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Abstract
Advanced control concepts for building energy sys-
tems, such as Model Predictive Control, often require
models that forecast the energy demand of a building.
Such models are commonly based on first principles,
however the cost and effort required to develop such
models may be prohibitive for real-life applications.
As an alternative, we introduce and validate a data-
driven simulation approach based on Artificial Neural
Networks to forecast the heating demand of buildings.
The forecast is enhanced with the help of two cor-
rection methods, based on online learning and fore-
cast error auto-correlation. Validation results based
on data from four office buildings suggest that our
method shows better forecasting performance than a
fitted 5R3C building model.

Introduction
Predictive control of buildings allows for energy and
money savings as well as reduction of CO2 emissions
(Halvgaard et al., 2012). This can be achieved by
predicting future states of a system and optimally
determining according set-points, making use of re-
newable energy when available or taking advantage
of time-dependent electricity prices for example. The
concept of Model Predictive Control (MPC) has suc-
cessfully been demonstrated in the building energy
domain (Sturzenegger et al., 2016; Oldewurtel et al.,
2012). Several authors, however, (see for example
(Jain et al., 2018; Smarra et al., 2018)) argue that a
major bottleneck with this approach is the need to
develop and maintain first principles models. Indeed
the time and effort necessary to develop, customise
and maintain first principles models can often be pro-
hibitive for real life deployment to building energy
management.
With increasing availability of high-resolution energy
monitoring data in the building domain, the possibil-
ity of data-driven modelling approaches (or Machine
Learning based approaches) arises. With the help of
methods such as Artificial Neural Networks (ANN)
previously measured data of the ambient tempera-
ture and the heating demand can be used to predict

the future heating demand of the building.
In (Bünning et al., 2019) a heating demand forecast-
ing approach based on ANN with forecast correction
methods based on online learning and forecast error
auto-correlation was introduced. The aim is to gen-
erate a 24h forecast of the heating demand in 15-
minute intervals. The method showed high predic-
tion accuracy on a modern multi-use building and
outperformed other regression-based methods such as
random forests or support vector machines, as well
as fitted resistor-capacitor models with varying com-
plexity. Moreover, the dependence of ANN prediction
performance on initialization parameters, which are
commonly randomly set, as critized by Recht (2018);
Henderson et al. (2018) and others, is significantly
lowered with the shown methods.
Here we explore this approach further and show that
the concept generalises well to different types of data
and buildings. In particular we apply the method
to four different buildings, each with different build-
ing characteristics and data availability. By compar-
ing the prediction accuracy to a fitted 5R3C building
model, which gives a reasonable trade-off between de-
tail and modelling/fitting effort, we demonstrate that
the approach outperforms the R-C model in all pre-
sented cases. Furthermore, the robustness to initial-
izing parameters of the ANN is also preserved for all
test cases.

Methodology
This section is divided into four subsections. First,
the forecasting task is introduced. Second, the fore-
casting method based on ANN with forecasting cor-
rection based on online learning and error auto-
correlation is explained. Third, the used R-C building
model is introduced. Finally, an overview of the val-
idation study, key-performance indicators and build-
ings is provided.
Forecasting task
In this study the following forecasting task is as-
sumed: A heating demand forecast is made at mid-
night for the next 24 hours, sampled every 15 minutes.
The training and validation data are assumed to be
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Figure 1: Artificial neuron.

sampled at the same frequency. Furthermore, perfect
knowledge of the ambient temperature for the fore-
casting period is assumed. This is done as it avoids
uncertainty in the inputs when comparing the differ-
ent methods.
Artificial Neural Network with forecast cor-
rection
We use ANN for the heating demand forecast. An
ANN is a sequence of artificial neurons, also called
nodes. A schematic of a node with three inputs is
shown in Figure 1. The output of a node is the ac-
tivation function applied to the weighted sum of all
inputs. The nodes weights are the parameters that
are fitted in the training process of the ANN. For a
more detailed explanation of ANN, see (Basheer and
Hajmeer, 2000) for example.
In (Bünning et al., 2019) two forecast correction
methods were developed. The first forecast correc-
tion method is based on error auto-correlation and is
not specific to ANN. The use of the error autocor-
relation is motivated by the assumption that errors
in building energy forecasts are correlated over time,
because the source of the error persists for more time
than one sample: for example if a window is opened
or a failure in a fluid pump occurs, the forecasting
error will last for more than one interval, because
the source of the error is not always eliminated dur-
ing this interval (window closed or fluid pump fixed).
Thus, if an error is measured, it can be used to make
an estimate of the error in the following forecasting
steps.
Figure 2 demonstrates the first correction procedure.
Offline, based on the measured errors of all past fore-
casts (which are stored in a data-base), an estimation
of the error auto-correlation is made. As a first step
in the online phase, a forecast is made with an ANN.
We will call this the uncorrected forecast.With the
help of the auto-correlation and the forecasting error
of the previous day (which is the uncorrected forecast
of the previous day minus the measured load of that
day), an estimation for the forecasting error of the
uncorrected forecast can be made. The uncorrected
forecast is then corrected by adding the estimation
of the forecasting error, giving rise to the corrected
forecast.
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Figure 2: Forecast correction scheme.

Tambient

Czone

Rwall1

Q1

Rwall2

Cwall

Rinfiltration

Q2

Rcore

Ccore

Rground

Tground

Tzone

Figure 3: 5R3C building model.

The second forecast correction method is specific to
ANN and makes use of online learning. Instead of
only training on the basis of the training set, the ANN
is retrained based on the measurement of the lat-
est heating demand realization and the correspond-
ing network inputs at the end of every day. This
biases the network towards the recent behaviour of
the building and appears to improve the forecasting
accuracy. The two forecast correction methods can of
course be combined.
R-C building model
In order to benchmark the performance of the ANN
and the correction mechanisms, we use a 5R3C build-
ing model. This model was chosen because on the one
hand it should offer enough complexity to capture the
governing thermal behaviour of the buildings and on
the other it should perform well with a modelling ef-
fort similar to the neural networks. More detailed
models, for example an EnergyPlus model combined
with an occupancy model adapted to each building,
may outperform the 5R3C and ANN models in terms
of forecasting accuracy, but would require consider-
ably more effort to develop and maintain, as discussed
above.
Figure 3 shows a schematic of the 5R3C model. The
model features a capacitor for outer walls, a thermal
zone and inner walls. Furthermore, there are five re-
sistors - two for the outer walls, one for the inner
walls, one for heat conductions towards the ground
and one for building infiltration. All capacitor and
resistor values are optimization variables in the fitting
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process. The total heating demand of the building

Q̇total = Q̇1 + Q̇2, (1)

is distributed between Q̇1 (directly to the zone) and
Q̇2 (to the core) to be able to model both direct heat-
ing systems such as radiators and indirect ones such
as concrete core activation. The share, cf , between
Q̇1 and Q̇2 is also a decision variable in the fitting
process:

Q̇1 = cf × Q̇total. (2)

To emulate a simple control system, the temperature
of Czone, Tzone, is controlled with a P controller,

Q̇total = kp × (Tset − Tzone), (3)

where Tset denotes the temperature set point for the
zone. The gain, kp, is also a decision variable in the
fitting process.

Validation study
General description
To validate the neural networks and the correction
methods and to benchmark them against the R-C
model, four different buildings were selected as case
studies.
For each building heating demand measurements and
ambient temperature measurements in 15 minute in-
tervals were available over a period of one to three
years. In each case 70% of the available dataset was
used for model training (for both the ANN and the
R-C models) and 30% of the dataset was used for
model validation.
As a key performance indicator the coefficient of de-
termination,

R2 = 1 −
∑

i∈N (yi − f(xi))2∑
i∈N (yi − ȳN )2 , (4)

is used. It is zero if the forecast f(xi) is as good as
taking the average ȳN of the data in the considered set
N as a forecast, and one if the forecast is exactly the
same as the validation data yi. R2 becomes negative
if the forecast is worse than taking the average.
The different buildings are introduced in the following
and are depicted in Figure 4.
Building (a) is the NEST building at Empa in
Dübendorf, Switzerland. Opened in 2016, it is a
multi-use building with residential units, office units
as well as meeting rooms and a fitness center. Its
heating and cooling system is build to imitate a dis-
trict energy system. The building is therefore referred
to as a ’vertical district’ (as opposed to a conventional
district, which is built horizontally). 13.5 months of
measured demand data was used for this building.

(a) NEST at Empa, c©
Zooey Braun.

(b) ETL at ETH Zürich
(ETH Zürich, 2019).

(c) Bauhalle at Empa, c©
Heinrich Helfenstein.

(d) Verwaltungsgebäude at
Empa (Empa, 2019).

Figure 4: Buildings used in the validation study.

Building (b) is the ETL building located at the zen-
trum campus of ETH Zürich. It is an eleven-story
office building that comprises several research insti-
tutes, experimental laboratories and a machine shop.
Six stories lie below ground. 36 months of measured
demand data was used for this building.
Building (c) is the Bauhalle at Empa. The building
has offices and testing facilities for material science
experiments. The offices are spread over three stories
while some of the laboratories have the ceiling height
of these three stories. The building also has a base-
ment. 24 months of measured demand data was used
for this building.
Building (d) is the Verwaltungsgebäude at Empa.
This is a three-storey office building with some meet-
ing rooms. 24 months of measured demand data was
used for this building.
Specific models for the case studies
Artificial Neural Networks with two hidden layers,
each containing eight nodes were chosen as the net-
work architecture. They are trained with ten epochs
on the training set, meaning that the network’s
weights are updated ten times based on each sam-
ple in the training data. The choice of parameters
for the architecture and training process is based on
a sensitivity analysis regarding these parameters.
As inputs to the network the following features were
chosen:

1. ambient temperature
2. hour of the day
3. weekday/weekend
4. heating load of the previous day
5. heating load of the previous week

The feature hour of the day was one-hot encoded,
meaning that instead of one input with a continuous
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value, 24 inputs with binary values (either 0 or 1) were
used. Our experiments suggest that this improves
prediction accuracy compared to a continuous input.1
The feature weekday/weekend is also binary. All other
features are continuous. The Python package Keras
(Chollet, 2018) was used to implement the network
and the solver adam (Kingma and Lei Ba, 2015) was
used for the optimization of the network parameters.
The training of one network takes between five and
twelve minutes.
The 5R3C model was implemented in Modelica
(Mattsson et al., 1998) and simulated in Dymola
(Brück et al., 2002). To fit the parameters, the model
was coupled to Python and optimized with a CMA-
ES (Covariance Matrix Adaption Evolution Strat-
egy) optimizer to minimize the sum of squared errors
between the predicted load and the reference load.
The optimization budget was fixed at three hours for
each model. As the model does not allow for the
other inputs, only the ambient temperature is used.
The room temperature set point is Tset = 20◦C and
Tground is set to constant 12◦C in all cases.2

Results and discussion
Variance
The prediction performance of ANN is dependent
on their parameters, some of which are random, for
example the initialization parameters of the node
weights. If ANN are used in a control context, a
reduction of the variance in prediction performance
is desirable, as the controller needs to be designed for
the expected accuracy of the forecast.
To investigate the variance in prediction accuracy,
100 instances of ANN were trained and tested for each
building. Each individual network is initialized with
random node weights. As the training process is non-
convex this leads to a different prediction accuracy of
each network.
Figure 5 (a)-(d) shows the variance of the coefficient
of determination for 100 different instances of neu-
ral networks for each building (with boxes describing
the interquartile range, whiskers of 1.5 times the in-
terquartile range, circles indicating outliers and the
orange line indicating the median). The first col-
umn depicts uncorrected networks, the second col-
umn networks with error auto-correlation correction,
the third column networks with online learning and
the last column a combination of both correction mea-
sures.

1This can be explained with the monotonic increase of the
ReLu activation functions that are used in the network. A con-
tinuous implementation of the time as an input would imply
that the influence of the time on the demand is either mono-
tonically increasing or decreasing.

2This might have an effect on the accuracy of the fore-
cast. However, a more detailed implementation would require
a human-in-the-loop model for the temperature set-point and
a ground model for the ground temperature, both of which
require extensive modelling effort.

Subplot (a) corresponds to the NEST building (build-
ing (a)) that was also used in (Bünning et al., 2019).
It can be seen that the median of the coefficient of de-
termination increases whereas the variance decreases
from no correction to the combination of both cor-
rection methods. Online learning gives the bigger
improvement when compared to the correction based
on the error auto-correlation. However, the combina-
tion of both gives the best results: even though the
variance does not improve much, the median of the
coefficient of determination further increases. The
same trends are observed for buildings (b) and (c).
In the case of building (d), the trend is not as strong,
but still present. The median increases with each
individual correction method, but the median R2 of
the online learning correction is lower than the one
for error auto-correlation correction. The median of
the combined method is again the highest one. The
maximum achieved coefficient of performance is lower
for the online learning and the combination of both
correction methods compared to the uncorrected net-
work and the correction method based on error auto-
correlation. This is due to overcorrection of already
well predicting networks.
The difference in the result between building (d) and
the other buildings could be explained by the qual-
ity of the available data set. The measured heating
demand of building (d) has a quantization of 0.5 kW
at a maximum load of 26.5 kW, while for all other
buildings the measured demand has a quantization of
0.5 kW at a maximum load of at least 86 kW. Quan-
tisation error effects are therefore likely to be more
pronounced for building (d).
These results generally support the findings of Bün-
ning et al. (2019) and indicate that the correction
methods can be beneficial for a range of different
buildings. An interesting question is why the combi-
nation of both correction methods tends to improve
over the individual methods. Both correction meth-
ods address a similar problem: the mismatch between
forecast and realization due to recently changed be-
haviour of the building. It seems, however, that the
two methods correct for slightly different, comple-
mentary phenomena. The correction based on error
auto-correlation can react very efficiently to errors
that have occurred shortly before the end of the last
day’s forecast and correct the beginning of the next
day’s forecast, when the auto-correlation, hence the
confidence in the error estimation, is high. However,
strong corrections are only possible for the first few
intervals of the day, as the auto-correlation of the
forecasting error decreases during the course of the
day. The correction based on online learning, on the
other hand corrects to a lesser extend on each indi-
vidual interval, as the ANN still needs to be able to
generalize. However, this correction can be applied
over the course of the full day’s forecast and not just
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Figure 5: Variance of the coefficient of determination for all buildings. The label of the subplots (a)-(d) reflects
the number of the building used in the case study.

Table 1: R2 of different modelling approaches for all buildings.
Building ANN uncorr. ANN auto ANN online ANN auto+online 5R3C model

Building (a) 0.818 0.860 0.878 0.885 0.761
Building (b) 0.886 0.907 0.933 0.936 0.890
Building (c) 0.674 0.752 0.793 0.809 0.676
Building (d) 0.856 0.858 0.860 0.862 0.747
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Figure 6: Forecast trajectory example from building (b) test set with one instance of an ANN and both correction
methods.
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at the beginning of the day. The combination of both
therefore gives the best result.
Accuracy
Table 1 shows the mean coefficient of determination
(as opposed to the median in Figure 5) of the dif-
ferent ANN approaches for all buildings as well as
the coefficient of determination achieved by the 5R3C
building model. It can be seen that the average R2

increases for all four buildings when the individual
correction methods are applied. A combination of
both approaches (auto + online) gives a further im-
provement in all cases. The ANN with the applied
correction methods outperform the 5R3C model in
all investigated cases.
These results are of course by no means a proof
that the ANN with corrections outperforms R-C type
models in general. The R-C model could for exam-
ple be made more complex or the parameter fitting
could be improved leading to higher coefficients of de-
termination. However, the results do give an indica-
tion that the corrected ANN perform reasonably well
compared to conventional methods and generalize to
different types of buildings.
We note in passing that it is not possible to com-
pare the coefficient of determination between build-
ings, because it depends on the distribution of heat-
ing loads in the data set, which is different for each
building.
Physical behaviour of the forecast
Figure 6 shows the scaled forecast and real heating
load of building (b) from an excerpt of the test set.
The figure demonstrates that the real load is cap-
tured reasonably well by the forecast, although the
peaks in the last third of the excerpt are not pre-
dicted well. This lends further support to our earlier
observations on the accuracy of the forecasts based
on the coefficient of determination. Moreover, even
though ANN are known to sometimes have weak ex-
trapolation capabilities, in our case the forecast does
not show any unrealistic behaviour in the sense of un-
reasonably high or low forecasting values. The results
for all other buildings3 also point to the same conclu-
sion. While this does not guarantee that non-physical
behaviour is impossible with other forecasting inputs
or for other building cases, the positive results for
all four buildings indicate a robustness that could be
sufficient for non-safety-critical control tasks.
To further increase the confidence in the forecast, it
could be limited in its derivative and maximum/min-
imum values.

3The full forecasting plots of both training and test set for
one instance of an ANN with both correction methods applied
to all four buildings are shown in Appendix A and Appendix
B.

Limitations
The results of the case studies indicate that the meth-
ods are sensitive to the quality of the measurement
data. A quantitative statement cannot be made yet.
This will be considered in following studies.
Furthermore and as mentioned before, this validation
study gives an indication that the methods developed
in (Bünning et al., 2019) generalize to different build-
ings. However, it does not give a theoretical proof of
any kind. The confidence in the methods is strength-
ened by the consistency of the results.

Conclusion
Generating and maintaining building models based
on first principles is often considered prohibitively ex-
pensive and time consuming for applications such as
real-time optimal control. The increasing availabil-
ity of data in the building domain allows the use of
data-driven modeling approaches. However, such ap-
proaches have the disadvantage that they - in theory
- allow non-physical behaviour and that they depend
on random parameters such as the initialization of
node weights in ANN.
In this case study we have validated two forecast cor-
rection methods for ANN for the forecasting of sub-
hourly heating demands in buildings. The results for
four different buildings have shown that the resulting
ANN perform well when compared to a 5R3C build-
ing model in these cases. Furthermore, the correc-
tion methods avoid non-physical behaviours and sig-
nificantly reduce the variance in ANN performance,
which can improve confidence in using ANN in the
frame of control tasks.
In future work we want to quantify the quality of
input data vs. accuracy of forecast trade-off. More-
over, we want to couple the introduced approaches
to randomised optimisation methods (treating fore-
casts from different networks as samples) and robust
optimisation methods (using the intervals).
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