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A data-driven approach for window opening predictions in non-air-1 

conditioned buildings 2 

3 

Abstract: In non-air-conditioned buildings, opening or closing of windows is one of 4 

the most common behaviours that occupants tend to carry out to restore their thermal 5 

comfort. However, occupant behaviour is a sophisticated concept and is an integration 6 

of physical environment, thermal sensation etc. that varies from one person to another. 7 

This work, therefore, attempts to predict the occupant behaviours in terms of window 8 

openings based on thermal comfort through a data-driven machine learning approach. 9 

The training set is composed of the key weather information, the main characteristics 10 

of buildings, the Adaptive Predicted Mean Vote (APMV) values on thermal comfort 11 

and its corresponding window status. Building simulation results of 95 cities in China 12 

covering all the climate zones, in total 828,360 groups are adopted. The predictor 13 

achieves a high accuracy of approximately 95%, and therefore enables the users to 14 

estimate the window openings directly from weather conditions and building 15 

characteristics. As an original contribution, the study shows that conditioned to 16 

availability of adequate simulation data, a machine learning predictor trained solely on 17 

simulation data can accurately predict realistic window opening behaviours, without 18 

relying on any indoor measurement. 19 

Keywords: occupant behaviour; thermal comfort; machine learning; building 20 

simulation; natural ventilation 21 

1. Introduction22 

Worldwide, people spend around 80% of their time indoors (Zhao, Sun and Ding, 23 

2004). Therefore, with the need to improve the thermal environment and to reduce building 24 

energy consumption, numerous indoor thermal comfort studies have been carried out(von 25 
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Grabe, 2016; Deng and Chen, 2018; Wu et al., 2018). It has been found that people are not 26 

inert recipients of the environment, but do interact with building facilities to optimise their 27 

comfort (Nicol and Michael, 2004). People usually respond to their thermal state by either 28 

changing the environmental conditions when they are uncomfortable or keeping the 29 

environment unaltered when they are comfortable. For instance, Brager et al. (2004) stated 30 

that in non-air-conditioned buildings, people primarily use the action of opening/closing 31 

windows to retain thermal comfort because it has an immediate effect on changing the indoor 32 

thermal environment. It is worth to highlight that window opening behaviour is a result of 33 

the continuous combination of many factors, such as weather condition (e.g. air temperature, 34 

humidity etc.), building features (e.g. orientation, window size etc.) and even occupant 35 

characteristics (e.g. personal background, psychology etc.) (Fabi et al., 2012) .  36 

Plenty of works have been devoted to investigating the key influential factors, 37 

especially the weather conditions. Herkel et al. (2008) studied 21 south-facing offices in 38 

Germany over one year and found that window opening behaviours had a strong correlation 39 

with the indoor and outdoor temperature. Meanwhile, solar radiation has little correlation 40 

with window opening as compared with indoor and outdoor temperature. Haldi and Robinson 41 

(2009) produced a field study of a south-facing cellular office building for seven years to 42 

investigate the relationship between window opening behaviours and outdoor weather. Based 43 

on the result, they concluded that wind speed was reversely proportional to the opening of 44 

windows although the wind direction had no direct correlation to window opening behaviour. 45 

It differs from D'Oca and Hong (2014) who studied an office building in Germany and found 46 
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that wind direction had a certain influence on the window opening. Dutton and Shao (2010) 47 

reported a study of a naturally ventilated elementary school in the UK, and found that besides 48 

the aforementioned factors, atmospheric pressure also had an impact on the indoor thermal 49 

comfort, hence, the action of opening the window. A summary of field studies about the 50 

window opening behaviours is shown in Table 1. It reveals that outdoor temperature and 51 

wind are the most investigated variables. It is also observed that most of the field studies in 52 

this area were constrained by limited on-site measurements. 53 

Recently, data-driven approaches and computational statistics like machine learning 54 

have been widely applied to building research where abundant data is available. Khayatian 55 

et al. (2016) used Artificial Neural Network (ANN) to evaluate energy performance 56 

certificates of residential buildings. They trained a set of 100 models with 187587 entries and 57 

12 variables to obtain confidence interval, expressing that 95% of entries fall within ±3 58 

standard deviation in a confidence interval. Wu et al. (2018) produced a field study on 24 59 

dormitory buildings which include both non-air-conditioned and split air-conditioning 60 

buildings, and resorted to Bagging, an ensemble learning algorithm, to predict thermal 61 

comfort in buildings. They found that Bagging returned the best Predicted Mean Vote (PMV) 62 

prediction with a coefficient of determination (R^2) of 0.99, surpassing ANN and support 63 

vector machine. Markovic et al. (2018) used a deep learning architecture with 5 hidden layers 64 

to predict window opening behaviour based on a more than 3100 hours dataset that collected 65 

from 3 independent buildings in Aachen, Frankfurt and Philadelphia. The model was tested 66 

on a building simulation program and achieved a final accuracy ranging from 86% to 89%. 67 
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Deng and Chen (2018) also used ANN to predict thermal comfort based on data collected 68 

from 10 offices, 6 apartments and 4 houses in the USA. They found that the comfortable air 69 

temperature in apartments/houses was 1.7 ℃ lower than that of offices, and the comfort zone 70 

obtained from ANN was narrower than that of ASHRAE Standard 55. 71 

In many of these investigations, for non-air-conditioned buildings, there is a common 72 

agreement that indoor thermal comfort is the key driver for the window opening behaviour 73 

especially in transition seasons (Brager, Paliaga and de Dear, 2004); and indoor thermal 74 

comfort is closely related to the outdoor conditions.  Among many thermal comfort prediction 75 

models, the PMV (Predicted Mean Vote) is a widely used rational approach. However, PMV 76 

model is unable to account the effect of occupants’ adaptions to the thermal environment(Van 77 

Hoof, 2008), and it has been sometimes reported to overestimate thermal discomfort (Manu 78 

et al., 2016) . By taking the advantages of PMV and adaptive  approaches,  the adaptive PMV 79 

(APMV) has been developed by researchers (Yao, Li and Liu, 2009). The APMV takes into 80 

account the four environmental factors, the two occupant-related factors and their 81 

adaptations. Due to its convenience of calculations, APMV has been an effective index in 82 

practice to evaluate the thermal comfort, especially in non-air conditioned buildings, in 83 

different countries and regions (Conceição et al., 2012)(Kim et al., 2015)(Costanzo et al., 84 

2019). Despite the existing distinction between the prediction and reality, it is worth 85 

mentioning that the APMV model yields reliable comparative results, i.e., it is reliable to 86 

estimate the relative effect of changing a condition to the thermal comfort level. Therefore, 87 

APMV is often used as an essential factor in studying the thermal environment changes and 88 
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the induced occupant behaviours, or vice versa (Vallianos, Athienitis and Rao, 2019). Since 89 

the year 2012, the APMV also has been adopted in the Chinese standard of thermal comfort 90 

evaluation of civil buildings  (GB/T50785-2012) (China Academy of Building Research and 91 

Chongqing University, 2012), in where the adaptive coefficients for different climate zones 92 

in China are provided. Therefore, it would be of interest to us to find out the trends of window 93 

openings in various climatic conditions in China.  94 

Nowadays, with building simulation programs, the prediction of indoor thermal 95 

comfort levels in terms of APMV etc., can be obtained with satisfying accuracy. However, 96 

relying on building simulation programs alone makes it difficult to predict particular human 97 

behaviours, i.e. window opening, or seeking correlations between window opening behaviour 98 

patterns and its influencing factors. On the other hand, machine learning is a promising 99 

approach that can make predictions based on a training dataset by possessing abundant 100 

representative data.   101 

Therefore, the aim of this work is to study the correlation of weather condition and 102 

building characteristics with the window opening behaviour under a variety of climatic 103 

regions. Although it is practically impossible to conduct large scale on-site surveys and 104 

collect real data covering hundreds of cities in China, we proposed a new method which is 105 

able to generate reliable comparative results from simulation reflecting the changes in 106 

weather conditions and building characteristics. To this end, a data-driven predictor is 107 

developed by using the simulation results from 95 cities covering all five climatic regions in 108 

China. The introduced framework enables discovering the patterns of window opening 109 
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behaviour in non- air-conditioned buildings in transient seasons. To assess the viability of 110 

the proposed method, the framework is applied to a case study of 200 residential units with 111 

field observations. As an original contribution, the study shows that conditioned to 112 

availability of adequate simulation data, a machine learning predictor trained solely on 113 

simulation data can accurately predict realistic window opening behaviours, without relying 114 

on any indoor measurement. This is of great importance, specifically for residential buildings, 115 

where privacy concerns are the main challenge for collecting data, and resorting to 116 

simulations is the only viable option for large-scale prediction of window operation.  117 

2. Methodology 118 

The current study includes building simulation, identification of window opening 119 

states, data training and validation. A well-recognised building simulation tool, namely 120 

Integrated Environmental Solutions - Virtual Environment (IES-VE), is used to simulate the 121 

indoor environment. Weather data and building characteristics are taken as input feature of 122 

the training set; whilst the corresponding window states is used as the target feature. 123 

2.1. Building model and variable selection 124 

According to ANSI/ASHRAE Standard 169-2013 and Building Design Standard in 125 

China GB50189-2015, as shown in Figure 1, in total 95 cities are selected from five climate 126 

zones in China, i.e. Severe Cold, Cold, Hot summer and cold winter, Hot summer and warm 127 

winter and Temperate zone. Transition season periods of each climate zone is adopted from 128 
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Regional Buildings Design Standards in China (JGJ134-2010, JGJ26-2018, JGJ75-2012 and 129 

JGJ475-2019). 130 

In non-air-conditioned buildings, local climate and building parameters play main 131 

roles in indoor thermal conditions (Raja, Nicol and McCartney, 1998). Table 2 summarises 132 

the key weather features and building parameters extracted from previous studies (Herkel, 133 

Knapp and Pfafferott, 2008; Haldi and Robinson, 2009; Dutton and Shao, 2010; D’Oca and 134 

Hong, 2014; Shi et al., 2018; Zhou et al., 2018). 135 

To minimise the possible bias due to the complexity of building types, we decided to 136 

use the same simple building model for all the cities. The building model has a dimension of 137 

8m * 8m * 3m, as shown in Figure 2. It has four 4m * 4m rooms, and each room has one 138 

window facing east, south, west or north, respectively. The model is assumed to be located 139 

at a middle floor of a building, and there is no heat transfer with adjacent levels through floor 140 

or ceiling. In this work, the dimension of the model remains constant for all 5 climatic zones. 141 

However, different building characteristics are chosen to meet the requirements of the local 142 

building design standards, corresponding to the climatic differences. The key building 143 

characteristics including window orientation, glazing ratio, U-values of wall and window, 144 

shading coefficient, internal gain, and air exchange rate vary with different climate zones and 145 

are tabulated in Table 3. 146 

2.2. Identification of window opening states 147 

In non-air-conditioned buildings, people tend to restore the thermal comfort by 148 

changing the window opening states (i.e. from close to open or from open to close) if they 149 
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feel uncomfortable, and retain existing state if feeling comfortable (Andersen et al., 2009). 150 

In this study, the thermal comfort is described by APMV in where the perception of comfort 151 

level is defined from cold (-3) to neutral (0) to hot (+3). The APMV is proportional to the 152 

PMV value as given:  153 

                           APMV = PMV/(1 + λ × PMV)                              (1) 154 

where the adaptive coefficient  is designated based on China’s context (Wang et al., 2018), 155 

as shown in Table 4. If the APMV value is within the range of ±0.5, it can be assumed that 156 

people feel comfortable in this condition (ASHRAE, 2013). In addition, the clothing 157 

insulation and metabolic rate are assumed as 0.7 clo and 1.2 met, respectively, in accordance 158 

with the typical garment in transition seasons and sedentary activity. 159 

As illustrated in Figure 3, each of the simulated cases is run twice with the windows 160 

opened and closed at each hour, respectively. After that, the APMV values of two conditions 161 

are compared with each other. If both APMV values fall in the range of ±0.5, the window 162 

retains the same state of the previous hour (i.e. people tend to retain the state if feel 163 

comfortable). Otherwise, the window opening state is changed to the condition that has an 164 

APMV value closer to 0 (i.e. people tend to restore the thermal comfort by changing the 165 

window opening state). In this work, a total training dataset containing 828,360 groups of 166 

window opening samples from 95 cities are examined and formatted by Python.  167 
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2.3. Machine learning algorithm  168 

Window opening behaviour could be driven by many factors of dissimilar 169 

importance. In this study Gradient Boosting Decision Trees (GBDT) (Friedman, 2001) is 170 

selected as the preferred machine learning algorithm, as it is not prone to collinear features. 171 

The GBDT is a black-box boosting machine learning algorithm of ensemble learning and is 172 

based on the decision tree method. The methodology of the decision tree is one of the most 173 

widely used data mining techniques (Quinlan, 1986; Han, Kamber and Pei, 2006). The 174 

decision tree algorithm categorises all training set into various classes, thereby the data 175 

description and final classification can be provided in a flowchart which looks resembles tree 176 

structure. In this work, the training set consists of almost one million samples, and each 177 

sample has 15 input features and 1 target feature as shown in Table 2. These samples are used 178 

to train the decision tree model to find the relationship between the features and the window 179 

opening conditions.  180 

A decision tree has a generation algorithm, and it has three modes: ID3, C4.5 as well 181 

as classification and regression trees (CART). CART adopts recursive binary partitions to 182 

classify or regress all the training data and is the main regressor of GBDT. Each CART can 183 

be seen as a weak learner, and GBDT sequentially combines all weak learners to reduce 184 

prediction errors and force them to become a strong learner.  185 

The importance of each feature in GBDT model can be then calculated. The global 186 

importance of feature j is given by: 187 

𝐽𝐽𝑗𝑗2 = 1
𝑀𝑀
∑ 𝐽𝐽𝑗𝑗2(𝑇𝑇𝑚𝑚)𝑀𝑀
𝑚𝑚=1                         (1) 188 
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where, M is the number of trees model, and the importance of feature j at one tree is given 189 

by: 190 

𝐽𝐽𝑗𝑗2(𝑇𝑇) = ∑ 𝑖𝑖𝑡𝑡2(𝑣𝑣𝑡𝑡 = 𝑗𝑗)𝐿𝐿−1
𝑡𝑡                    (2) 191 

where, L is the number of leaf nodes, thus L − 1 is the number of none-leaf nodes, 𝑣𝑣𝑡𝑡 is the 192 

node of feature 𝑗𝑗 and 𝑖𝑖𝑡𝑡2 is the decreasing value of square loss. 193 

3. Results and discussion 194 

3.1. Predictor performance 195 

As a well-accepted technique for evaluating predictive models, the 10-fold cross-196 

validation method (Kohavi, 1995) is used to assess the accuracy of the trained model. In 197 

figure 4, the whole training set is shuffled at the beginning, of which 10% is randomly taken 198 

as testing set while the remaining data constitutes the training set. This process is repeated 199 

ten times, and then the mean value is taken as the final accuracy. All of the models have been 200 

properly tuned based on the parameter learning curve figure to avoid overfitting and 201 

unnecessary calculation. 202 

Figure 4 describes the accuracy changes with proportions of input samples, where the 203 

final accuracy is around 95.4%. It can be seen that the learning curve is convergent; hence 204 

this GBDT model has a good bias-variance trade-off without overfitting. As shown in Figure 205 

5, among the 82836 testing samples (10% of the total training set), only 1748 samples are 206 

incorrectly predicted as “closing of the window” and 2046 samples are wrongly labelled as 207 
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“opening of the window”. The rest of the 79042 samples (i.e. 95.4%) are correctly classified, 208 

which implies that the GBDT model performs well in the testing set. 209 

3.2. Importance of features 210 

Figure 6 shows the importance of the features. In general, the weather plays a much 211 

more crucial role in window opening behaviour than the building parameters in non-air-212 

conditioned buildings. The outdoor temperature reaches over significant high importance of 213 

84.23% among all features, followed by solar radiation 4.65%, humidity 3.44% and 214 

atmospheric pressure 3.03%, etc. The window orientation 0.52%, window area 0.45%, U-215 

value of window 0.45% and wall area 0.22% are the four most important features among 216 

building parameters. 217 

The importance of various features is further investigated under different climate 218 

zones in Table 5. It shows that apart from the outdoor temperature, the importance of other 219 

features varies under different climate zones. The calculated ranking agrees well with 220 

previous findings in the literature. For instance, Zhang and Barrett (2012) conducted a field 221 

measurement in Sheffield city, northern England, and their results indicated that outdoor 222 

temperature has crucial role among all the weather features, along with solar radiation, 223 

humidity and wind velocity. These studies have feature importances similar to the ones 224 

reported in this work, implying the feasibility and reliability of the developed predictor. 225 

It is worth mentioning that wind velocity in hot summer and cold winter climate zone 226 

is ranked the second most influential factor, showing a more critical role than in other climate 227 

zones. This is in line with the findings of Haldi and Robinson (2009) and D'Oca and Hong 228 
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(2014), in which the significant impact of wind velocity are highlighted on decreasing 229 

window opening proportion in Lausanne, Switzerland and Frankfurt, Germany, respectively. 230 

These two European cities have a similar climate as the hot summer and cold winter zone in 231 

China. Meanwhile, in those places similar to other climate zones in China, the wind speed 232 

seems less important to the window opening states. For instance, Andersen et al. (2009) 233 

demonstrate that wind speed has no effect on the windows opening behaviour in Denmark, 234 

where climatic conditions are similar to the cold climate zone in China. 235 

3.3. Visualisation of the prediction process 236 

Figure 7 shows the distribution of all predicted window states (open/close) with the 237 

correlation of outdoor temperature and other important features including solar radiation, 238 

humidity, atmospheric pressure, wind velocity and room orientation. A few interesting 239 

findings are summarised: 240 

• A clear borderline can be visualised between outdoor temperature and other weather 241 

features (i.e. (a) solar radiation, (b) relative humidity, (c) atmospheric pressure and 242 

(d) window velocity). When it is on the right-hand side of this borderline, especially 243 

when the outdoor temperature is higher than about 21℃, it can be confidently stated 244 

that the window will be opened, regardless of other conditions. When the outdoor 245 

temperature is lower than approximate 14 ℃, most of the windows will be closed, 246 

except for south-facing window, which may remain open till the outdoor temperature 247 

falls below 11 ℃, as shown in Figure 7 (e). 248 
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• It is found that the humidity and atmospheric pressure are in positive correlation with 249 

the window opening, while high solar radiation and wind velocity may decrease the 250 

probabilities of opening windows. 251 

The borderlines are in the intermediate temperature range, where the window opening 252 

behaviours are difficult to predict precisely with only one feature. Figure 8 depicts the 253 

prediction error ratio under different outdoor temperatures in the testing set. It can be seen 254 

that the temperatures between 16 ℃ and 21℃ return high error ratios, indicating that opening 255 

and closing window conditions have minimum thermal comfort discrimination in this 256 

temperature range. 257 

A more detailed correlation of wind direction and velocity to the window opening 258 

behaviours of different orientated rooms are illustrated as wind-rose-like diagrams in Figure 259 

9. The length of each sector represents the percentage of the opened windows under different 260 

wind directions, when compared to the total number of all opened windows in the entire 261 

transition season. These diagrams are useful to provide a general trend, which highlights the 262 

likelihood of opening windows under different wind directions in China. It is found that there 263 

is a higher tendency to open windows during south and east winds, rather than north and west 264 

winds, which is in line with the typical situation in China. Interestingly, it is also found that 265 

Figures 9. (a) ~ (d) display a very high similarity, i.e. the room orientation has little impact 266 

on the window opening behaviours under the same wind direction. 267 



14 
 

3.4 Validation of the prediction results 268 

A typical student dormitory (Figure 10) located in Ningbo China was used for the 269 

validation of the developed predictor. Ningbo is located on the east coast of China near 270 

Shanghai and is categorised in a “hot summer and cold winter” climate zone. The dormitory 271 

is assumed as a non-air-conditioned building in transition seasons. The general information 272 

and the configuration of the building are shown in Table 6 and Figure 10, respectively. In 273 

total 9 groups of data were collected over the period from 15th September 2018 to 15th 274 

November 2018, i.e. a typical transition season in Ningbo. The proportion of opened 275 

windows, among approximately 200 occupied rooms, was counted manually, and the weather 276 

data was obtained from the local weather station in Ningbo, as summarised in Table 7. To 277 

ensure only the occupied rooms were counted, data was collected at night when occupants 278 

were home and turned on the lighting. Consequently, the solar gain was always equal to zero 279 

in the records. 280 

The weather data and building information were fed into the predictor to anticipate 281 

the window opening states. The result is shown in Figure 11. In all 9 groups, the anticipated 282 

window opening states are in good agreement with the on-site observations, returning a root 283 

mean squared error (RMSE) of 12%. 284 

4. Conclusions 285 

Building simulation programs can establish the correlation between physical factors 286 

and the indoor environment in a fast manner. With an abundant amount of simulation data, 287 

machine learning is a promising approach to investigate more complicated interactions 288 
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between the occupants and physical environments. This paper used IESVE to simulate 289 

window opening behaviour in transition seasons under different climate zones to obtain 290 

abundant groups of training data sets. Features of weather data and building characteristics 291 

of 95 cities from five different climate zones in China, (in total 828, 360 groups of data) were 292 

employed to train the predictor. Due to the diversity and complicated relationship of different 293 

features, a boosting machine learning algorithm using GBDT was adopted to investigate the 294 

correlation between features and window opening behaviours. Some key findings are 295 

summarised as followings: 296 

• The predictor successfully predicted window opening in the testing set with around 297 

95.4% accuracy; 298 

• The importance of each feature to the window opening behaviour patterns was 299 

identified. The outdoor temperature has the dominant influence, and other weather 300 

features have different feature importance rankings under various climate zones; 301 

• Humidity and atmospheric pressure have a positive correlation with window opening 302 

while wind velocity and solar radiation showed a negative correlation with the 303 

window opening; 304 

• South and East winds may lead to more window opening in China, when compared 305 

to North and West winds, regardless of the room orientation; 306 

• A good agreement was found between the real data and predicted data, returning 307 

approximately 12% of RMSE. 308 
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The window opening behaviour is a complex combination of many factors which are 309 

in interaction. This work provides a promising data-driven approach that enables people to 310 

accurately predict realistic window opening behaviours, solely based on adequate simulation 311 

data. Meanwhile, the predictor could be integrated into building simulation to reflect the 312 

dynamic window opening states. However, some influencing factors like air quality and 313 

acoustics are not yet considered in this predictor, which deserve to be investigated in future 314 

work. Moreover, more complex personal models, e.g., multi-nodes thermal comfort models, 315 

would be implemented in where more on-site measurements are available, to improve the 316 

predictor’s performance. 317 

 318 
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Table 1. Variables for window opening in other studies

 Outdoor 
temperature 

Wind 
velocity 

Wind 
direction 

Global 
radiation 

Atmospheric 
pressure 

Relative 
humidity 

Room 
Orientation Data size Location 

 

Herkel et al. (2008) ● ●      21 offices (13 
months) Germany 

Haldi and Robinson (2009)   ● ● ●   ●  14 offices  Lausanne, 
Swaziland  

D'Oca and Hong (2014)  ● ● ● ●  ●  16 offices (1 
year) 

Frankfurt, 
Germany 

Dutton and Shao (2010) ●   ● ●   1 school (1 year) UK 

Takasu et al.(2017)  ●       5 office 
buildings 

Tokyo and 
Kanagawa, Japan 

Zhang and Barrett (2012)  ● ● ● ●  ● ● 1 building (5 
months) Sheffield, UK 

Pan et al.  (2018)  ● ● ● ●  ●  5 offices (3 and 
half months) Beijing, China 

Shi et al. (2018) ● ●    ●  1 hospital (1 
year) Nanjing, China 

Schakib-Ekbatan et al. 
(2015) ●      ● 1 office building 

(6 years) 
Frankfurt, 
Germany 

Zhou et al.(2018)  ● ●    ●  1 office (1 
month) Nanjing, China 

Yun and Steemers (2008) ●      ● 6 offices (3 
months) Cambridge, UK 

Li et al. (2015)  ●       1 building (2 
months) 

Chongqing, 
China 



 

 

 

Table 1. Utilised features 
Input features  Target feature 

Weather temperature, wind velocity, wind direction, global radiation, 
atmospheric pressure, relative humidity 

Window states 
(open/close) Building  

parameters 
window orientation, U value of walls, U value of windows, 

shading coefficient, floor height, opaque surface area, glazed 
surface area, average internal gain, infiltration 

 
 

 



 

 

Table 2. Building characteristics under different climate zones 

Climate zone Window 
Orientation Glazing ratio 

U-value of 
wall 

(𝐖𝐖/𝐦𝐦𝟐𝟐𝐊𝐊) 

U-value of 
window 

(𝐖𝐖/𝐦𝐦𝟐𝟐𝐊𝐊) 

Total shading 
coefficient 

Average 
internal gain 

(𝐖𝐖/𝐦𝐦𝟐𝟐) 

Infiltration 
(ACH) Transition season 

Hot summer and 
cold winter 

East 0.35 

1 2.8 

0.31 

4.3 1 1st Mar - 15th June & 1st 
Sept - 30th Nov 

South 0.45 0.34 
West 0.35 0.31 
North 0.4 0.457 

Cold 

East 0.35 

0.7 2.3 

0.38 

3.8 0.5 16th Mar - 30th June & 
1st Sept - 15th Nov 

South 0.5 0.455 
West 0.35 0.38 
North 0.3 0.455 

Severe Cold 

East 0.3 

0.55 1.8 

0.35 

3.8 0.5 21st Apr - 30th June & 1st 
Sept - 20th Oct 

South 0.45 0.411 
West 0.3 0.35 
North 0.25 0.411 

Hot summer and 
warm winter 

East 0.3 

0.7 3.5 

0.41 

4.2 1 1st Jan - 30th Apr &  
1st Nov - 31st Dec 

South 0.4 0.43 
West 0.3 0.41 
North 0.4 0.43 

Temperate zone 

East 0.35 

0.8 2.8 

0.38 

3.8 1 1st Feb - 30th Nov 
South 0.45 0.456 
West 0.35 0.38 
North 0.4 0.456 

 



 

 

 

Table 3. Adaptive coefficients under different climate zones  

Climate zones  Adaptive coefficient ( ) 

Cold and Severe Cold  0.24 

 -0.50 
Hot summer and cold winter, Hot summer and warm winter, 

Temperate  
 0.21 

 -0.49 
 

 

 

Table 4.  Ranking and feature importance under different climate zones 

Features 

Ranking / Feature importance* 

Cold Temperate 

Hot 
summer 

and warm 
winter 

Hot 
summer 
and cold 
winter 

Severe cold 

Outdoor Temperature 1/0.869 1/0.833 1/0.797 1/0.694 1/0.836 
Solar radiation 2/0.043 2/0.051 2/0.058 3/0.048 2/0.042 

Humidity 3/0.028 3/0.044 4/0.040 5/0.037 3/0.041 
Atmospheric pressure 4/0.023 4/0.038 3/0.052 4/0.040 4/0.036 

Wind direction 5/0.009 5/0.013 5/0.023 6/0.016 5/0.013 
Wall area 6/0.007 7/0.004 8/0.001 8/0.002 8/0.007 

Wind Velocity 7/0.007 6/0.008 6/0.017 2/0.156 6/0.010 
Window area 8/0.006 8/0.004 9/0.001 9/0.001 9/0.006 
Orientation 9/0.006 9/0.004 7/0.010 7/0.004 7/0.008 

    *The features importance keeps 3 decimal places 

 
 

Table 5. General information of the dormitory building 

Type of building Student dormitory 
Location Ningbo, China 

Number of floors 
Total floor number: 9 

Experimental targets: 2nd - 8th floors 
Window orientations South and North 

Window opening Double horizontal sliding window 

Thermal characteristics 
U-values walls: 1 W/m2k,  

windows: 2.8 W/m2k 

 

 

 

 



 

 

Table 6. Weather data and window opening states of each group 

 
Outdoor 

temperature 
( ) 

Humidity 
(%) 

Atmospheric 
pressure (kPa) 

Wind 
velocity 

(m/s) 

Wind 
direction 
(degree) 

Proportion of 
opening 
window 

Group 1 19.0 53 102.3 0.6 45 0.65 
Group 2 20.3 62 102.1 0.8 90 0.67 
Group 3 18.9 68 102.2 0.8 90 0.69 
Group 4 17.1 91 102.0 1.2 45 0.60 
Group 5 16.4 90 101.6 1.2 0 0.47 
Group 6 16.6 90 101.7 1.5 0 0.31 
Group 7 19.0 53 101.7 1.3 45 0.51 
Group 8 18.0 91 101.5 3.0 315 0.65 
Group 9 14.0 82 102.1 0.6 0 0.21 

 Note: The data was collected during the night, and the solar radiation of each group is equal to zero. 



 

 

 

 

Figure 1. China climate zones and selected cities 

 

 

 

Figure 1. The configuration of the building model 



 

 

 

Figure 2. Identification of window opening behaviour 



 

 

 

Figure 3. The learning curve of GBDT model 

 

 

 

Figure 4. Confusion matrix of the testing set 



 

 

 

Figure 5. Feature importance in all samples 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 6. The tendency of various features to window opening against outdoor 

temperature: (a) Solar radiation; (b) Relative humidity; (c) Atmospheric pressure; (d) 

Wind velocity; (e) Room orientation 



 

 

 

Figure 7. Error ratio under different outdoor temperature 
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(b) 
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(d) 

Figure 8. Opened window distribution under different wind directions and room 

orientations (in percentage): (a) East; (b) South; (c) West; (d) North 
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(b) 

Figure 9. The configuration of the dormitory building: (a) Outlook of the building; (b) 

Dimension of each room unit 

 

 

Figure 10. The comparison of predicted window opening proportion and reality 
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