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ABSTRACT: Endothelial senescence entails alterations of the healthy cell phenotype,
which accumulate over time and contribute to cardiovascular disease. Mechanical aspects
regulating cell adhesion, force generation, and the response to flow contribute to the
senescence-associated drift; however, they remain largely unexplored. Here, we exploit
force microscopy to resolve variations of the cell anchoring to the substrate and the
tractions generated upon aging in the nanonewton (nN) range. Senescent endothelial
cells display a multifold increase in the levels of basal adhesion and force generation
supported by mature and strong focal adhesions. The enhanced mechanical interaction
with the substrate yields static endothelial monolayers that polarize in response to flow
but fail the process of coordinated cell shape remodeling and reorientation. The emerging picture indicates that senescence
reinforces the local cell interaction with the substrate and may therefore prevent endothelial denudation; however, it compromises
the ability to functionally adapt to the local hemodynamic conditions.
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Endothelia are connected monolayers of endothelial cells
(ECs) lining the luminal surface of blood and lymphatic

vessels.1 The young and healthy endothelium is a dynamic
tissue that integrates mechanical and biological stimuli
generated by the hemodynamic load and by circulating
molecular factors. It is naturally developed to control vascular
homeostasis acting as a selective barrier between the vessel’s
lumen and the surrounding tissues, preventing thrombosis,
modulating the response to infective agents and inflammatory
insults, controlling the interaction with circulating immune
cells, and promoting vascular repair.2,3

The physiological function of endothelial tissues requires
integrity of the cell monolayer, which is ensured by the
cytoskeleton, the junctional complexes, and the adhesions to
the extracellular matrix: i.e., the focal adhesions (FA). In
mature endothelia, individual ECs are laterally connected to
their neighbors by cell to cell junctions.4 At the basal side of
ECs, integrin-based FAs establish the connection between the
substrate and the contractile cell machinery, through the
function of paxillin and other proteins.5 Beyond being simple
sites of anchoring, these connections can transmit force, relay
intracellular signals, and act in concert to support the adaptive
response to biochemical and physical stimuli.1,2,6

Cellular aging is associated with morphological and
functional alterations of individual cells as well as multicellular
ensembles and represents a major risk factor for several chronic
conditions.7,8 This transformation is particularly evident in the
human vasculature,9 where the endothelial function decays
progressively with age, in a process of tissue senescence that
typically accompanies cardiovascular disease.10 At the cellular
level, endothelial senescence results from a sustained

accumulation of oxidative and inflammatory stress, leading to
genetic and epigenetic alterations.11 Specifically, senescent ECs
display an altered morphology, phenotypic changes, DNA
damage, arrest of the cell cycle, and deregulation of metabolic
pathways.12 The cell body is typically enlarged and
flattened.9,13 In addition, inflammatory signaling via nuclear
factor kB (NF-kB)14,15 is activated in response to circulating
molecules such as TNF-α, typically detected in cardiovascular
patients16 and in animal models of senescence.17 When they
are present in sufficient number within a monolayer, senescent
ECs can compromise the mechanical and functional stability of
the entire tissue.
Although they have been less explored, mechanical and

physical signals are deeply involved in regulating the delicate
equilibrium between endothelial function and dysfunction.
Locally, these factors overlap with the proinflammatory milieu
generated by circulating molecules. Specifically, flow-generated
wall shear stress (WSS) is a master determinant of endothelial
phenotype.18 The flow intensity and directionality regulate cell
polarization and functional tissue reorganization.19−23 The
WSS magnitude (venous or arterial) directly influences the cell
to cell junction dynamics, modulating tissue permeability in
response to inflammatory insults.24 As a result, disturbed
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Figure 1. An in vitro model of inflammatory endothelial senescence. (a−c) Morphological changes. (a) The average cell area is increased upon
treatment with TNF-α (n > 210 per condition, n′ = 4). Data from independent experiments are displayed as empty circles. (b) Representative
immunofluorescence images of vascular endothelial cadherin (VEC, green) and nuclei (DAPI, blue) of control ECs (CTRL, upper panel) and ECs
treated with TNF-α (TNF-α, lower panel), cell profiles with color-coded cell area, as encoded by the color scale bar. (c) Percentage of large cells
(>5000 μm2) in the control and treated populations (n > 210 per condition, n′ = 4). (d, e) DNA damage. (d) Percentage of cells presenting
multiple γ-H2AX foci in the control and treated population (n > 165 per condition, n′ = 3). (e) Representative immunofluorescence images of
nuclei (DAPI, blue) and foci of DNA damage (γ-Η2ΑΧ, red) in control (CTRL, upper panel) and cells treated with TNF-α (TNF-α, lower panel).
Corresponding magnified view of representative cell nuclei with overlapped signals (middle) and inverted grayscale signal of DNA damage with cell
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hemodynamic conditions are among the signals supporting
aging in ECs.10,25

To address the biophysical differences between young and
aged ECs, we applied a protocol26 to generate an in vitro model
of endothelial senescence. Specifically, low-passage HUVECs
were exposed to the proinflammatory molecule TNF-α (Figure
S1a). The effect of TNF-α was evaluated through the
morphological variations induced in the treated population.9,13

After 5 days of treatment the cell area was, on average, 2.3
times larger than that in the untreated control (2354 ± 87 μm2

for control and 5335 ± 294 μm2 for treated ECs with peaks
above 10000 μm2; Figure 1a−c).
In addition, the biochemical hallmarks of endothelial aging

were analyzed. These included the accumulation of DNA
damage, the cell cycle arrest, and the proinflammatory
signaling.27 Immunostaining for γ-H2AX was used to mark
foci of DNA double-strand breaks.28 The fraction of cells with
multiple (≥3) foci of DNA damage was increased 4-fold in the
treated population (16 ± 11% vs 4 ± 4% in the control; Figure
1d,e).
Cell cycle progression was evaluated using different

molecular reporters. First, the expression of cyclin-dependent
kinase inhibitors, p21CIP1 (p21) and p16INK4A (p16), activated
by the p21/p53 and p16/Rb pathway in response to DNA
damage was measured.12 Treated cells exhibited increased
levels of p21 (38 ± 6% vs 14 ± 3% in the control; Figure 1f,g),
as well as a 2-fold higher expression of p16 (Figure 1j,l). In
addition, the cell cycle progression of subconfluent ECs,
assessed by Ki-67 expression, confirmed a reduction of
proliferation in response to TNF-α (42 ± 4% for control
and 27 ± 1% for treated cells; Figure 1h,i). Finally, senescent
cells displayed reduced expression of the nuclear envelope
protein LaminB1 (4-fold reduction; Figure 1j,k), which
regulates heterochromatin organization.29

The inflammatory response was monitored by assessing NF-
kB activation.30,31 A peak in the nuclear localization of NF-kB
was detected early upon TNF-α administration (35% higher
than control) and was sustained for the entire duration of the
treatment (Figure S1g,h).
To confirm the stability of the induced phenotype,

senescence markers were reassessed after 3 days of TNF-α
treatment discontinuation. While the activation of proin-
flammatory signaling rapidly tapered (Figure S1g), both the
morphological alterations and increased levels of DNA damage
remained unaltered, with the senescent population featuring
larger cells (3 times larger than in the control; Figure S1b−d)
and extensive DNA damage (Figure S1e,f). Importantly, the
extent of DNA damage did not correlate with the cell size. This
result is well in line with recent reports indicating that genetic
alterations are at the roots of the senescent drift32 and thus

constitute a prerequisite for the ensuing morphological and
functional changes.
Previous studies reported the morphological changes and

biochemical profile of senescent ECs featuring shortened
telomeres, enlargement of the cell body, extended DNA
damage, increased mRNA levels of p16 and p21, reduction in
proliferation, and decreased levels of LaminB1 protein
expression.33−38

To further validate the adopted protocol,26 we compared the
effects of proinflammatory stimulation to those of replicative
aging.33,35,36 Replicative senescence was obtained by expanding
HUVECs for 17 population doublings, corresponding to 13−
19 passages in vitro, and monitoring their proliferative potential
reduction. The resulting population had significantly shortened
telomeres (Figure S2). On the other hand, senescent cells
obtained by treatment with TNF-α (Figure S1a) featured full-
length telomeres (Figure S2). Importantly, the two senescent
populations displayed similar morphological changes and DNA
damage. Replicative senescence involved a significant increase
in the cell area, with a significant number of cells being larger
than 5000 μm2 (Figure S3a,b). DNA damage was also
increased, with 75% of cells having DNA double-strand breaks,
as highlighted by multiple foci of γ-H2AX accumulation
(Figure S3c,d). Altogether these data indicate that, despite the
genotypic differences between cells obtained by proinflamma-
tory stimulation or prolonged replication, common features are
present in the two populations. Size increase and extensive
genetic damage along with the markers of senescence appear
even with preserved telomeres.
Endothelial monolayers sense and respond to flow by

collectively adapting individual cell shape, orientation, and
polarization. When they are exposed to physiological
hemodynamic conditions,39 ECs elongate and align their
body along the direction of flow.40−42 At the same time, cell
polarization is rotated in the counterflow direction, with the
coordinated translocation of the Golgi apparatus upstream of
the cell nucleus.43

We exploited a custom-developed parallel plate flow
chamber40 to evaluate the adaptation to flow of monolayers
generated by senescent ECs. In these experimental settings,
mature endothelia grown under static conditions were exposed
to a steady-state, fully developed laminar flow, yielding a WSS
of 1.4 Pa for 16 h (Videos S1 and S2). The collective response
was evaluated by measuring the end point cell density,
elongation, orientation, and polarization and comparing them
with control values obtained in mature endothelia formed by
young and healthy ECs (Figure 2). Individual cell polarization
was defined as the angle between the vector starting from the
cell nucleus and ending at the Golgi apparatus and the
direction of flow (Figure 2f).

Figure 1. continued

profile highlighted by a dashed line (right). The scale bar is 10 μm. Arrowheads point to individual γ-H2AX foci. (f−l). Altered cell cycle
progression. (f) Percentage of p21 positive cells in control and the treated (day 5) population (n > 305 per condition, n′ = 4). (g) Representative
immunofluorescence of the cell nuclei (inverted greyscale signal) and p21 positive cells (inverted greyscale signal) of control ECs (CTRL, upper
panel) and ECs treated with TNF-α (TNF-α, lower panel). (h) Percentage of Ki-67 positive cells in control and treated (day 5) population (n >
1970 per condition, n′ = 3). (i) Immunofluorescence images of the cell nuclei (inverted greyscale image) and Ki-67 positive cells (inverted
greyscale image) of control ECs (CTRL, upper panel) and ECs treated with TNF-α (TNF-α, lower panel). (j) Western blot analysis of LaminB1
and p16 expression and (k, l) corresponding quantifications (n′ = 4 for LaminB1, n′ = 3 for p16). The expression of the housekeeping gene
GAPDH was used as a reference. All values in bar plots are reported as mean ± SEM, the population means are reported as a horizontal line inside
the boxplot, the population medians are reported as a dark gray horizontal dashed line inside the boxplot, the vertical length of the box represents
the double of the SD and whiskers report the 5th−95th percentile. *p < 0.05, ****p < 0.0001.
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ECs in control endothelia monolayer exhibited an increased
aspect ratio (2.3 ± 0.78 under flow and 1.9 ± 0.67 under static
conditions; Figure 2a,b,h) and the collective reorientation of
the cell body along the direction of flow (from 49 ± 25° to 20

± 14°; Figure 2a,c,i), while preserving a high cell density (487
± 123 cells/mm2 before and 590 ± 96 cells/mm2 after the
flow; Figure 2g). In contrast, exposure to flow did not alter the
cell morphology or the organization of endothelia formed by

Figure 2. Response of EC monolayer to physiological flow. (a) Analysis of EC monolayer. Immunofluorescent analysis of control (CTRL) and
senescent (SEN) cell monolayers in the absence of flow (Static) and upon exposure to flow, leading to a WSS value of 1.4 Pa (1.4 Pa). The analysis
was performed after 16 h of exposure to flow reporting immunostaining of vascular endothelial cadherin (VEC, green). The white arrow indicates
the flow direction. (b) Cell shape adaptation to flow. Visual map of cell aspect ratio (as encoded by the color scale bar). (c) Cell alignment to flow.
Visual map of cell orientation (as encoded by the color scale bar). (d) Cell polarization in response to flow. Immunofluorescent analysis of control
(CTRL) and senescent (SEN) monolayers in the absence of flow (Static) and upon exposure to flow, leading to a WSS value of 1.4 Pa for 16 h (1.4
Pa). Immunostaining of nuclei (blue) and Golgi apparatus (red). The white arrow indicates the flow direction. (e) Quantification of cell
polarization reported as the radial distribution of polarization angle (n > 6200 per condition, n′ = 3). (f) Working definition of polarization angle.
Quantitative analysis of (g) cell density (nfield of view > 35 per condition, n′ = 3), (h) aspect ratio (n > 390 per condition, n′ = 3), and (i) orientation
(n > 390 per condition, n′ = 3) in control (CTRL) and senescent (SEN) monolayers in the absence of flow (Static) and upon exposure to flow,
leading to a WSS value of 1.4 Pa for 16 h (1.4 Pa). Data from independent experiments are displayed as empty circles. In box plots the population
means are reported as a line inside the boxplot, the population medians are reported as a dark gray horizontal dash line inside the boxplot, the
vertical length of the box represents the double of the SD, and whiskers report the 5th−95th percentile. *** p < 0.001, ****p < 0.0001.
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senescent cells. Here, ECs maintained a round shape (2.0 ±
0.72 under flow and 1.9 ± 0.65 under static conditions; Figure
2a,b,h) and random orientation (42 ± 26° before and 45 ±
27° after flow; Figure 2a,c,i). The cell density was similarly not
perturbed by the flow (446 ± 80 cells/mm2 before and 467 ±
65 cells/mm2 after the flow; Figure 2g). This is a clear
departure from the control cell behavior, demonstrating that
senescent endothelia lose their ability to actively remodel and
adapt their shape in response to flow. On the other hand, a
clear counterflow cell polarization was achieved under both
conditions (Figure 2d−f). This adaptive response is therefore
independent of the concomitant cell shape remodeling and
reorientation and is surprisingly not compromised by aging.
Adaptation of endothelial monolayers to flow requires the

generation of cellular tractions and their transmission to the
substrate.44 The compromised response of senescent ECs
(Figure 2) points to an alteration of this process. Their
mechanical interaction with the substrate was therefore
quantitatively evaluated. The maximum normal adhesion
force, i.e., the resistance of individual cells to a vertically
applied pull, is efficiently measured by FluidFM-based single-
cell force spectroscopy (SCFS; Figure 3a).45−47

FluidFM measurements (Figure 3) were performed on
isolated ECs.45 In fact, the interaction with neighboring cells,
as in a monolayer, increases the measurement complexity and
does not allow the direct comparison of adhesion force in
different populations. ECs were allowed to fully adhere and
spread under unconfined conditions. In these experimental
settings, they featured an average size larger than that in
confluent monolayers.48 This variation is displayed in the
Table S1.

Specifically, the tested senescent cells were subdivided into
two groups, including small (<5000 μm2; average area of 2207
± 267 μm2; Figure 3b and Table S1) and large cells (≥5000
μm2; average area 8626 ± 769 μm2; Figure 3b and Table S1).
Small senescent ECs featured an average area and circularity
(0.73 ± 0.05; Figure S4) similar to those of the control
population (2155 ± 108 μm2 and 0.61 ± 0.03, respectively;
Figure 3b, Figure S4, and Table S1). Cells in the large
senescent group reached a size of 5000 μm2 and beyond and
featured higher circularity (0.78 ± 0.02; Figure 3b and Figure
S4).
The values of cell size for the control and senescent

populations (Figure 1a and Figure S1b) are distributed with
high skewness and do not fulfill the requirements of a normal
ordering. The asymmetric range is instead well captured by a
log-normal distribution49 (p value >0.05; Figure S5). Cells
included in the FluidFM experiments (Figure 3) were selected
to represent the entire distribution range, as displayed in the
respective histograms included in Figure S5. Therefore, the
resulting standard deviations reflect the population distribu-
tion, yielding a large variability around the mean.
All senescent ECs had significantly elevated adhesion forces

(341 ± 32, 887 ± 102, and 217 ± 21 nN in small senescent,
large senescent, and control ECs, respectively; Figure 3c). In
smaller senescent ECs, the stronger connection to the substrate
was naturally translated into an increment of adhesion force
normalized to cell area and perimeter (Figure 3e,f).
In large senescent ECs, however, the measured adhesion

force values normalized to cell area were equal to the control,
as the increments in size and adhesion compensated each other
(Figure 3e). The concomitant increase in circularity (Figure

Figure 3. Maximum cell adhesion force of individual ECs. (a) Schematic representation of FluidFM experiments. (b) Quantification of adhesion
force in control (CTRL) and senescent small (SEN small, <5000 μm2) and large (SEN large, ≥5000 μm2) cells. Corresponding quantification of
(c) the cell area and (d) perimeter. Quantification of adhesion force normalized to (e) the cell area and (f) the cell perimeter. (nCTRL = 37, nSEN =
32, nSEN,small = 10, nSEN,large = 22, n′ = 6). Data from independent experiments are displayed as empty circles. In boxplots the population means are
reported as a horizontal line inside the boxplot, the population medians are reported as a dark gray horizontal dashed line inside the boxplot, the
vertical length of the box represents the double of the SD, and whiskers report the 5th−95th percentile. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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S4) was reflected in a dramatic increase of the force over the
cell perimeter (Figure 3f).
The increased adhesion force measured in senescent ECs

(Figure 3c) could be the result of a higher number of FAs
established with the substrate and/or of the increased
mechanical maturation of individual adhesion points.50

To evaluate these hypotheses, we analyzed the biochemical
and mechanical properties of FAs in young and senescent ECs.
Specifically, the FA density and their size were measured on
the basis of the distribution of paxillin, a major cytoplasmic
component of adhesion plaques (Figure 4a).51 While the linear
FA densities at the cell periphery were similar under the two
conditions (0.3 ± 0.04 FAs/μm for control and 0.4 ± 0.05
FAs/μm for senescent cells; Figure 4b) the area of individual
FAs was significantly higher in senescent ECs (1.4 ± 0.1 μm2

for control and 1.8 ± 0.1 μm2 for senescent cells; Figure 4c).
To assess whether the larger size of FAs was linked to an

increased mechanical maturity, we measured the force

transmitted at the level of individual adhesion points by
means of confocal traction force microscopy (cTFM),
quantifying tractions and correlating them with the respective
FA.52−55

On average, individual FAs established by senescent cells
exerted 1.6-fold higher average tractions (0.15 ± 0.02 kPa for
control and 0.24 ± 0.02 kPa for senescent cells; Figure 4e) and
2.6-fold higher force on the substrate (0.29 ± 0.05 nN for
control and 0.75 ± 0.15 nN for senescent cells; Figure 4f).
The total force per FA area depends on the mechanical

maturation of adhesion sites50 and was similarly enhanced in
senescent ECs (0.14 ± 0.01 kPa/μm2 for control and 0.19 ±
0.01 kPa/μm2 for senescent cells; Figure 4g). Consistently,
phosphorylated paxillin (pPax), a biochemical marker of the
FA mechanical activity,51 was enriched in the FAs formed by
senescent cells (1.3 ± 0.1 μm2 for control and 1.6 ± 0.1 μm2

for senescent cells; Figure 4h).

Figure 4. Traction forces and focal adhesion maturation. (a) Individual focal adhesions revealed by immunostaining for paxillin (Pax, inverted
greyscale signal) in control (CTRL) and senescent (SEN) cells and magnification of the cell periphery (middle) The scale bar is 5 μm.
Corresponding immunostaining of phosphorylated paxillin (pPax, right). (b) Density of FA established by control (CTRL) and senescent (SEN)
cells. The number of FAs is normalized to the cell perimeter (n > 1200 per condition). (c) Quantification of FA area, based on the expression of
paxillin, in control (CTRL) and senescent (SEN) cells (n > 380 per condition). (d) Combined confocal traction force microscopy (cTFM) analysis
of FA density, size, and tractions. Representative immunofluorescence image of paxillin (Pax, green, upper panel) and analysis of the paxillin signal
to get the FA profile (Pax, green, middle panel). Corresponding map of tractions with overlay of FAs profile (white outlines, FA profile, lower
panel). (e) Total traction per FA in control (CTRL) and senescent (SEN) cells (n > 700 per condition). (f) Quantification of total force per FA in
control (CTRL) and senescent (SEN) cells (n > 700 per condition). (g) Quantification of total traction per FA normalized to the corresponding
FA area (n > 700 per condition). (h) Quantification of activated FA size, based on the expression of phosphorylated paxillin (pPax), in control
(CTRL) and senescent (SEN) cells (n > 380 per condition). Results from a representative experiment are presented (n′ = 3), and all values are
reported as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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Biological senescence in ECs is typically described as the
deviation from a young and healthy phenotype, which results
from the accumulation of metabolic, genetic, and epigenetic
damages.12 Noxious signals of a different nature are responsible
for and sustain this drift. Inflammatory circulating molecules
have a systemic effect, while a disturbance of the local
hemodynamic load creates regions in which groups of cells age
rapidly and expose the vasculature to atherosclerosis.25,56 The
mechanism by which individual cell senescence compromises
the overall function of endothelial tissues likely entails the
disruption of collective processes allowing mature monolayers
to adapt to flow.11,12 These include the coordinated
remodeling of cell shape and polarization, which is consistently
observed along the vascular tree.25,43

The first element to consider is the altered morphology of
senescent ECs that can be observed both in vivo11,57 and is
reproduced in vitro (Figure 1a−c and Figures S1b-d and 3a,b).
Senescence typically promotes a multifold size increase (Figure
1a,b and Figures S1b,c and 3a). In the context of a confluent
monolayer, each senescent cell will engage the space previously
occupied by several (e.g., two to five) healthy cells (Figure
1a,b, Figures S1b,c and 3a). In this way, senescence decreases
the local cell density and the sites where cell to cell junctions
can be established, reducing the possibility of their dynamic
remodeling.
The active rearrangement of junctional sites and adhesions

to the substrate is needed during endothelial repair and
adaptation to the local hemodynamic conditions.24,40,44 In
particular, the orientation of cell ensembles requires a
coordinated remodeling of cell to cell and cell to substrate
adhesions, to preserve the monolayer integrity while
collectively acquiring an anisotropic configuration.58,59

When they are exposed to flow, senescent monolayers are
unable to adapt and remain isotropic (Figure 2a,b,h),
suggesting that either the flow sensing mechanism or the
ensuing response is impaired. Interestingly, senescent ECs can
polarize in response to the flow directionality (Figure 2d,e), a
process requiring the translocation of the Golgi apparatus
upstream of the nucleus and supporting the cell migration in
the counter flow direction.43 This observation suggests that
flow sensing is indeed retained; yet the processes of
coordinated reorientation cannot be fulfilled.
To attain a collective change in shape and orientation, cells

must coordinate force generation and transmission to the
substrate with the transient and partial disassembly of the
connections established at the basal side: i.e., the FAs.5,6,44

Senescent ECs feature an increased mechanical maturity of
adhesion points, which transmit larger tractions and forces to
the substrate (Figure 4d−h).60 These cells generate and apply
more contractility. When these cells are probed for their
maximum resistance to normal tractions, they also demonstrate
a stronger adhesion to the substrate (Figure 3c), which is
directly proportional to their increased perimeter (Figure 3d,f).
Stronger adhesion to the substrate may impede the dynamic
processes required for collective cell orientation and alignment
to flow.
In vivo, endothelial senescence appears under nonphysio-

logical hemodynamic conditions, which are typically found at
vessel bifurcations, in correspondence with arterial stenosis, or
downstream of cardiovascular implants.10,25,57,61,62 Here, the
combination of proinflammatory signaling and disturbed flow
endangers endothelial function and integrity, promoting the
migration of ECs away from the noxious stimulus63,64 and/or

their progressive deadhesion and death.65 Endothelial
denudation (i.e., the loss of coverage by a confluent
endothelium leading to the exposure of the underlying
substrate) and the ensuing chronic inflammatory process
generate hotspots for the formation and maturation of
atherosclerotic plaques.10−12,56

While the alteration of cell to cell junction distribution and
FA dynamics compromises their collective remodeling,
senescent ECs may represent an extreme measure to avoid
local tissue denudation. Larger individual cells may serve to fill
the space generated by the progressive cellular loss. The
establishment of stronger connections may increase their
resistance to detrimental hemodynamic conditions. In this way,
stronger adhesions to the substrate (Figure 3) and increased
contractility (Figure 4) may allow the endothelium to delay
denudation by locally enforcing a static and resistant coverage.
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Tomaso Zambelli − Laboratory of Biosensors and
Bioelectronics, Department of Information Technology and
Electrical Engineering, ETH Zurich, 8092 Zürich,
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