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ABSTRACT

This paper describes the process of creating uncertainty-infused synthetic profiles of building perfor-
mance. The synthetic profiles are utilized as a resource for evaluating the response of trained machine
learning models to unseen events. Applications of the introduced method can benefit researchers and
practitioners who train data-driven building models on limited historical data and is particularly useful
when a physics-based model of the building is unavailable. As an original contribution, we propose a con-
ditional deep convolutional Generative Adversarial Network (GAN) for projecting multi-dimensional
time-series profiles of building performance. The proposed GAN reflects climate and operation variations
into the synthetic building performance profiles, while preserving the internal consistency within the
generated data. To ensure high quality synthetic profiles, this study validates the plausibility of generated
data through qualitative (visualization) and quantitative (Pearson correlation, Wasserstein distance)
assessments. Synthetic profiles are fed to a trained reinforcement learning model and a rule-based con-
troller to compare their performances in the presence of uncertainty. Results show that with limited
training data, a reinforcement learning model’s response can be fairly sensitive to uncertainties and dis-
turbances, insofar, some advantages over rule-based controllers may be overestimated. To ensure the
reproducibility of the presented results, this study is conducted on open data and models are shared

dS open source.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction
1.1. Background

The emergence of data-driven models has played an important
role in improving the performance of building energy systems, be it
at planning and design phase, throughout the operation stage, or
during retrofit. As data collection from buildings grow in popular-
ity, data-driven models adopt a more essential position in building
energy research. Successful implementations of data-driven mod-
els are reported for a wide range of applications spanning from
energy saving [1] to peak shaving [2] and display a significant
impact on building performance. For instance, a recent study
showed that data predictive control can save roughly 25% of cool-
ing energy when compared to conventional rule-based controllers
[3].
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One challenge that impedes widespread application of data-
driven models is the inadequacy of historical data for assessing a
model’s response to uncertainties and disturbances [4]. While
most studies of building energy analytics discuss data adequacy
for training a model, few raise questions about a model’s response
to unseen data, particularly beyond the available training, valida-
tion, and test datasets. Meanwhile, a model’s robustness to shifts
in a dataset can determine its practicality for real-world applica-
tions [5].

1.2. Knowledge gap

The aforementioned inadequacy of data can be potentially
addressed by creating synthetic alternatives to the original dataset.
There are two common approaches for producing synthetic build-
ing performance profiles: (1) infusing randomness into calibrated
physics-based models [6] and (2) generating synthetic data
directly from measurements by using back-box models [7]. A com-
bination of both methods have also proven useful. For instance, by
combining physics-based and data-driven techniques a recent
study demonstrated a promising solution to create synthetic
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energy profiles for an entire city [8]. Furthermore, generating per-
muted building energy data has also been explored by combining
data-driven models with manual random sampling [9].

Given the complexity and computational burden of generating
multidimensional time-series profiles, using end-to-end black-
box models for creating synthetic data has been seldom explored.
However, with the introduction of implicit density modelling using
Generative Stochastic Networks [10] and later Generative Adver-
sarial Networks (GAN) [11], projecting synthetic data has been
greatly facilitated. GANs have been studied for non-intrusive load
monitoring [12], projecting buildings occupancy patterns [13],
generating electricity load patterns [7], and creating cooling load
profiles [14].

There is an opportunity to further explore the capabilities of
GANs for projecting synthetic data, particularly with the aim to
evaluate the robustness of models. However, using GAN projec-
tions for model assessment faces a number of challenges, which
have not been addressed in the literature. Previous studies use
GAN to project one-dimensional synthetic energy data. There is a
need to assess GANs’ potential for projecting multiple time-series
profiles and evaluate their capability to preserve covariations
within multidimensional outputs. Furthermore, none of the previ-
ous studies seek to control the characteristics of the GAN outputs
based on a desired set of features (e.g., climate, or operation).
Instead, earlier studies divide the profiles into a number of groups
and train a separate GAN on each subset, which is inefficient and
prone to overfitting. Finally, an in-depth discussion on the plausi-
bility of the synthetic building energy data is still missing from
the literature. This includes GANs’ capabilities to project out-of-
sample scenarios for expanding training or test datasets, as well
as its potential to test the robustness of trained machine learning
models.

1.3. Original contributions

With the aim to address the abovementioned challenges, this
paper introduces a new end-to-end data generation method for
projecting synthetic building performance profiles. The proposed
method is particularly useful for data-driven building energy
research with limited access to data for rigorous testing. The orig-
inal contributions of this study is as follows:

1. A GAN that generates multi-dimensional synthetic time-
series profiles with constraints over climate and operation
characteristics. Contrary to the existing methods that project
one-dimensional profiles and have no control over the charac-
teristics of synthetic generations, we propose a conditional
GAN that creates multidimensional profiles with association
to desired occupancy and weather conditions.

2. Proposing qualitative and quantitative methods to evaluate
the plausibility of the synthetic data. Previous studies sufficed
to comparing the statistical characteristics of the original data
with synthetic projections. The current study uses statistical
and element wise metrics for evaluating the capability of the
proposed GAN in preserving internal and external covariations.

3. Demonstrating the potential of synthetic profiles for evalu-
ating models’ response to unseen events. This study is the
first to use GAN-produced building energy profiles as out-of-
sample test data. Through synthetic scenarios, we evaluate
the robustness of a Reinforcement Learning (RL) agent to poten-
tial uncertainties and disturbances.

1.4. Organization of the paper

The remainder of the paper is organized as follows. Section 2
provides a general description of GANs, conditioning generative
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models, and the application of convolution layers. Section 3 intro-
duces the case study, describes details of the proposed GAN, and
explains the techniques that are adopted for improving stabiliza-
tion and convergence during training. Section 4 provides qualita-
tive evaluations of the synthetic data, followed by quantitative
assessments of the GAN projections. This section then provides
an example of how synthetic projections can be utilized to evaluate
the performance of a trained RL agent. Section 5 opens a discussion
on the strengths and weaknesses of the proposed GAN as well as
the evaluation methods and metrics. Section 6 draws the conclu-
sions and maps possible future paths of synthetic data generation
for evaluating machine learning models.

2. Method
2.1. GAN

Creating synthetic building performance profiles with physics-
based models requires setting up a building energy model followed
by a calibration process, which makes the procedure cumbersome
and difficult for non-experts. An alternative is to generate synthetic
data directly from observations without the need for any physics-
based modelling. Recent advances in Al enables learning of pat-
terns directly from a dataset and generating samples that are sim-
ilar - but not identical - to the original data.

The most successful examples of Al-generated synthetic data
are demonstrated by GANs. For instance, fake images that are
indistinguishable from real photos [15]. GANs are often composed
of two multilayer perceptrons (neural networks), i.e., a generator
and a discriminator [16]. The objective of the generator is to cre-
ate synthetic samples that resemble the actual data. The objective
of the discriminator is to reject unrealistic samples that are cre-
ated by the generator. To enable a variety of outputs from the
generator, it is vital to incorporate randomness into the model.
This is foreseen through a latent noise placeholder for the gener-
ator (Fig. 1).

The process of training a conventional GAN is composed of two
main steps: (1) training the discriminator, and (2) training the gen-
erator (Fig. 2). During the first step, the discriminator is trained on
a set of real samples with their corresponding targets set to “True”
(i.e. 0), and a set of synthetic samples with their corresponding tar-
gets set to “False” (i.e. 1). The first step helps the discriminator to
learn manifolds that distinguish real samples from synthetic sam-
ples. During the second step, the discriminator is trained on syn-
thetic samples that are produced by the generator, and assigned
with a target label of “True” (i.e., 0). In this step, the discriminator’s
layers are frozen. Namely, the weights and biases of the discrimi-
nator will not update during training. Instead, the gradient of the
error is backpropagated [17] from the discriminator to the genera-
tor, and therefore, updates the generator’s weights and biases.
These two training steps are repeated sequentially until the error
of the discriminator and the error of the generator converge. Once
the training is finished, the generator encodes the synthetic
samples.

GANs are particularly suitable for creating synthetic data
because the generator does not average the outputs, but rather
selects one or another. This prevents the generator to project
smoothed (averaged) outputs. Furthermore, the only way that a
generator can improve the quality of its synthetic creations is
through instructions from the discriminator. These instructions
(i.e., the gradient of the error) are conveyed through the back-
propagation of information from the discriminator to the genera-
tor. Backpropagating the error highlights which parts of a
synthetic projection are inconsistent with the characteristics of
real samples.
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Fig. 1. The architecture of a GAN.
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Fig. 2. The process of training a GAN and encoding synthetic data: (1) training the discriminator, (2) training the generator, (3) encoding synthetic data from the trained
generator. Steps (1) and (2) are iteratively repeated until the model converges. An open padlock means the weights and biases of the model are updated during training/

encoding.

2.2. Conditional GAN

In this study we propose a conditional GAN as initially intro-
duced by Mirza and Osindero [18]. Conditional GANs are a subcat-
egory of generative models, in which the generator and the
discriminator are both conditioned (labelled) based on a set of
exogenous features. This capability of conditional GANs makes
them particularly suitable for controlling the characteristics of syn-
thetic outputs [19]. Hence, an important application of conditional
GANSs is to address shortcomings in the training dataset [20]. Fig. 3
shows the scheme of a GAN that is conditioned on exogenous fea-
tures. Similar to the original notion of GANSs, the proposed model is
composed of a discriminator and a generator, both of which are
multilayer perceptrons. The process of training a conditional GAN
is also similar to the description in Section 2.1.The GAN proposed
in this study is conditioned based on both climate and operation
characteristics, as previous studies have proven their importance
in training neural networks [21]. Imposing such constraints allows

us to control the synthetic outputs of the generator, based on the
outdoor climate and building’s operation.

(1) Conditioning the model on climate features will ensure that
the synthetic profiles co-vary with the weather condition.
This conditioning is necessary when generating data for a
district as the climate is identical for all member buildings.

(2) Conditioning the model on operation features will guarantee
that the synthetic profiles also co-vary with the occupancy
pattern. Imposing this constraint enables us to combine dif-
ferent occupancy scenarios with various climate conditions.

2.3. Deep convolutional GAN

GANs are mostly composed of two perceptrons, i.e. discrimina-
tor and generator. Each perceptron can be either a shallow (vanilla)
neural network, or a deep network composed of convolutional lay-
ers [22]. Convolutional layers are preprocessing kernels that apply
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Fig. 3. The architecture of a conditional GAN.

filters to multi-dimensional data (e.g. images), with the aim of
extracting important features from the inputs [23]. The filters often
scan 2D arrays or a 3D tensors by sliding from one corner to the
opposite. This scanning process can be repeated for maximizing
the compression of features with minimal information loss (i.e.
deep convolutional network). Previous studies have shown that
GANs with sequences of convolution layers (i.e. deep convolutional
GANSs) noticeably outperform shallow variants [24].

2.4. Conditional deep convolutional GAN

The model proposed in this study follows the same procedures
of sections 2.1, 2.2 and 2.3, forming a conditional deep convolu-
tional GAN [25]. In this setup, both generator and discriminator
are convolutional neural networks, which are conditioned on iden-
tical exogenous features. In the generator, concatenated inputs and
conditions are first passed through dense layers and then fed to
convolution layers. In the discriminator, inputs are first fed to con-
volutional layers, then reshaped into a 1-dimensional vector (also
known as flattening), and after concatenation with condition fea-
tures are forwarded to the dense layers. Further details of the con-
ditional deep convolutional GAN adopted in this study (e.g., layers,
filters, hidden units, etc.) as well as the training process are pro-
vided in the case study section.

3. Case study
3.1. Data and modelling environment

Given the importance of reproducibility — particularly for data
driven and machine learning models - this study resorts to open
data and codes for model development and evaluation. We demon-
strate the potential of GANs for generating synthetic data by using
the CityLearn OpenAl Gym environment [26]. CityLearn is a
python-based open-source environment for training RL models,
and benchmarking performance against Rule-Based Controllers
(RBC) [27]. The open-source characteristics of CityLearn facilitates
reproducing the results of this study [28]. Furthermore, all scripts
and codes that are necessary for setting up and training the GAN
are hosted at an open GitHub repository and shared though a per-
manent link [29] for future benchmarking.

The CityLearn environment hosts a virtual district of nine build-
ings with dissimilar occupancy, geometry, and construction char-
acteristics. The objective is to control the Domestic Hot Water
(DHW) and chilled water storages to reduce net electricity con-
sumption. The model already contains pre-computed values of
building demand profiles, as well as indoor air temperature and
relative humidity. In this study we focus on Climate Zone 1 of
the CityLearn datasets which corresponds to a hot - humid
weather (ASHARE climate zone 2A).

3.2. Model architecture

Since the objective of this study is evaluate the robustness of RL
agents against unseen data, we aim to distort the RL inputs and
observe the model’s response. Specifically, we focus on perturbing
building energy performance profiles, as they play a major role in
the RL’s performance. The CityLearn environment requires six
building performance parameters to train an RL agent (Table 1,
Feature category: Building performance). These six parameters
form the target of the generator and the input of the discriminator
in our GAN setup. As mentioned before, conditioning GANs on a set
of constrains can allow us to control the characteristics of projec-
tions. Given the availability of information, we assume that build-
ing performance values are a function of variation in the climate
and building’s operation. Climate characteristics (Table 1, Feature
category: Climate constraints) can affect a variety of building per-
formance features i.e., indoor air temperature, unmet set-point dif-
ference, indoor relative humidity, and cooling load. Operation
features (Table 1, Feature category: Operation constraints) can

Table 1
Description of GAN input features, divided by category.

Feature GAN Features

category

Size and unit (type)

performance
24 values per day
in [C]
Unmet set-point
difference
Indoor relative
humidity
Equipment
electric power
DHW heating
load
24 values per day
in [kWh]

constraints
1 categorical label
per day type:
[Weekday,
Saturday, Sunday/
holiday]
1 categorical label
per day: [on, off]

Building Indoor air temperature

24 values per day in [C]
24 values per day in [%]
24 values per day in [KWh]
24 values per day in [kKWh]
Cooling load

Operation Day Type

Daylight
saving
status

Climate constraints

24 values per day

in [C]

Outdoor Relative

Humidity

Diffuse Solar

Radiation

24 values per day

in [W/m2]

Outdoor Dry-bulb Temperature

24 values per day in [%]
24 values per day in [W/m2]

Direct Solar
Radiation
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affect all of the six building performance features. Therefore, we
condition the proposed GAN on climate and operation constraints
to control the shape and magnitude of synthetic building perfor-
mance profiles. We did not condition the GAN on building’s char-
acteristics (e.g. thermal conductivity), as these values are
assumed to be fixed or have very little variation throughout the
year. Indeed, some variables such as the efficiency of the systems
and the degradation of materials’ reflectance and conductance over
multiple years can affect long-term building performance profiles.
However, these information are seldom readily available, and
therefore, are excluded from GAN conditions. Given that the RL
requires hourly inputs of building performance for training the
agent, the GAN is set to project synthetic outputs at hourly tempo-
ral resolution. On the other hand, operation constraints are
assigned at daily intervals, which limits hourly GAN projections a
length of 24.

Given that the proposed model should generate 24-hour time-
series profiles of building performance, the annual training dataset
is reshaped into daily arrays. Each array is a vector of six building
performance variables consisting of 24 values. Similarly, the
annual climate data is reshaped into daily profiles, in which tem-
perature, relative humidity, as well as direct and diffuse solar radi-
ation each have 24 values. Once converted into daily profiles, the
annual dataset of 365 days is divided into 252 weekdays, 51 Satur-
days and 62 Sundays/holidays. Such disproportionate division of
labels can cause an imbalance in the distribution of the input data
and potentially bias the GAN toward favoring weekday profiles. To
overcome this issue, samples with Saturday and Sunday/holiday
labels are repeated in the dataset until all three categories (Week-
day, Saturday, and Sunday/holiday) have equal shares in the input
dataset. The post-processed datasets that are reshaped into 24-
hour time-series profiles are available from a permanent link to
an open repository [30].

As mentioned in section 2.4, the GAN proposed in this study is
composed of a generator and a discriminator, both of which are
deep convolutional neural networks. The architecture of the condi-
tional GAN is borrowed from [31] and then iteratively optimized.
In the following, the generator and discriminator of the optimized
GAN are individually discussed and the training and tuning process
is explained in detail.

Conv ~

Building
performance

Operation mmmm

Climate s

Flatten
Concat
>~
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3.2.1. Discriminator

The discriminator is a deep convolutional neural network
(Fig. 4). The inputs, targets and the network’s architecture is pro-
vided in Table 2.

e The building performance feature is a 24 by 6 array, in which
columns represent the hours of the day. Array rows correspond
to the building performance features as described in Table 1.

e The climate constraint feature is a one-dimensional array and
composed of four climate parameters as described in Table 1.
Each climate parameter has one value for every hour of the
day, forming an array with size of 24. We concatenate all four
climate parameters into a single array with a shape of 96.

e The operation constrains are defined based on the type of day,
and therefore, the labels are assigned to days rather than hours.
Since the operation features are discrete categorical labels, they
are one-hot-encoded onto a logic array. The type of day feature
has three categories, and the daylight saving status has two
modes (Table 1). Therefore, the operation constraints form a
single array with a size of five.

3.2.2. Generator

The Generator is also a deep convolutional neural network.
Inputs are fed into the generator in two separate steps. First, oper-
ation and climate constrains are concatenated with the latent
noise. After a dense layer of activations, the array is reshaped to
form a tensor. A schematic representation of the generator’s archi-
tecture is provided in Fig. 5.

3.3. Training and encoding

Inputs are scaled between —1 and 1, while the targets are set to
0 (“True”) and 1 (“False”). Both the generator and discriminator are
trained using the Adam optimizer [32] with a learning rate of
0.0002, a momentum decay rate of 0.5, and binary cross-entropy
as the loss [33]. The model is trained for 5’000 epochs, where each
epoch is a full pass through all samples. During each pass, the dis-
criminator and the generator are updated twice on different com-
binations of data.

Concat

Fig. 4. Scheme of the proposed discriminator, conditioned on operation and climate features (for more details see Table 2).
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Table 2
Detailed description of the proposed discriminator (for a schematic representation
see Fig. 4).

Layer type Input size Function (details) Output
(name) (from layer) size
Input Layer - Input (building [24,6,1]
(input1) performance)
Input Layer - Input (operation [5]
(input2) constraints)
Input Layer - Input (weather constraints) [96]
(input3)
Convolution 2D [24,6,1] ELU, depth = 4, [24,6,4]
(Conv1) (input1) filter = [48,12], stride=[1,1]
Convolution 2D [24,6,1] ELU, depth = 8, filter=[12,6], [24,6,8]
(Conv2) (input1) stride=[1,1]
Convolution 2D [24,6,1] ELU, depth = 12, filter=[6,3], [24,6,12]
(Conv3) (inputl) stride=[1,1]
Convolution 2D [24,6,1] ELU, depth = 16, filter=[3,3], [24,6,16]
(Conv4) (input1) stride=[1,1]
Concatenate [24,6,4] Concatenate (3rd axis) [24,6,40]
(Cat1) (Conv1)
[24,6,2]
(Conv2)
[24,6,12]
(Conv3)
[24,6,16]
(Conv4)
Flatten [24,6,40] Flatten [5760]
(Cat1)
Concatenate [5760] Concatenate (1st axis) [5861]
(Cat2) (Flatten)
[5] (input2)
[96] (input3)
Fully Connected [5861] (Cat2) ELU, n = 1024, dropout = 0.4 [1024]
(Densel)
Fully Connected  [1024] Sigmoid, n = 1, [1]
(Dense2) (Dense1)
Table 3

Detailed description of the proposed generator (for a schematic representation see
Fig. 5).

Layer type Input size Function (details) Output

(name) (from layer) size

Input Layer - Input (operation constraints) [5]
(input1)

Input Layer - Input (weather constraints)  [96]
(input2)

Input Layer - Input (latent Gaussian noise) [101]
(input3)

Concatenate [5] (input1) Concatenate (1st axis) [202]
(Cat1) [96] (input2)

[101] (input3)

Fully Connected [202] (Cat1) ELU, n = 2304, dropout = 0.4 [2304]
(Densel)

Reshape (Prepl) [2304] Reshape (24,6,16) [24,6,16]

(Densel)

Convolution 2D [24,6,16] ELU, depth = 16, [24,6,16]
(Conv1) (Prep1) filter = [48,12], stride=[1,1]

Convolution 2D [24,6,16] ELU, depth = 8, [24,6,8]
(Conv2) (Conv1) filter = [48,12], stride=[1,1]

Convolution 2D [24,6,8] ELU, depth = 4, [24,6,4]
(Conv3) (Conv2) filter = [48,12], stride=[1,1]

Convolution 2D [24,6,4] tanh, depth = 1, filter=[1,1],  [24,6,1]
(Conv4) (Conv3) stride=[1,1]

Following the recommendations in the literature [24], we
refrain from modifying the properties of the Adam optimizer and
instead focus on tuning the hyper-parameters of the GAN. Charac-
teristics of the convolution layers (e.g., filter size, channel depth,
stride) and the properties of the dense layers (e.g., number of hid-
den units) are fine-tuned through a grid search. In the proposed
setup, we noticed that under-parametrizing the discriminator with
fewer channels or smaller filters forces the model to converge after
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a few hundred epochs, namely, before the generator learns to pro-
duce satisfactory results. On the other hand, over-parameterizing
the discriminator heavily penalizes the generator and obstructs
the convergence of the GAN, even after 10'000 epochs of training.
In the proposed setup, using dissimilar architectures for the gener-
ator and the discriminator improves perturbations in the synthetic
data. Therefore, the generator is devised with a deep architecture
(i.e. five consecutive convolution layers) and the discriminator
with a wide architecture (i.e., four parallel convolution layers).
The discriminator shows high sensitivity to the size and depth of
the convolution filters and channels, insofar that small modifica-
tions impedes convergence. On the contrary, the performance of
the generator shows high sensitivity to the number of hidden units
in the dense layer.

To improve the chances of convergence, provide better stability,
and encourage variability in synthetic projections, the following
techniques are adopted:

e Noisy labels: A small noise is added to the discriminator’s target
labels. The noise is deployed by flipping five percent of the tar-
get labels from true to false, and vice versa. This percentage
decays with each epoch and reaches zero before the training
is finalized. Since we want the discriminator and the generator
to incrementally improve their performances together, flipping
the labels will prevent the discriminator to confidently reject
the generator’s projections early in the training process [34].

o Soft labels: The true labels are uniformly scattered between 0.9

and 1.0. Similarly, false labels are uniformly distributed

between 0 and 0.1. This strategy prevents the discriminator

from assigning excessive weight to a small set of features [35].

Noisy samples: Building performance profiles (i.e., energy con-

sumption and indoor air quality), are associated with 5% of uni-

formly distributed noise. Spreading the samples between 0.95

and 1.0 adds a small tolerance to the discriminator’s acceptance

of viable samples and improves the chances of convergence

[36].

e Experience replay: A random sample (also called experience) is

saved from the mini-batch in every epoch of training. Once

the number of experiences match the mini-batch size, the dis-
criminator is trained on a mini-batch of experiences. This prac-
tice prevents the generator from projecting the same output
from different samples of the latent space (i.e. mode collapse)

[35].

Felix culpa: To boost variability in GAN’s outputs, we add an

extra step to the training process, in which (1) the generator

and discriminator are fed with dissimilar occupancy constrains,
and (2) generator’s projections are neither rewarded, nor penal-
ized. The objective of this step is to encourage the model to
explore plausible combinations of climate and operation, partic-
ularly ones that are not included in the training dataset. When
using dissimilar occupancy constraints, the discriminator con-
veys inconsistant feedbacks to the discriminator. As a result,
the generator occasionally swaps the occupancy profiles of
weekday, Saturday, and Sunday (holiday). On the other hand,
using different occupancy constrains makes the training process
unstable. To prevent divergence and mode collapse, we refrain
from using the conventional reward strategy (i.e. “True” or

“False”) at this particular training step. Conventional reward

would require the discriminator to either fully embrace the

unseen outputs (i.e. “True”) or completely reject them (i.e.,

“False”). However, each of these responses for unseen data

would adversely affect the generator. If rewarded with “True”,

the generator will converge too quickly and never learn the
covariation between climate features and building performance
variables. If penalized with “False”, the generator never learns
to explore out-of-sample combinations. Therefore, we set dis-
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Fig. 5. Scheme of the proposed generator, conditioned on operation and climate features (for more details see Table 3).

criminator’s target to indifference, i.e. neither fully “True”, nor
completely “False”, (Gaussian noise with ¢ =0.5 and ¢ = 0.1).
Our conditioning and rewarding strategy here dubbed ’felix
culpa’ allows the generator to gain some degree of confidence
over its perturbed projections, which enables exploring plausi-
ble scenarios beyond the training domain.

The process of training the GAN consists of four steps:

1) The discriminator is fed with real building performance
samples, the corresponding climate data, and operation
labels. The target of discriminator is set to 0 (“True”) with
a small Gaussian noise. During training, the weights and
biases of the discriminator are updated.

2) The generator is fed with random noise, climate data, and
random operation conditions to project synthetic building
performance samples. The synthetic building performance
samples, climate data, and a random set of operation condi-
tions are fed to the discriminator. The target of the discrim-
inator is set to 0.5 (“indifference”) with a small Gaussian
noise. During training, the weights and biases of discrimina-
tor are frozen and do not update. However, the weights and
biases of generator are updated through the backpropaga-
tion of the gradient of the error from the discriminator to
the generator.

3) The generator is fed with random noise, climate data, and
operation conditions. The generator then projects synthetic
building performance samples. Synthetic building perfor-
mance samples, climate data, and operation conditions are
fed to the discriminator. The target of discriminator is set
to 1 (“False”) with a small Gaussian noise. During training,
the weights and biases of the discriminator are updated.

4) The generator is fed with random noise, climate data, and
random operation conditions and projects synthetic building
performance samples. The synthetic building performance
samples, climate data, and a random set of operation condi-
tions are fed to the discriminator. The target of discriminator
is set to O (“True”) with a small Gaussian noise. During train-
ing, the weights and biases of the discriminator are frozen
and do not update. However, the weights and biases of the
generator are updated through the backpropagation of the
gradient of the error from the discriminator to the generator.

The model is separately trained on each building’s data of the
CityLearn environment, resulting in nine different GANs. The archi-
tecture of the GAN and the hyperparameters of training are identi-
cal for all buildings. The training often converges after ca. 2000
epochs, an example of which is shown in Fig. 6. Rarely, the training
process may need re-initialization, particularly if the losses of the
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Disc (synthetic)
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Loss (binary cross-entropy)
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Fig. 6. The Progress of training the GAN. Each epoch consists of four steps: (1)
training the discriminator on real samples, (2) training the generator using felix
culpa, (3) training the discriminator on synthetic samples, and (4) training the
generator using conventional rewards.

generator and the discriminator do not converge. Training is exe-
cuted on an NVIDIA Quadro RTX 6000 with 24 GB of GDDR6 mem-
ory, which lasts ca. 1500 seconds. Once the training is finished,
GAN models are fed with climate conditions, occupancy conditions,
as well as latent noise for every day of the year. During this pro-
cess, the GAN encodes 365 samples, each consisting of 24-hour
profiles. With this procedure, the GAN reconstructs the profiles
of an entire year (i.e., 8760 hours) for every building. The encoding
process is repeated to create 50 synthetic annual profiles (i.e.,
building performance scenarios) for each building.

4. Results

By encoding the trained generator, every building is associated
with a set of 50 synthetic performance scenarios. Given the nature
of GANSs, all synthetic scenarios are assumed to be equally plausi-
ble. For brevity, we will only discuss the GAN projections for one
building of the dataset (i.e., Building 1). Other buildings display
similar performances and may be studied further in detail by
exploring the open-source model [29] and data [30] that are shared
through permanent links. In this section, we analyze the suitability
of GAN’s projection though both quantitative and qualitative
assessments.
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Fig. 7. Contrasting synthetic projections against the original data.

4.1. Qualitative assessment

To evaluate the quality of the synthetic data, we visually com-
pare GAN’s projections with the original dataset [37]. Fig. 7 con-
trasts annual and daily profiles of synthetic projections, against
those of the original training data. The figure only compares three
variables for brevity, focusing on parameters which are affected by
both climate and operation while being easy to interpret. We
observe that the synthetic data projected by GAN follow the annual
trend of variation for all three variables (Fig. 7 - top row). A deeper
dive into daily snapshots of the profiles (Fig. 7 - bottom row), show
that the synthetic data also suitably capture hourly variations
within a day.

Fig. 7 shows that the shape and magnitude of some synthetic
profiles greatly differ from those of the original data. This observa-
tion is directly related to the felix culpa reward strategy as
described in section 3.3. Given that the trained GAN associates
uncertainty with the operation constrains (Table 1- Day type), each
synthetic profile can be randomly conditioned based on any of the
three types of day, i.e. weekday, Saturday, or Sunday/holiday. Felix
culpa enables the GAN to hallucinate low-probable conditions, in
which the actual operation of the building does not follow the pre-
sumed type of day. A good example is when an office is open dur-
ing a weekend to host a special event, or closed during a weekday
due to an emergency. The proposed felix culpa effect can be simply
switched off as shown in Fig. 8. However, high reliance on the type
of day can limit the range of synthetic scenarios, and therefore is
not recommended. The 2020 pandemic has shown that such unex-
pected changes in buildings’ occcupancy can influence building
operation in unforeseen ways.

4.2. Quantitative assessment

For quantitative assessment, we evaluate two sets of character-
istics in the GAN’s outputs: (1) the synthetic projections’ alignment
with climate constraints and (2) the internal consistency within
synthetic projections.
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Fig. 8. Comparing synthetic profiles with felix culpa disabled (a) and enabled (b)

during training.
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e The first assessment reveals to what extent the GAN preserves
covariations between climate constraints and synthetic projec-
tions. This is to verify that changes in the weather are properly
reflected into the synthetic data. For instance, if the original
data shows high covariation between cooling loads and direct
solar radiation, the same patterns of covariation should be
observed in the synthetic data.

e The second assessment shows how well the GAN has learned
co-occurrences of different variables within the synthetic pro-
files. This helps us to understand if synthetic projections are
plausible scenarios. For instance, electricity demand and DHW
demand are both heavily driven by the type of day, and there-
fore, any covariation between these two features in the original
training data should be also preserved in the synthetic
projections.

We use two metrics to quantify the similarity between profiles,
i.e., (1) the Pearson correlation coefficient [38] for assessing linear
covariation between two variables and (2) the Wasserstein dis-
tance [39] for evaluating the distance between the distributions
of two variables. For brevity, we discuss the quantitative assess-
ment for three pairs of variables. However, the quality of synthetic
projections is consistent for all variables.

4.2.1. External covariations

In this section we demonstrate GANs capability to preserve cor-
relations between climate constraints and synthetic projections.
Table 4 shows the Pearson correlation coefficient between the cli-
mate characteristics and the building performance within the orig-
inal training data. In this table, values closer to 1 correspond to
greater positive correlation, and values closer to —1 indicate higher
negative correlation. Values close to zero indicate very small or no
correlation between variables. The p-values for all variable-pairs
are significantly smaller than 0.05, hinting that the null hypothesis
is extremely unlikely for the reported correlation values.

Fig. 9 compares the Pearson correlation coefficients of the orig-
inal dataset (Table 4), with those of the synthetic projections. We
report the Pearson values for three pairs of variables, which are
specifically chosen to cover a range of correlation from positive
to negative:

e Outdoor air temperature displays high positive correlation with
indoor air temperature (Fig. 9, T_out vs T_in),

e Direct solar radiation does not show a significant correlation
with indoor relative humidity (Fig. 9, R_dir vs RH_in),

e Outdoor relative humidity has a negative correlation with cool-
ing demand (Fig. 9, RH_out vs Cool).

Fig. 9 shows that the GAN is able to capture linear correlations
between climate and building performance features and properly
reflect them in its synthetic projections.

We also evaluate the similarity between the probability distri-
butions of climate and building performance variables. This assess-

Table 4
Pearson correlation between climate and building performance variables.
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Fig. 9. Contrasting synthetic projections against the original training data using the
Pearson correlation coefficient.

ment would provide a statistical overview of the synthetic
projections, and specify how well the GAN captures the frequency
of occurrence of different events. We use the Wasserstein distance
to evaluate the minimum cost of converting one distribution to the
other. Smaller Wasserstein values correspond to greater similarity
between the probability distributions, while a value of zero indi-
cates that the two distribution are identical. For consistency, we
use the same variables of Fig. 9 for evaluating the Wasserstein dis-
tance. Interestingly, the Wasserstein metric does not reveal statis-
tical similarities between outdoor relative humidity and cooling
demands (Fig. 10, R_out vs Cool), although they showed a negative
linear correlation in Fig. 9. The same applies to the similarity
between direct solar radiation and indoor relative humidity
(Fig. 10, R_dir vs RH_in). However, the GAN properly captures
the strong statistical similarity between outdoor and indoor air
temperatures (Fig. 10, T_out vs T_in).

4.2.2. Internal consistency

Given that GAN’s output is a set of six time-series profiles, any
covariations among synthetic projections should be carefully stud-
ied. Therefore, we first quantify correlations between building per-
formance variables to understand the strength and direction of
linear relationship within the training dataset (Table 5). Afterwards
we assess whether the proposed GAN preserves the correlations
across its synthetic multi-dimensional projections.

Given that there are no significant negative correlations within
building performance variables, we use three pairs of variables that
cover the range from strong positive to negligible correlation:

e DHW demand shows a strong positive correlation with electric-
ity demand (Fig. 11, DHW vs Elec),

e Indoor air temperature displays small correlation with cooling
demand (Fig. 11, T_in vs Cool),

Climate variables

Outdoor temperature

Outdoor relative humidity  Diffuse solar radiation  Direct solar radiation

Building performance variables  Indoor temperature 0.83
Unmet set-point 0.27
Indoor relative humidity  0.50
Electricity demand 0.18
DHW demand 0.16

Cooling demand 0.66

-0.09 0.15 0.09
-0.18 0.15 0.27
0.41 0.06 -0.1

-0.33 0.63 0.44
-0.43 0.65 0.45
—-0.30 0.59 0.39
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Fig. 10. Contrasting the synthetic projections against the original training data
using the Wasserstein metric.

Table 5
Pearson correlation coefficient among building performance variables.
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Fig. 11. Contrasting synthetic projections against the original training data using
the Pearson correlation coefficient.

e The correlation between indoor relative humidity and the aver-
age unmet cooling set-point difference is negligible (Fig. 11,
RH_in vs Unmet).

The GAN suitably preserves the internal consistency among
building performance variables. However, slight underestimations
of weak correlations is also observed.

Aside from linear correlation assessments, we measure the sim-
ilarity of probability distributions among building performance
variables (Fig. 12). Once again, the GAN suitably preserves the
internal consistency within multi-dimensional outputs, yet slightly
overestimates strong similarities between variables (Fig. 12, DHW
vs Elec). On the other hand, the large difference between distribu-

tions of indoor air temperature and cooling demands (Fig. 12, T_in
vs Cool) is overestimated by the GAN. A similar pattern is also
observed for the probability distributions of indoor relative humid-
ity and the average unmet cooling set-point difference (Fig. 12,
RH_in vs Unmet).

It is interesting that the GAN generally underestimates large
Wasserstein distances (i.e. low similarities), yet captures small
Wasserstein distances (i.e. high similarities) very well (Figs. 10
and 11). In fact, a comparable behavior is observed when analyzing
the Pearson correlation coefficients (Figs. 9 and 11), as the GAN
suitably captures strong covariations, but underestimates covaria-
tion values close to zero. Such behavior may hint on minor overfit-
ting tendencies in the trained GAN and require further in-depth
analysis in future research.

4.3. Synthetic data for evaluation purposes

Synthetic data can be employed to evaluate the response of a
model to out-of-sample occurrences. This notion can be useful
for machine learning models, particularly when the training data
partially represents the whole environment. For instance, one year
of measurements is insufficient to fully capture the fluctuation
range of climate variables as well as the randomness of occupants’
behavior. Since we established that the data generated by the GAN
can be considered as plausible uncertain scenarios of building’s
performance, the synthetic data are utilized to evaluate the
response of a machine learning model to uncertainties.

Given that the GAN in this study is developed based on the City-
Learn OpenAl Gym environment, we use the predefined RL model
within CityLearn for evaluation purposes. The chosen model is a
single centralized agent to control all nine buildings within the dis-
trict. The RL agent is trained for 15 epochs on the climate data pro-
vided by CityLearn, which is also utilized in this study to train the

10
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Fig. 13. Performance of the RL model in 15 epochs of training.

GAN and project synthetic building performance profiles. The per-
formance of the RL agent during training is provided in Fig. 13.

Once training of the RL agent is concluded, each building’s per-
formance in the Gym environment is replaced with a set of syn-
thetic scenarios, returning 50 uncertain environments for the
entire district. The trained RL agent is then deployed on the envi-
ronment to control electricity and cooling storage. The perfor-
mance of the RL agent is compared to that of a RBC.

Fig. 14 compares the performances of RL and RBC in shaving the
daily electricity peaks. The RL agent outperforms the RBC in both
the default training data and the synthetic profiles. However, its
performance on the synthetic data (Fig. 14, RL synthetic) is heavily
degraded when compared to the default training data (Fig. 14, RL
default). On the other hand, comparing RBC’s performance on the
synthetic data (Fig. 14, RBC synthetic) and the default data
(Fig. 14, RBC default) shows that the controller is less sensitive to
uncertainties and disturbances.

Comparing the performance of the RL agent with that of the RBC
under uncertain scenarios also shows that the superiority of the RL
agent can greatly vary depending on the objective. For instance,
relying on the default data would indicate that the RL agent

1
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' | RL synthetic
0.05F 1 \
'/ \\
A ‘ : .
260 270 280 290 300 310

Average daily peak (kWh)

Fig. 14. Comparison of RL and RBC models’ average daily peak using default and
synthetic data.
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Fig. 15. Comparison of RL and RBC models’ ramping using default and synthetic
data.

(Fig. 15, RL default) outperforms the RBC (Fig. 15, RBC default) in
reducing the ramping effect. Here, the ramping effect refers to
the absolute difference of the net non-negative electricity con-
sumption at every time-step. We observe that when encountering
unseen data, the RBC (Fig. 15, RBC synthetic) outperforms the RL
agent (Fig. 15, RL synthetic) in reducing the ramping effect. Fur-
thermore, we witness that the RBC is much less sensitive to uncer-
tainties and disturbances. This is apparent from the width of RBC’s
distribution (Fig. 15, RBC synthetic), which is significantly nar-
rower than that of the RL agent (Fig. 15, RL synthetic).

5. Discussion

Element-wise and statistical analysis of the results show that
the proposed GAN can potentially replicate a building’s dynamic
response to climate and operation variations. This is evident from
the good agreement between the characteristics of the original
training data and the synthetic projections from the GAN. Yet,
the synthetic data occasionally display slight divergences from
the original dataset, which merits further investigation.

The GAN projections properly capture strong correlations
between building performance and climate conditions. For
instance, when the Pearson correlation coefficients is large
(Fig. 9, T_out vs T_in) (Fig. 11, DHW vs Elec), the synthetic data
show very similar performance to the original dataset. On the other
hand, our model may slightly underestimate small and insignifi-
cant correlations. For instance, when the Pearson correlation coef-
ficient is small (Fig. 9, R_dir vs RH_in) (Fig. 11, RH_in vs Unmet)
synthetic projections could display divergence from the original
dataset.

We believe that this phenomenon is due to minor overfitting of
the discriminator onto the training data. When the Wasserstein
distance is large, synthetic projections overestimate the distances
(Fig. 10, R_dir vs RH_in) (Fig. 10, RH_out vs Cool) (Fig. 12, T_in vs
Cool) (Fig. 12, RH_in vs Unmet). Namely, when the similarity
between two variables is already small, our model is likely to fur-
ther suppress the similarity. On the other hand, our model occa-
sionally overestimates small Wasserstein distances. Namely,
when the similarity between two variables is large (Fig. 12 DHW
vs Elec) our model may exaggerate the similarity.

This presumed overfitting behavior can be due to memorization
of small pieces of the training data as also reported in [40]. The



F. Khayatian, Zoltdn Nagy and A. Bollinger

issue may be addressed by modifying the architecture of the GAN
as well as the number of training iterations. We believe that minor
overfitting on strong correlations would not necessarily return a
set of implausible synthetic scenarios, yet it might impede proper
exploration of the domain. At the worst case, the synthetic projec-
tions would only represent a subset of the 'universe of discourse’ of
uncertain scenarios.

Furthermore, the temporal dependency between consecutive
days was not evaluated in this study. Rather, we focused on the
temporal consistency within the each daily profile. It would be
interesting to assess how continuous profiles such as indoor air
temperature varies from the last hour of one day to the first hour
of the next. In fact, expanding the GAN proposed in this study with
the recurrent components of the time-series GAN [41] is a poten-
tial for future research.

It is important to stress that the proposed GAN architecture has
been devised while taking GPU performance into consideration,
particularly to ensure reproducibility for peers with access to lim-
ited graphical memory. This said, using larger models with more
complex architectures such as Variational AutoEncoder GANs
(VAE-GAN) [42] could potentially improve the results and alleviate
concerns over possible overfittings.

To understand GAN'’s capability of representing a particular
domain, recent studies have proposed out-of-sample testing that
estimate the reconstruction error and likelihood of each generated
sample [43]. Conditioned that multiple years of building perfor-
mance data is available, one can quantify the potential of the pro-
posed GAN in reconstructing uncertain scenarios beyond the
training set.

Evaluating the performance of a trained RL model on synthetic
data showed that a small set of training data can result in overop-
timistic expectations of a model’s performance. However, it is
important to note that the synthetic projections generated in this
study do not cover the entire range of uncertainties and distur-
bances within the environment. Therefore, it would be incorrect
to presume that the results provided in this study would favor rule
based algorithms over data-driven models. Rather, the information
shared in the paper tends to open a discussion on unexpected
responses of trained machine learning models to unseen data, as
well as the potential of GANs for underlining this vulnerability
through a synthetic test set.

The synthetic data generated in this study could also improve
the performance of the RL model if used as training data. In fact,
studies have shown that adding synthetic data to the training set
can improve a model’s generalization, particularly for achieving
better performances on rare events [44]. However, such assess-
ment would require a separate test set which has not been seen
by either the RL model or the GAN. Once again, access to multiple
years of building performance data would help validate this
hypothesis; namely, whether adding synthetic data to the training
set can improve the performance of a model - such as the RL
trained in this study - amid unseen disturbances in the test set.

The proposed method for generating synthetic building perfor-
mance data is particularly useful when white-box modelling is not
a viable option. For instance, if information about the building
characteristics (geometry, thermal characteristics, HVAC systems,
etc.) are unavailable, or when the sheer magnitude of studied
buildings makes white-box modeling cumbersome and labor
intensive. Previous studies are unable to generate synthetic build-
ing performance data for an extended period (e.g. a full year), or
generate multiple outputs with internal covariations. The method
proposed in this study addresses both shortcomings through con-
ditioning the GAN on external features. However, the setup may
suffer from a number of drawbacks and require improvements as
described in the following.
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1) It is likely that the proposed model is slightly overfitted onto
the data, given the limited number of samples and lack of an
independent test set.

2) In the proposed model, there are no provisions to account for
the continuity of data from one day to another.

3) The behavior of the proposed model when fed with new and
unseen climate data for encoding has not been studied.

4) The GAN is conditioned on the type of the day, rather than
the hourly occupancy schedule, which implies that changes
in building’s tenant would require a new training from
scratch.

5) Although the synthetic data differ from the actual measure-
ments, they are likely to preserve behavioral patterns and
remain susceptible to revealing personal information. The
synthetic profiles should not be treated as anonymized data.

6. Conclusion

This paper proposed the application of GANs for creating syn-
thetic building performance data. The model introduced in this
study is conditioned based on climate and operative variables with
the aim to control weekly and seasonal variations of the outputs.
Qualitative and quantitative validation of the synthetic profiles
showed that the proposed GAN can properly reflect climate and
operation variations into the outputs. Furthermore, the proposed
model successfully infused uncertainty into the building perfor-
mance profiles and generated out-of-sample events. However,
the GAN slightly overrepresented some covariations with climate
and operation conditions, which can be attributed to small overfit-
ting onto the training data.

The uncertainty-infused synthetic data generated by the GAN
was utilized to evaluate the response of an RL model to unseen sce-
narios. Results showed that the RL model displayed mix perfor-
mances to out-of-sample data, insofar that the RBC model
occasionally outperformed the RL model. Furthermore, given that
the RL model is highly reliant on the training data, its performance
displayed higher sensitivity to uncertain events.

A particular strength of data-driven models is that their perfor-
mance can be improved by continuing the training process on new
sets of data. Therefore, inclusion of synthetic profiles in the train-
ing dataset can potentially alleviate the concerns over the perfor-
mance of data-driven models as highlighted in this study, and
improve their robustness to unseen events. Furthermore, addition
of synthetic profiles to the training dataset of an RL model will
influence the learned policies, including reliance on operation-
related and climate-related profiles. Evaluating such changes in a
model’s learned policy could potentially pave the way for seamless
transfer of pre-trained RL models across different buildings with
dissimilar climate and operation characteristics.
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