uniform kernel with neighborhoods of different sizes.
Here, a Gaussian kernel of width σg is used instead, which has the
advantage of providing a gentler and more adjustable smoothing
making the algorithm more adaptable to different plume sizes.

In the first version of the algorithm, the background field was
derived from a simulated background tracer. In the improved
version, it is computed by applying a median filter to the satellite
image. The filter computes the background as the local median in
a 100 × 100 pixels window, assuming that the majority of pixels in
the window consists of background pixels outside of the plume.

The random noise σ2rand was taken from the single sounding
precision of the XCO2 or NO2 observations. The systematic error
σ2sys can be interpreted as a threshold for variance in the
background, e.g., caused by CO2 variations due to biospheric
fluxes, or also as a smallest possible error for a very large filter. In
this study, σsys was set to 0.2 ppm for XCO2 and 0.5 × 1015

molecules per cm−2 for NO2 observations.
The threshold zq and the systematic error σsys need to be

carefully chosen to balance the requirements of detecting a
sufficiently large number of pixels to be able to apply the
mass-balance approach while avoiding the detection of many
overlapping plumes and false detections. Avoiding false detection
of pixels not belonging to the plume was particularly challenging
in the presence of a spatial gradient in the background field. The
values used here were found to be suitable for detecting power
plant plumes (Kuhlmann et al., 2019a; Kuhlmann et al., 2019b).

In the second step, the detected pixels are grouped into regions
(plumes). A standard labeling algorithm is used for this purpose.
Enhanced pixels are considered connected if they are horizontal,
vertical or diagonal neighbors.

In the third step, a region of enhanced pixels is assigned to a
point source, if the pixels overlap with a circle of radius 5 km
surrounding the source. The improved version of the algorithm is
now able to detect and flag plumes, that actually represent
overlapping plumes originating from multiple sources. For this
purpose we created a list of all point sources in the model domain
that have NOx emissions larger than 3 kt yr−1 based on the TNO/
MACC-3 inventory. Figure 1 shows a map of the XNO2 field
simulated for November 3, 2015 and the location of the 15 largest
sources.

In the fourth step, a centerline is fitted for each plume as a two-
dimensional curve to the detected pixels. We include pixels
outside of the plume within a distance of 5 km with low
weight to make the fit more robust especially at the start and
end of the plume. We also add the source location with high
weight to force the centerline through that point. Finally, a
polygon is drawn around the plume that follows the centerline
and extends over the full width of the plume.

Figure 3 shows an example of the output of the algorithm.
Longitude and latitude of the detected pixels are converted to a
plume coordinate system consisting of arc length of the centerline
from the source location and distance perpendicular to the
centerline (see Kuhlmann et al., 2020a, for details). The width
of the polygon corresponds to the maximum width of the
detected plume rounded up to the next full 2 km. In along-
plume direction, the polygon extends from the source to the end
of the plume rounded up to the next full 5 km. The polygon is

divided in 5 km wide sub-polygons in along-plume direction. In
addition, a second polygon is drawn between 2 and 12 km
upstream of the source that provides information about CO2

values upstream of the source. The different polygons and sub-
polygons are required for the mass-balance method as
described below.

2.4 Mass-Balance Approach
Emissions of a source can be estimated as the difference
between the mass flux into and out of a volume containing
the source. Here, fluxes out of the volume were computed as
the fluxes through the sub-polygons determined by the plume
detection algorithm downstream of the source. Under the
assumption of steady-state conditions, this is equivalent to
the emission, since the inflow upstream of the source is zero if
we only consider enhancements above background. The only
additional information that cannot be deduced from the
satellite observations is an estimate of the wind speed inside
the plume.

The fluxes are the product of line densities and wind speed.
Line densities (units of kg m−1) are computed by integrating total
column densities (units of kg m−2) perpendicular to the plume’s
centerline. To obtain the column densities attributable to the
source, the background field needs to be subtracted. The
background was estimated from the pixels surrounding the
plume assuming that it is a spatially smooth field. For this
purpose, the detected pixels of the plume as well as other
pixels marked as significantly enhanced above background by
the plume detection algorithm were removed. The resulting gaps
were then filled using normalized convolution with a Gaussian
filter of width σ � 10 pixels. To have a consistent method for the
estimation of CO2 and NOx emissions, we always compute the
CO2 and NO2 background from the same detected pixels.

Note that the plume detection algorithm already required an
estimation of the CO2 or NO2 background field. However, the
background levels computed by that more simple algorithm were
found to be generally overestimated (as compared to the true
simulated background). Using that background would therefore
result in an underestimation of the CO2 emissions.

After subtracting the background, line densities were
computed by integrating the column densities in across-plume
direction. To maximize the usage of information contained in the
image, this was done for all sub-polygons every 5 km along the
plume (Figure 3) by fitting a Gaussian curve

cp(y) � q���
2π

√
σ
exp( − (y − μ)2

2σ2
) (2)

with total column density enhancement in the plume cp, line
density q, shift μ and standard width σ. The CO2 and NO2

enhancements were fitted simultaneously to share the same
position (shift) and standard width of the Gaussian curve.
Since relative uncertainties are smaller for NO2 than for CO2,
the NO2 observations effectively constrain these parameters.
Only NO2 column densities were fitted when no CO2

observations were available, for example, due to cloud cover.
To avoid misfits the computed flux was used only if at least one
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observation was available every 5 km in across-plume direction
over the full width of the detected plume.

To convert line densities into a flux, the effective transport
wind speed u of the plume is required. This wind speed should
correspond to the mean speed of horizontal transport of the
tracer and therefore needs to account for different flow speeds at
different altitudes. Since the vertical distribution of the mass of
the emitted tracer cannot be deduced from the satellite
observations and will usually not be known, simplified
assumptions have to be made. Here, we assume that the
distribution corresponds to the vertical emission profile for
combustion in the energy sector (SNAP-1). This profile was
used in the simulations for most power plants except for some
of the largest ones (Boxberg, Jänschwalde, Lippendorf, Schwarze
Pumpe, Turów, Patnów), for which plume rise was computed
explicitly (Brunner et al., 2019). With this assumption, the wind
speed was computed as the vertically averaged horizontal wind
speed (from the COSMO-GHGmodel) at the source location and
at the time of the overpass weighted by the SNAP-1 emission
profile.

For CO2, the fluxes computed for all individual sub-
polygons were averaged to obtain an estimate of the mean
source strength. To obtain NOx emissions from NO2

observations, we have to account for the chemical depletion
of NOx downwind of the source and for the fact that only a
fraction of NOx is available as NO2. The NOx flux therefore
depends on plume distance as

Q(x) � f · Q0 · exp (− x
u · τ) if x > 0 (3)

with NO2:NOx conversion factor f, wind speed u, chemical
lifetime τ, and source strength Q0. The conversion factor f was
set to a constant value of 1.32 following the suggestion of
Beirle et al. (2011). The source strength Q0 and the lifetime τ
were obtained by fitting a curve to the individual fluxes Q(x).

True decay times in the atmosphere are expected to vary
between about one and several hours. In our simulations, the
decay time was set to a constant value of 4 h. If the number of
polygons was insufficient for fitting a lifetime, we estimated
the NOx emissions only from the two polygons closest to the
source assuming that no decay occurred over this short
distance.

Equations 2, 3 were solved using the trust region reflective
algorithm (Branch et al., 1999) implemented in the Python Scipy
library (Version 1.4.1, Virtanen et al., 2020). The algorithm allows
defining bounds for the fitting parameters, which was used to
avoid negative line densities and emissions (see Supplementary
Table S2 in the supplement).

Several checks have been implemented to avoid erroneous
detection and correspondingly wrong emission estimates. The
criteria have been chosen to be easily applicable to real
observations and to avoid visual inspection of the results as
much as possible. The checks are the following:

• Plumes are not used when they overlap more than one
source.

• Plumes are not used when the direction of the center curve
and the wind direction disagree by more than ± 45°.

• Plumes are not used when the “upstream polygon” contains
more than five detected plume pixels. This criterion removes
cases where the plume overlaps with an upstream source that is
outside the swath or covered by clouds.

• Line densities are not computed for polygons that do not have
valid satellite observations inside the detected plume every
5 km in across plume direction. The criterion removes misfits
when observations near the plume center are missing.

• Line densities are not computed when the sub-polygon is
not fully inside the swath.

• Line densities or fitted emissions are not used when the
curve fit failed, because the number of observations/fluxes
was too small or their uncertainties were too large.

2.5 Uncertainties
Uncertainties of the mass-balance approach are caused by
instrument noise, uncertainties in the effective transport wind
speed, uncertainties in estimating the background, and a general
“methodological uncertainty” such as the assumption of steady-
state conditions.

Since the number of successful estimates is relatively small
and varies strongly between the sources, we tested and
compared several different ways of estimating the systematic
and random uncertainties. The first approach is based on
comparing the estimated emissions to the true emissions,
which are known in our synthetic model framework but
would not be known in reality. Differences between
estimated and true emissions were used to compute a median
bias (MB) and standard deviation (SD). Relative values were
computed by dividing by the mean emissions at satellite
overpass time (10:30 UTC). Since the differences are not
necessarily normally distributed, we computed the 16–84th
percentile range (PR) and divided this range by two to be
comparable with the standard deviation.

FIGURE 3 | Sketch of detected CO2 plume with detected pixels, center
line, and the polygon up- and downstream of the source.
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In a second approach, which is also applicable to real
observations without knowledge of the true emissions, the
uncertainty is computed by error propagation from the
uncertainties in line density σq0 and wind speed σu

σQ �
����������������
σ2q0 · u2 + σ2

u · (Qu)2
√

(4)

Here, σq0 is the uncertainty of the line density at the source
(x � 0), which is estimated as the standard error of the mean of
the individual line densities estimated for the individual
polygons. This largely captures the influence of instrument
noise which affects the accuracy of the computed line densities.
Larger plumes allow estimating the emissions from a larger
number of polygons and each polygon may extend over more
pixels in across plume direction, which reduces the
uncertainty. For wind speed we assume a fixed uncertainty
of σu � 0.5m s−1, which is a typical uncertainty of the wind
field in a global meteorological analysis product (Martin et al.,
2021).

Additional uncertainties due methodological and background
errors are difficult to quantify. In order to provide a realistic
estimate of the overall uncertainty, we add to the emission
uncertainty described in Eq. 4 a constant factor m
proportional to the emission strength and add an offset b, so
that the overall uncertainty is consistent with the PRs estimated
by the first approach. PRs are used because SDs overestimate the
variance of the estimates due to outliers. The uncertainty is then
given by

sQ �
��������������
σ2
Q + (Q ·m + b)2

√
(5)

where Q is the CO2 or NOx annual mean emissions at
overpass time.

Estimating the uncertainty of the CO2:NOx emission ratios is
more challenging. Standard error propagation relying on
Gaussian errors does not work in this case, because the
distribution of the ratios is heavy-tailed. We therefore estimate
the uncertainty as the standard deviation of the individually
estimated ratios.

2.6 Annual Emissions and Emission Ratios
The accuracy of an annual mean estimate derived from individual
overpasses on a small number of days depends critically on how
well the temporal variability of emissions is captured. In this
study, the COSMO-GHG simulations used hourly emission fields
as input, which were derived from annual emissions using fixed
diurnal, weekly and seasonal time profiles (see Supplementary
Figure S2) for the different source categories of the Selected
Nomenclature for Air Pollution (SNAP) (Pouliot et al., 2012; Jähn
et al., 2020). At satellite overpass, both CO2 and NOx emissions
from power plants are about 20% higher than the daily mean. The
weekly cycle has a reduction by about 20% on weekends and the
seasonal emissions are about 20% higher than the annual mean in
winter and about 20% lower in summer. However, real hour-to-
hour and day-to-day variability is expected to deviate significantly
from these mean temporal profiles depending on actual energy

demands (e.g., Nassar et al., 2013; Hill and Nassar, 2019; Super
et al., 2020).

Annual emissions were obtained by fitting a low order C-spline to
the individual estimates collected by all satellites present in a
constellation of a given size. We used periodic boundary
conditions to smoothly connect the end and the beginning of the
year. The fitted curve is then integrated to obtain annual emissions.
Their uncertainties are estimated by error propagation from the
random uncertainties of the individual estimates. The low-order
spline accounts for a seasonal cycle varying slowlywith time but does
not account for more rapid day-to-day variability.

Since CO2M is in a sun-synchronous orbit with fixed overpass
time, individual estimates are only representative of emissions a
few hours before the satellite overpass but not for the daily mean
(Broquet et al., 2018). It is therefore necessary to apply a
correction factor to obtain true annual mean emissions, which
introduces an additional source of uncertainty. We assume here
that a mean diurnal cycle can be obtained from electricity
demand statistics or other observations (e.g., ground-based
monitoring networks or geostationary satellites), while
deviations from such a mean behavior need to be accounted
for in the uncertainty budget.

Hill and Nassar (2019) analyzed the hour-to-hour and day-to-
day variability of emissions for the 50 largest power plants in the
United States. They found that after subtracting a mean seasonal
and diurnal cycle, the remaining hour-to-hour sh and day-to-day sd
variabilities were 28.7 and 31.0%, respectively. We use these values
to estimate the uncertainty associated with the temporal variability.
Since these variations were computed after subtracting a mean
diurnal and seasonal cycle, we implicitly assume that a mean cycle
can be obtained accurately. To compute the overall relative
uncertainty σQ, we assume that the errors are independent and
reduce with the number of successful estimates n:

σQ �
���������
s2Q + s2d

n
+ s2h
n

√
(6)

where sQ is the estimated (relative) uncertainty obtained from
integrating the seasonal cycle, sd the day-to-day and sh the hour-
to-hour uncertainty (Hill and Nassar, 2019).

Note that we do not apply any sampling bias correction factor
for the diurnal cycle but compare with the annual mean emissions
at satellite overpass. Since our results (e.g., detection threshold
and uncertainties) depend on the emission strength at overpass,
this makes it easier to generalize our results in case diurnal cycles
are different.

2.7 Quantitative Usage of NO2 Observations
Since NO2 observations will be available from the CO2Mmission
with much higher accuracy and better temporal coverage due to
the lower sensitivity to clouds, it is appealing to use NOx emission
estimates quantitatively to estimate CO2 emissions. We tested
this idea by deriving CO2 emissions directly from satellite NO2

measurements and applying a constant CO2:NOx emission ratio
computed from those overpasses, where both CO2 and NOx

emissions could be estimated reliably. Since ratios are very
sensitive to outliers, especially when NOx estimates are close
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to zero, we filter the time series of ratios for outliers more than
1.5× outside the interquartile range (25th–75th percentile).

The emission ratio is used to convert the estimated annual
NOx emissions to CO2 emissions. The uncertainty of the
emission ratio is computed from the scatter of the individual
estimates. Annual mean ratios were used because individual
estimates are too uncertain. For comparison, we also compute
CO2 emissions from NOx estimates using the true emission ratio
taken from the bottom-up inventory.

3 RESULTS

3.1 Example of Individual CO2 and NOx

Emission Estimates
Figure 4 shows examples of detected plumes from CO2

observations with low noise (σVEG50 � 0.5 ppm) and NO2

observations with high noise (σref � 2 × 1015 cm–2) on
November 2, 2015, which was mostly cloud-free, a situation
that is actually quite rare. With the NO2 observations, all nine
plumes in the swath are detected, whereas only six plumes are
detected with the CO2 observations and the plumes are also
smaller and shorter. True and false positive rates of the plume
detection algorithm depend on the parameters used in the
algorithm (Eq. 1), i.e., threshold zq, systematic error σsys,
width of Gaussian filter used for computing the local mean
σg , and size of the neighborhood nbg used for computing the
background field. The parameters used here worked well in
general but were not optimized to maximize the number of
detectable plumes. The number of detected pixels can be
increased using a lower threshold zq or a lower systematic
error σsys. However, this will increase the number of
overlapping plumes (e.g., Boxberg, Jänschwalde and Schwarze
Pumpe) and the number of false positives. In the worst case it
can even cause a whole region to be marked as detected when
background variability is very high (e.q., in the northwestern
Czech Republic).

Figure 5 shows an example of the application of the mass-
balance approach for the coal-fired power plant near Mělník
(CZ). The true CO2 and NOx emissions of the point source at
satellite overpass are 7.4 Mt yr–1 and 7.2 kt yr–1, respectively,
resulting in a CO2:NOx emission ratio of about 1,028. The
example is based on high-noise CO2 and NO2 observations.
While the plume appears quite isolated in the CO2

observations (Figure 5A), the NO2 image shows several
smaller point sources in the vicinity (Figure 5B) which,
however, do not overlap with the power plant plume.

The centerline was fitted to the 43 satellite pixels of the
detected NO2 plume. The length of the plume is 24 km and the
width is roughly 10 km. Since the wind speed in this case was
about 4.2 m s–1, the oldest CO2 at the end of the plume was
emitted about 1.6 h ago. The center curve and the wind
direction are in good agreement with a discrepancy of
only 18°.

The plume length of 24 km allows drawing five polygons
for subsequent mass balance analysis. Figure 5C shows CO2

and NO2 observations in these five polygons and in

the polygon upstream of the source. The computed CO2

and NOx fluxes and their uncertainties are shown in
Figure 5D. Note that only uncertainties in satellite
observations and wind speed are included in the error bars.
The CO2 fluxes are close to zero upstream of the source as
expected and increase to 9.0 ± 1.9 Mt yr–1 downstream in good
agreement with the true emissions of 7.4 Mt yr–1. In contrast to
CO2, the NOx fluxes decay with distance from the source. The
estimated emissions are about 40% larger than the true
emissions in this example. The estimated decay time of
1.2 ± 0.3 h is lower than the true decay time of 4 h. The
uncertainties of individual estimates are discussed in detail
in Section 3.3.

3.2 Number of Successful CO2 and NOx

Emission Estimates
The number of successful CO2 and NOx emission estimates per
year is an important factor determining how well annual mean
emissions can be quantified (Hill and Nassar, 2019). Since the
plumes are detected from the NO2 observations, the number
depends not only on the number of cloud-free overpasses but also
on the NOx emission strength. Figure 6 shows the number of
detected plumes per source from which CO2 and NOx emissions
could be estimated successfully plotted against the NOx emission
of the source.

Figure 6A shows the number of successful CO2 emission
estimates for high-noise CO2 and NO2 observations. The
median number of successful estimates per source and
satellite is about six. The scatter of this number is quite
large because of the different temporal and spatial coverage
of the different satellites. The number of successful estimates
drops by about 50% for NOx emissions smaller than 3 kt yr–1.
For the strongest NOx reduction scenario (scaling factor:
0.3), nine out of the 15 power plants would still have
emissions larger than 3 kt yr–1.

For these weak NOx sources (<3 kt yr–1), low-noise NO2

observations would be better suited. Figure 6C shows that the
number of estimates remains roughly the same even for the
weakest sources when low-noise NO2 observations are
available. Surprisingly, the number gets smaller when using
low-noise NO2 observations for some sources. These sources
are in close vicinity of other sources (e.g., Boxberg and
Schwarze Pumpe), so that the larger plumes detected with
the low-noise instrument are more likely to overlap with
neighboring plumes and are therefore discarded by the
algorithm. Note that this issue could be overcome by
increasing the threshold zq for specific point sources or
regions.

The number of successful CO2 estimates is lower when the
plumes are detected from the low-noise CO2 observations instead of
low-noise NO2 observations (Figure 6D), because CO2 observations
are more affected by clouds and are less pronounced above the
background levels.

The number of successful estimates of NOx emissions is about
50% larger than for CO2 (Figure 6B), because emission
quantification is also possible for partly cloudy scenes as NO2
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observations have a lower sensitivity to clouds. As for CO2

detection, the number of estimates drops by about 50% for
weak sources (<3 kt yr–1). When plumes are detected from
low-noise NO2 observations instead, the numbers remain

similar but they do not drop anymore for the weakest sources
(not shown). For some non-isolated plumes, the number of
successful estimates is again reduced because of more
overlapping plumes.

FIGURE 4 | Comparing plume detection using (A) CO2 observations with low noise (σVEG50 � 0.5 ppm) and (B) NO2 observations with high noise (σref � 2 ×
1015 cm−2). The triangular marker shows the location of the source and the wind direction in the model field. The bright yellow region in the central top left of panel B is the
city of Berlin.

FIGURE 5 | Exemplary application of the mass balance approach for the point source near Mělník (CZ). (A) CO2 and (B) NO2 satellite image with detected plumes
and polygons for computing line densities. (C) Across plume CO2 and NO2 values for the six polygons and fitted Gaussian curves. (D) CO2 and NOx fluxes along the
centerline and estimated CO2 and NOx emissions.
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3.3 Uncertainty of Individual Emission
Estimates

The total estimated random uncertainties were computed with Eq.
5. The median uncertainties obtained from the mass-balance
algorithm σQ were scaled to match the PRs of the time series
using a slope of m � 34% and an intercept of b � 0.33Mt yr–1 for
CO2 emissions and a slope of m � 28% and an intercept of b �
0.54 kt yr–1 for NOx emissions (Supplementary Figure S1). The
resulting median estimated random uncertainties are shown in
Figures 7A,B. The uncertainties increase linearly with source
strength, which is mostly a consequence of linear term
quantifying methodological and background uncertainties in Eq.
5. For CO2 emissions, the uncertainty is 31% of the source strength
plus an offset of 2.0 Mt yr–1. For NOx emissions, the uncertainty is
similarly 29% with a smaller offset of 0.8 kt yr–1. Uncertainties of
individual CO2 and NOx estimates have a wide range from 39 to
150% and 33–116% (10–90th percentile), respectively.

For weak sources (<10 Mt yr–1), the total CO2 uncertainty is
dominated by the uncertainties in XCO2 observations (35–72%),
because emission plumes of weak sources are generally small with
less than 100 pixels. The additional scaling of uncertainties
accounts for 25–65% of the total uncertainty. For strong
sources (>10 Mt yr–1), uncertainties of XCO2 observations only
account for 2–44% due to the larger plumes, while the additional
scaling accounts for 54–94%.Wind speed uncertainty contributes
less than 5% to the total uncertainty. This component only
includes uncertainties in the simulated wind speeds, but not
possible deviations between wind direction and plume
centerline or wind speed errors due to uncertainties in the
plume injection height. These sources of uncertainty are

included in the additional scaling factor, which also accounts
for other methodological uncertainties. For example, some
plumes were found to exhibit a highly turbulent behavior with
puff-like structures and meandering paths that cannot be
described well by our approach. Furthermore, our approach
assumes that the CO2 background is spatially smooth, while
the true CO2 background may deviate from this assumption due
to other anthropogenic sources and biospheric fluxes. These
deviations can be a significant source of uncertainty as shown
for the city of Berlin (Kuhlmann et al., 2020a).

For NOx emission estimates, the uncertainties contributed by
the NO2 observations and the wind speed are only in the range
1–23% and 4–10%, respectively. A large fraction of the total
uncertainty is due to other factors as indicated by the rather large
contribution of the scaling factor with 72–93%. The contribution
of the NO2 uncertainty increases to 3–38% when NOx emissions
are scaled by 0.3.

Figure 7C shows SDs and PRs of the individual CO2:NOx

emission ratios for the fifteen power plant sources. The relative
uncertainty is about 42% for a ratio of 1,000 with an intercept
close to zero.

The CO2 emissions can be over-or underestimated varying
between −25 and +42% (median bias) with +9% on average. The
NOx emissions are all overestimated by 26% on average (range:
8–47%). The most likely reason is that the assumed constant
NO2:NOx conversion factor f of 1.32 taken from literature is a too
strong simplification, which is also not consistent with the way
NOx was treated in our simulations. In these, the NO2 to NO ratio
was assumed to depend solely on the total NOx concentration
following Düring et al. (2011). Since the relation is not linear, it
cannot be applied to total columns. Emission ratios are

FIGURE 6 | Number of successful (A) CO2 and (B) NOx emission estimates per satellite and year for different NOx emission strengths using the high-noise
scenarios for both species. The markers denote the median for a constellation of six satellites and the error bars the range for individual satellites. The horizontal line
shows the median for all sources. The different markers and colors indicate the scaling applied to the NOx emissions. Panel (C) shows the number successful CO2

estimates from plumes detected from low-and high-noise NO2 observations and panel (D) shows the number of CO2 estimates when either low-noise CO2 or NO2

observations are used for detecting the plumes.
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underestimated because NOx emissions were overestimated by
14% (range: −53 to +7%).

3.4 Distribution of Emission Estimates Over
the Year
How well annual mean emissions can be quantified depends on
the number of individual estimates available during a year and
on how well they capture temporal variability including the
seasonal cycle of emissions. As an example, Figure 8 shows the
time series of estimates of CO2 and NOx emissions for the
Jänschwalde and Mělník power plants for a constellation of
three satellites. The black lines show the true emissions at
satellite overpass time (10:30 UTC). The weekly and seasonal
cycle is clearly visible in the true emissions. Since CO2 and NOx

emissions from power plants have the same time profiles, the
CO2:NOx emission ratios do not depend on time in our
simulations. However, since the true emissions were
computed as the sum of all emissions in the 1 km × 1 km
cell of the model grid, which may include emissions from
other sectors with different CO2:NOx ratios, the ratios may
show a weak temporal variability. This is true for the relatively
weak point source at Mělník, whereas the strong point source at
Jänschwalde has no time-dependent emission ratios.

At Jänschwalde, 13 successful CO2 and 26 NOx estimates are
available with a large spread from 2 to 7 CO2 estimates for
individual satellites. At Mělník, the numbers are 17 and 23
successful CO2 and NOx estimates, respectively. For both point
sources, temporal coverage is low in winter due to frequent cloud
cover resulting in zero successful estimates for this constellation.
The number of individual estimates of CO2:NOx emission ratios is
driven by, and hence equal to, the number of CO2 estimates. The
number can be smaller in rare cases when the NOx decay time
could not be estimated reliably. Since ratios are very sensitive to
outliers, especially when NOx estimates are close to zero, we also
filter the time series for outliers that are more than 1.5× outside the
interquartile range (25th–75th percentile).

As mentioned above, the annual mean emissions were
computed by integrating the C-spline fitted to the individual

estimates. At Mělník, the shape of the seasonal cycle is fitted well.
The annual CO2 and NOx emissions are estimated to 6.4 ±
1.7 Mt yr–1 and 7.1 ± 1.2 kt yr–1 agreeing with the true
emissions within the estimated uncertainties. At Jänschwalde,
the lack of estimates in winter results in an overestimation in
winter, but again the annual mean emissions agree with the true
emissions within the estimated uncertainties. The ratios were
estimated as 816 ± 271 (33%) for Mělník and 973 ± 104 (11%) for
Jäschwalde. Their uncertainties were computed from the
goodness of the fit.

3.5 Annual Emissions
Figure 9 compares annual mean estimates obtained for all 15
power plants with true annual emissions at satellite overpass (10:
30 UTC) for high-noise CO2 and NO2 observations. The small
markers show the individual results for the 20 different
constellations of three satellites that could be constructed from
the six simulated satellites (a–f). The large marker shows the
median of all 20 combinations and its estimated uncertainty.
Regression lines were fitted for the median and for the individual
constellations.

The CO2 emissions correlate very well with the true emissions
with a Pearson correlation coefficient (r2) ranging from 0.87 to
0.98, a slope ranging from 0.92 to 1.21, and an intercept slightly
larger than zero (Figure 9A). NOx emissions correlate even better
with r2 ranging from 0.97 to 0.98, but emissions are slightly
overestimated (Figure 9B). It should be noted that this
comparison does not include uncertainties from hour-to-hour
and day-to-day variability of emissions, because these factors
were not included in our simulations.

Figure 9C compares the estimated annual mean ratios with
the true emission ratios. The correlation between estimated and
true emission ratios is quite low with r2 ranging from 0.22 to 0.74.
The ratios were underestimated due to overestimated NOx

emissions.
Figures 9D,E compare CO2 emissions estimated from NOx

emissions using either the estimated emission ratio Re or the true
ratio Rt . When the estimated ratios are used, correlation is high
with r2 ranging from 0.94 to 0.98 and a slope ranging from 0.93 to

FIGURE 7 | Random uncertainty of estimated (A)CO2 and (B)NOx emissions as well as (C)CO2:NOx emission ratios using different measures. Standard deviation
and percentile range were computed from the differences between estimated and true emissions. Regression lines were fitted to estimated uncertainties (panel A and B)
and percentile ranges (panel C) to obtain slope and intercept.
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1.10. Since NOx emissions were overestimated and ratios were
underestimated, estimated CO2 emissions have only a small bias.
When using the true emission ratio, the positive bias of the NOx

emissions carries over to the CO2 emissions resulting in an
overestimation of the CO2 emissions. The correlation
coefficient, on the other hand, is higher with r2 of 0.99,
because NOx emissions were estimated with higher accuracy
than CO2 emissions due to the lower uncertainty of individual
estimates and the larger number of successful estimates.

Figure 10 shows the estimated uncertainty of annual CO2 and
NOx emissions for the 15 power plants for constellations of either
two or three CO2M satellites. The markers denote the median
uncertainties and the bars the range obtained for individual
constellations. The uncertainties were computed by error
propagation following Eq. 6. The overall uncertainty is thus
driven by the precision of the individual estimates and the
number of successful estimates and includes an estimate of the
uncertainty due to hour-to-hour and day-to-day variability of
emissions.

Uncertainties range from 23–119% and 18–65% for CO2

emission estimates for two and three satellites, respectively,
considering the future reduction of NOx emissions. For NOx

emissions, uncertainties range from 16–73% and 13–52% for two
and three satellites, respectively. In general, the uncertainty is
proportional to the source strength Q and can be described by a
regression line with slope m and intercept b. For CO2, the
uncertainty has a slope of 21% and an intercept of 1.1 Mt yr–1

for two satellites with no large differences for different NOx

scaling factors (Figure 10A). This suggests that the plumes could
be detected well from the NO2 observations even if NOx

emissions would be reduced significantly in the future with

improved cleaning technology. The contribution of uncertainty
in the temporal variability is roughly 50% of the total uncertainty.
The uncertainty of NOx emissions has a similar dependency on
true emissions (Figure 10B), but tends to be smaller than for CO2

(m � 0.18 and b � 0.3 kt yr–1).
When CO2 emissions are quantified using NOx emissions and

the estimated CO2:NOx emission ratio (Figures 10C,G), the
uncertainty is similar or larger than the uncertainty computed
for CO2 emissions, because of the high uncertainties of the
estimated emission ratios. The uncertainty increases for smaller
scaling factors, because the uncertainty of weaker NOx is higher. If
the true emission ratio would be known, CO2 emission could be
estimated from NOx emissions with lower uncertainty but only
when NOx emissions are not reduced drastically.

The median uncertainties are only slightly smaller for three
satellites than for two, but the range between individual
constellations is much smaller. A constellation of three
satellites is thus less likely to produce highly uncertain results
due to insufficient coverage than a constellation of two.

Figure 11A shows the number of annual CO2 emission
estimates with a given uncertainty threshold for point sources
with CO2 emissions between 9 and 11 Mt yr–1 (i.e., Pocerady,
Turow, Schwarze Pumpe, and Dolna Odra; see table 1). The
numbers were computed considering all possible constellations of
two or three satellites. Separate lines are shown for the different
NOx scaling factors, which affect the detectability of the plumes.
A constellation of three satellites would be able to quantify annual
CO2 emissions in about 80–95% of cases with an uncertainty of
30% or better. A constellation of two satellites could only quantify
less than 70% of point sources with similar accuracy. It is
interesting to note that these numbers were relatively

FIGURE 8 | Time series of estimated CO2 and NOx emissions and CO2:NOx emission ratios at (A) Jänschwalde and (B)Mělník for a constellation of three satellites
for high-noise CO2 and NO2 observations. The different colored markers denote the satellite in the constellation.
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independent of the NOx scaling factor as long as it remained
greater than or equal to 0.5.

In terms of annual NOx emissions, two and three satellites
could quantify nearly 100% of point sources with emissions of the
order of 10 kt yr–1 with an uncertainty of 30%. For a smaller
source of the order of 5 kt yr–1, the numbers would reduce to 70
and 95%, respectively.

3.6 Global Application of the Mass-Balance
Approach
The mass-balance approach can be applied globally, because it
does not require any additional expensive atmospheric
transport simulations, but solely relies on wind information
that is available from global analysis and reanalysis products. A
database of points sources is available through the global map
of emissions clumps (Wang et al., 2019), which lists about 900
point sources with CO2 emissions larger than 3.5 Mt yr–1 at
CO2M overpass time (Figure 12A). We use a threshold of
3.5 Mt yr–1 here, because it is close to the weakest source in our
study (Table 1).

To upscale our results, we use the regression lines found for the
uncertainties of annual emissions (Figures 10A,E) to calculate
uncertainties of all point sources. We expect that our results are
sufficiently representative for the sources in the database, because
about 90% of them are located in the mid-latitudes (23.4°–66.5°)
like our study area (50°N—55°N) and thus have a similar number
of satellite overpasses ranging from 1.1 to 2.7 per 11 days repeat
cycle compared to 1.7 in our study area.

Figure 12B shows the uncertainties of annual emissions computed
for the 900 point sources for a constellation of two and three satellites
showing that adding a third satellite reduces uncertainties from 35 to
28% on average. As a result, two satellites would be able to quantify
annual emissions with an uncertainty <30% for only 300 point
sources, while three satellites could quantify emissions for 600
point sources (Figure 12C). The 300 and 600 sources account for
total emissions of 6,000Mt yr–1 and 8,700Mt yr–1, which are about 16
and 24% of global anthropogenic emissions.

Therefore, adding a third CO2M satellite has the potential to
double the number of quantifiable point sources. Since our
analysis used the regression lines in Figure 10, the numbers
are likely overestimated, because some point sources are

FIGURE 9 | Annual estimates of (A) CO2 and (B) NOx emissions and (C) emission ratios for a constellation of three satellites for the 15 largest point sources in the
model domain with high-noise CO2 and NO2 observations. In addition, CO2 emissions were obtained from (D) the annual NOx emissions using an estimated emissions
ratio Re and (E) the true emission ratio Rt used in the simulations. Large markers show the median constellation and small markers the 20 possible combinations of three
satellites that could be constructed as permutations of the six simulated satellites. Regression lines were fitted to the median as well as to the individual
constellations. Slope, intercept and Pearson correlation coefficient r2 are displayed for the median and for the range of the 20 constellations. True emissions correspond
to emissions at satellite overpass at 10:30 UTC.
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insufficiently covered by the satellites (Figure 11). However, this
would especially affect a constellation of two satellites making it
likely that we still underestimate the benefit of a third
satellite here.

4 DISCUSSION

In this study, we used synthetic CO2M satellite observations to
investigate the potential of a constellation of CO2 and NO2

imaging satellites for quantifying the emissions of large point
sources. The observations were generated for scenarios with low-

and high-noise CO2 and NO2 instruments. NO2 observations
were additionally multiplied with different scaling factors (0.3,
0.5, 0.8, and 1.0) to study the expected future reduction of NOx

emissions in Europe. Our study did not include systematic errors
in CO2 and NO2 satellite observations. The effects of systematic
errors due to aerosols have been investigated in the AEROCARB
study and the CHE project that showed that these errors can be
minimized when using additional information provided by the
MAP instrument (Houweling et al., 2019; Reum and Houweling,
2020; Rusli et al., 2021).

We have developed an advanced data-driven method to
quantify point source emissions in a semi-automated way. The

FIGURE 10 | Estimated uncertainty of annual mean of emissions of (A) CO2 and (B) NOx for constellations of two CO2M satellites (median (symbols) and range
(bars) over all constellations). Uncertainties are also shown for CO2 estimates using NOx estimates and (C) estimated and (D) true CO2:NOx emission ratios. (E–H)
shows the same but for constellations of three CO2M satellites.

FIGURE 11 | Number of successful (A) CO2 and (B) NOx estimates for a given precision threshold considering constellations of two or three satellites and different
NOx scaling factors. For CO2, point sources with source strengths from 9 to 11 Mt yr−1 were considered while for NOx, sources with four to six and 9–11 kt yr−1 were
considered.
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method identifies the location of power plant plumes using a
plume detection algorithm and quantifies both CO2 and NOx

emissions using a mass-balance method applied to the detected
plume. The algorithm includes several checks to avoid outliers
and correspondingly wrong emission estimates making it a
suitable tool for an operational service that can be applied
globally.

Individual CO2 and NOx emissions were estimated with an
accuracy <51% and <37% for a source strength >10 Mt yr–1

and >10 kt yr–1, respectively. NO2 observations were essential
for detecting the plume and constraining the shape of the
Gaussian curves fitted to the individual plume cross-sections.
They remained useful even for scenarios of reduced NOx

emissions expected in the future due to more stringent air
quality regulations. For weak NOx sources (<3 kt yr–1), low-
noise NO2 observations were found to be beneficial for
successfully detecting the plume and quantifying the
emissions.

The uncertainties in our emission estimates are dominated by
uncertainties in the XCO2 and NO2 observations, the background
field and limitations of the mass-balance approach. The
uncertainties estimated here are larger than those estimated by
Nassar et al. (2017) (8–53%) for CO2 emissions from power
plants deduced from OCO-2 observations but are similar to
estimates by Reuter et al. (2019) (23–72%). These studies are
based on a small number of cases and are likely biased toward
optimal observation conditions, while in our study the mass-
balance approach was applied to every detectable plume. Model
studies show that in case of highly turbulent plumes, uncertainties
of the order of 10–20% are obtained when applying a mass-
balance method even in the case where the 3D plume distribution
and wind field is known perfectly (Kuhlmann et al., 2021; Wolff
et al., 2020). Our results for power plants are also similar to those
obtained for the city of Berlin, for which an uncertainty of about
50% was estimated for individual satellite overpasses (Kuhlmann
et al., 2020a).

For a constellation of two satellites, annual CO2 and NOx

emissions were estimated with an uncertainty of 23–119% and
16–73%, respectively. Adding a third CO2M satellite reduced
uncertainties to 18–65% for CO2 and 13–52% for NOx

emission estimates. The uncertainty includes an estimate of
the uncertainty in the temporal variability of emissions that
accounts for about 50% to the total uncertainty. Since annual
NOx emissions can be determined with better accuracy due to
the larger number of individual estimates, estimating CO2

emissions directly from the NOx emissions by applying a
representative CO2:NOx emission ratio seems appealing.
However, this approach was found to suffer significantly
from the high uncertainty in the CO2:NOx emission ratios
determined from the same CO2M observations, especially
when considering a future reduction of NOx emissions. The
accuracy of our annual estimates is larger than previous OSSE
studies that estimated uncertainties of about 5–10% (Lespinas
et al., 2020; Wang et al., 2020). However, these studies ignored
the transport model error and the impact of uncertainties in
the CO2 background due to other anthropogenic emissions
and biospheric fluxes that are included in our study.

In our simulations, we assumed a constant NO2 to NOx

conversion factor and a constant NOx lifetime, which are strong
simplifications. NOx is emitted from combustion sources
primarily in the form of NO but is then partially converted
to NO2 by reaction with ozone. With increasing distance from
the source, NO2 typically becomes the dominant component of
NOx. The partitioning depends on the intensity of solar
radiation, temperature, and ozone levels and thus changes
not only with distance from the source but also with altitude
above surface. In addition, the lifetime of NOx depends on the
concentrations of OH radicals, which in turn depend on
multiple factors including the concentrations of NO2

themselves. Close to NOx sources, OH levels are low due to
rapid reaction with NO2 to HNO3. With decreasing NO2 levels
downwind due to dilution and conversion to HNO3, OH levels
increase, thereby reducing NOx lifetime. As a consequence,
NO2:CO2 ratios change with distance from the source, and
are different under different weather conditions. Such
complicating factors need to be accounted for when trying to
estimate CO2 emissions from NO2 observations, which remains
appealing since NO2 can be measured from satellites such as
TROPOMI (and upcoming sun-synchronous and geostationary
satellites) with good accuracy and with much better spatial and

FIGURE 12 | (A) Distribution of point sources based on CO2 emissions at satellite overpass (11:30 local time) fromWang et al. (2019). (B) Estimated uncertainty of
annual emissions for point sources >3.5 Mt yr−1 for a constellation of two or three CO2M satellites. (C)Number of point sources that can be quantified with an uncertainty
below given threshold with two or three CO2M satellites.
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temporal coverage compared to the CO2M mission. However,
full chemistry simulations are required to fully explore the
potential and limitations of this approach rather than
assuming a constant lifetime as in our simulations. Since
conducting chemistry simulations at global scale with
sufficient spatial resolution is computationally too expensive,
a look-up table of NO2-to-NOx conversion factors and NO2

lifetimes could alternatively be generated from a library of
chemistry simulations and/or emulated NOx chemistry.

Our study shows that CO2M will likely be able to quantify
CO2 point sources with annual emissions larger than 3.5 Mt yr–1

using a mass-balance approach. To determine the number of
quantifiable plumes worldwide, we applied our estimated
uncertainty to a global database of point sources (Wang et al.,
2019), which showed that a constellation of two CO2M satellites
would be able to quantify about 300 sources worldwide with an
uncertainty <30%. Adding a third CO2M satellite would double
the number of quantifiable point sources, because many more
weaker sources can be quantified with an uncertainty <30%. A
constellation of three satellites is also more likely to observe a
point source under good conditions, e.g., not frequently too close
to the edge of the swath, which increases the number of individual
estimates and reduces the uncertainty of the annual emissions. A
constellation of at least three CO2M satellites will likely be
necessary to provide sufficient spatial and temporal coverage
for quantifying annual emissions with sufficient accuracy
especially for weak sources and at lower latitudes where the
temporal coverage is smaller.

The mass-balance approach applied in this study has the
advantage that it can be applied easily without expensive
atmospheric transport simulations. However, the approach
suffers from relatively high uncertainties of individual
estimates for complex plumes and from uncertainties
associated with the sparse temporal sampling of the varying
emissions. Estimates could be significantly improved with
additional information, for example, from atmospheric
transport simulations, energy demand statistics and additional
observations (e.g., ground-based networks and geostationary
NO2 satellites). Such information will become available, for
example, through the future Copernicus CO2 monitoring and
verification support services, which has the potential to

substantially reduce uncertainties of power plant emission
estimates from CO2M observations.
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