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a b s t r a c t

Material flow analysis (MFA) and life cycle assessment (LCA) have both widely been applied to support
solid waste management (SWM) decision making. However, they are often applied independently rather
than conjointly. This paper presents an approach that combines the MFA and LCA methodologies to
evaluate large and complex SWM systems from an environmental perspective. The approach was applied
to evaluate the environmental performance, focusing on greenhouse gas (GHG) emissions, of a local
authority SWM system and to compare it with alternative systems to assess the potential effectiveness of
different waste policy measures. The MFA results suggest that national recycling targets are unlikely to be
met even if the assessed policies are implemented optimally. It is likely that for the targets to be met,
investigated policies would need to be combined with additional policies that target reductions in waste
arisings. The LCA results found landfilling of residual waste to be the dominant source of GHG burdens
for the existing system, whilst material reprocessing was found to result in GHG benefits. Overall, each of
the alternative systems investigated were found to result in lower GHG impacts compared to the existing
system, with the diversion of food waste from the residual waste stream found to be potentially the most
effective strategy to reduce GHG emissions. The results of this study demonstrate that the comple-
mentary methodologies of MFA and LCA can be used in combination to provide policy and decision
makers with valuable information about the environmental performance of SWM systems.
© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Currently, around 1.3 billion tonnes of municipal solid waste are
generated annually worldwide and generation levels are projected
to almost double by 2025, driven by rapid population growth,
urbanisation, and socio economic development in developing
countries (Hoornweg and Bhada-Tata, 2012). A substantial pro-
portion of this waste material can be viewed as a resource. As
demand for natural resources continues to rise, there is increasing
pressure on the world's natural resource base, which is having se-
vere environmental consequences (Hertwich et al., 2010). At a
global scale, climate change is a serious international concern and
the extraction, processing, and use of natural resources contributes
directly to climate change through the burning of fossil fuels, whilst
the disposal of materials in landfills contributes through emissions

of greenhouse gases (GHG). Improving solid waste management
(SWM) by recovering value in the form of material and energy
resources can contribute towards enhanced resource efficiency and
GHG mitigation efforts (UNEP, 2010).

The waste management sector is under increasing pressure to
improve its environmental performance. In the European Union
(EU), Member States are legally obligated to formulate and imple-
ment regional policy instruments to meet the environmental SWM
objectives and targets outlined in a broad international legal
framework. Article 4(1) of the EU Waste Framework Directive es-
tablishes the “waste hierarchy”, a five step priority order of waste
management comprising, in descending order of priority, preven-
tion, preparation for reuse, recycling, other recovery (e.g. energy
from waste), and disposal (EC, 2008). Under the terms of Article
21(1) of the EUWaste Framework Directive, all waste management
decisions must be undertaken in line with the waste hierarchy. The
Landfill Directive sets a target for member states to reduce the
amount of biodegradable municipal solid waste going to landfill to
35% of 1995 levels by 2016 (EC, 1999). A target of achieving 50%

* Corresponding author. Tel.: þ41 58 785 72 58.
E-mail address: david.turner@empa.ch (D.A. Turner).

Contents lists available at ScienceDirect

Journal of Cleaner Production

journal homepage: www.elsevier .com/locate/ jc lepro

http://dx.doi.org/10.1016/j.jclepro.2016.04.077
0959-6526/© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Journal of Cleaner Production 129 (2016) 234e248

EMPA20160437



recycling of key household waste materials (paper, glass, metals,
and plastics) is established in the Packaging and Packaging Waste
Directive (EC, 1994). Moreover, at a broader level the EU is
committed to reducing its GHG emissions by at least 20% and 40% of
1990 levels by 2020 (EC, 2009) and 2030 (EC, 2014), respectively.
Managing resources to maximise environmental sustainability and
contribute towards the achievement of national targets set by the
EU entails important strategic and investment decisions by local
waste managers, who are simultaneously tasked with maintaining
a reliable and economical waste removal service to residents under
increasing budgetary pressures. To reduce the burden on local
waste managers and promote environmental sustainable practices,
there is a need for strong waste policies that guide and enable
effective local decisions and actions.

Analytical tools are required to assist local and national gov-
ernments in evaluating the environmental performance of poten-
tial policy measures and local decisions (Turner et al., 2011). Such
tools must be capable of handling the increasing complexity of
modern ‘integrated solid waste management’ systems. Modern
SWM encompasses a large number of waste treatment technolo-
gies, such as incineration, composting, and anaerobic digestion
(AD) that are each designed to manage specific waste streams.
Many of these technologies provide additional functions, such as
secondary materials production and energy production, that
necessitate interaction with other sectors, such as manufacturing,
agriculture, and energy production (Giugliano et al., 2011).
Furthermore, modern SWM systems comprise a global network of
facilities, each with distinct technological facets and different levels
of operational performance. It is necessary that analytical tools
used to support decision making in complex, interdependent sys-
tems, such as SWM, adopt a whole system approach that reflects
this complexity (Blengini et al., 2012).

In this paper we apply an approach that combines two systems
based methodologies, material flow analysis (MFA) and life cycle
assessment (LCA), to quantitatively evaluate a complex,
municipality-scale SWM system and use scenario analysis to assess
the potential effectiveness of different national waste policy mea-
sures. The novel contribution of this paper can be summarised as
follows:

� Application of a combined MFA and LCA approach to evaluate a
complex, multi waste stream SWM system at the meso level.

� Novel use of publically available waste data to comprehensively
model waste flows through the system.

� Provision of information to national government regarding the
potential effectiveness of waste policy measures.

� Assistance to local government in identifying optimal SWM
solutions.

1.1. Case study

Wales is a constituent country of the UK that covers an area of
20,779 km2 with an estimated population of 3.1 million in 2014
(ONS, 2015). Wales comprises 22 unitary authorities that are indi-
vidually responsible for arranging waste collection and disposal.
The Welsh Government (WG) has introduced a broad and ambi-
tious sustainable development strategy that aims to make sus-
tainable development the core principle of all national and sub
national policy and decision making (HMSO, 2015; WAG, 2009).
Two key national targets for 2050 have been set: 1) achieving “zero
waste” (i.e. eliminating landfilling as far as possible) and 2)
reducing national GHG emissions by at least 80% below 1990 levels
(HMSO, 2008;WAG, 2010a,b; 2011). Furthermore, theWG have also
set a target of a 3% reduction in national GHG emissions per year
until 2050, to which waste management is required to contribute
(WAG, 2010a).

The city of Cardiff is the capital of Wales and is located in the
south of the country. The city covers an area of 140.3 km2, of which
around 76 km2 is considered urban, and has a population of
approximately 341,100 and a dwelling stock of 135,796. The city has
a reported recycling rate of 52.2%, marginally below the national
average of 52.3% (StatsWales, 2015b).

The Council operates an alternate weekly kerbside collection
service for household residual waste and dry recyclables. Waste
materials collected for recycling include paper, card, aluminium
cans, steel cans, mixed plastics, and mixed glass. Garden and food
waste are each collected separately on a weekly basis from
households, whilst an optional absorbent hygiene products
collection service operates fortnightly. A bespoke bulky waste
collection service is also offered. There are four household waste
recycling centres (HWRC) and 14 bring sites (recycling banks)
located across the city. The Council also runs services for the
collection of wastes from: commercial organisations, street clean-
ing, fly tipping, and municipal parks/grounds.

2. Methodology

A combination of methodologies was applied in this study to
quantitatively evaluate the environmental performance of Cardiff's
local authority collected waste (LACW) management system and
those of alternative systems. LACW comprises all solid waste
collected by a local authority. A static MFA approach was applied to

Nomenclature

AD anaerobic digestion
CCGT combined cycle gas turbines
CHP combined heat and power
EC European Commission
ELCD European Life Cycle Database
EU European Union
GHG greenhouse gas
GWP Global Warming Potential
HWRC household waste recycling centre
ILCD the International Reference Life Cycle Data System
IPCC Intergovernmental Panel on Climate Change
ISO International Organization for Standardization

IVC in-vessel composting
LACW local authority collected waste
LCA life cycle assessment
LCI life cycle inventory
LDA large domestic appliances
MBT mechanical biological treatment
MFA material flow analysis
MRF material recovery facility
NRW Natural Resources Wales
OWC open windrow composting
RDF refuse-derived fuel
SWM solid waste management
WAG Welsh Assembly Government
WG Welsh Government

2 Question 100 is a question in WasteDataFlow that asks local authorities to re-
cord the physical flows of collected wastes through all treatment facilities until
those wastes reach their end destination.
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assess the mass flows and stocks of LACW into, within, and from
the defined systems. MFA is descriptive, systematic approach to
assess the metabolism of a defined system and is based on the
principle of mass conservation (Brunner and Rechberger, 2004).
The freeware STAN v2.5, developed at the Vienna University of
Technology, was used to conduct the MFA (Cencic and Rechberger,
2008). STAN allows for visualisation of complex MFA systems,
performance of data reconciliation, and consideration of data un-
certainties. Mass flow quantities are expressed in terms of mean
value and standard deviation, defined as normal distributions. Data
reconciliation, based on the method of least squares regression
(see Fellner et al., 2011), is performed to enforce mass balance
constrains on uncertain, conflicting input data. The extent to which
data are reconciled is determined by the initial data uncertainty,
which is used as the weighting factor. STAN has been used in many
previous MFA studies of SWM systems (e.g. Allegrini et al., 2015;
Arena and Di Gregorio, 2014; Boldrin et al., 2011; Mastellone
et al., 2009).

The environmental impacts of the system described by the MFA
were assessed using LCA. LCA has been applied extensively to
evaluate SWM systems (see Laurent et al., 2014a). The focus of the
LCA undertaken in this study was to evaluate the potential climate
change impacts of LACW management and to identify the waste
streams and waste treatment processes that contribute most
significantly to these impacts. The LCA followed the ISO 14040 and
14044 standards for LCA (ISO, 2006a,b) as far as possible and was
performed using the EASETECH software. EASETECH, developed at
the Technical University of Denmark, is a LCA model for the
assessment of environmental technologies that allows for detailed
modelling of complex systems and provides specialist function-
ality for modelling waste management systems (Clavreul et al.,
2014). EASETECH has been used in previous LCA studies of SWM
systems (e.g. Butera et al., 2015; Turner et al., 2016; Yang et al.,
2014).

2.1. Goal definition

The goal of this study was threefold: 1) to quantify the mass
balance of waste of the existing LACW management system; 2) to
quantitatively evaluate the environmental performance of the
existing LACW management system with regards to GHG emis-
sions; and 3) to compare the environmental performance of the
existing LACW management system with that of alternative sys-
tems designed to represent the implementation of national waste
policy measures. The purpose was to support regional policy and
decision making, i.e. ILCD (International Reference Life Cycle Data
System) decision context situation B, meso level decision support
(EC et al., 2010). The study was carried out in cooperation with the
WG and Natural Resources Wales (NRW), the regulator and prin-
cipal advisor to the WG, who, along with Cardiff County Council,
were the key audience. Additionally, aspects of the study will be of
value to other national policy makers and local governments, as
well as the wider SWM MFA and LCA communities.

The quantitative assessment of the systems under investigation
was carried out using LCA. The LCA followed an “attributional”
approach (EC et al., 2010), with allocation avoided by means of
system expansion. The assessment included the potential envi-
ronmental impacts from SWM activities as well as impacts on
processes in other systems that are affected by SWM activities,
principally the recovery of materials and energy production
(Giugliano et al., 2011). The system comprised two subsystems: (1)
a foreground system that includes processes directly engaged in the
management of the reference flow (here, LACW); and (2) a back-
ground system that interacts with the foreground system by

supplying or receiving resources, including avoided primary ma-
terial and energy production (Clift et al., 2000).

Background data were taken from international life cycle in-
ventory (LCI) databases (ecoinvent v.2.2 and ELCD v.2), the UK GHG
conversion factors repository (Defra et al., 2013), and literature (see
Appendix A). Foreground system data were derived from various
secondary sources and are described in detail in Section 2.3.
Following an attributional approach, average data were generally
used to model foreground and background system processes.
However, based on the recommendations of the ILCD (EC et al.,
2010) and Laurent et al. (2014b) for LCA studies aiming to provide
meso level decision support, long term marginal process data were
used to reflect the large scale consequences on the energy system
from avoided material and energy production. This approach,
which is similar to that taken by Rigamonti et al. (2010) and
Finnveden et al. (2005), was adopted rather than a “pure” attribu-
tional approach as it more accurately reflects the large scale im-
plications of SWM activities on other systems. Specifically, the
following assumptions were made concerning material and energy
substitution:

� Electricity produced from SWM activities displaced an equiva-
lent amount of electricity generated from combined cycle gas
turbines (CCGT), which is considered as being the long term
marginal energy source in the UK by the government (DECC,
2014a). Generated electricity is transmitted to the National
Grid at an efficiency of 98% (National Grid, 2008).

� Heat produced at facilities fitted with combined heat and power
(CHP) units would be used internally due to a lack of established
district heating networks in the UK (Hawkey, 2012). Hence, no
avoided energy production was associated with heat energy
production.

� Secondary products produced from recovered waste materials
replace the production of alternative products, including those
produced from primary resources. Avoided materials produc-
tion was modelled based on the average market situation.
However, to reflect large scale consequences on the energy
system, avoided material production process electricity use was
modelled using the long term marginal electricity source, i.e.
CCGT. The extent of the displacement was calculated based a
substitution ratio, which was calculated as the product of three
parameters: (1) recyclability (the amount of a waste material in
a recycled product, considering all process material losses); (2)
material quality loss (reflects any diminishment in the inherent
technical properties of a waste material incurred through
reprocessing); and (3) market substitution rate (the actual
amount of an alternative product that is replaced at the market).
Material losses and material quality losses are defined for each
recycled or reused material. Market substitution rates of 1 were
used for all product substitution calculations based on the
supposition that production of secondary products would not
affect the market situation (Briffaerts et al., 2009; Merrild et al.,
2012; Rigamonti et al., 2009).

2.2. Scope definition

The function of the system under investigation is to manage
LACW from Cardiff. Hence, the functional unit was defined as the
management of the total amount of collected LACW in Cardiff be-
tween April 2012 and March 2013. The amount is 168,526 tonnes.
LACW is categorised into five primary waste streams (commingled
materials, source segregated food waste, source segregated garden
waste, source segregated dry recyclables, and residual waste) that
are derived from ninewaste collection sources (household kerbside
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collection, bulky waste collection, HWRCs, bring sites, street
cleaning, fly tipped materials, non household collections, voluntary
sector/community collection, and municipal parks/grounds waste
collection). All activities required to manage the LACW from the
point of collection to its ultimate disposal, reprocessing, or reuse
were considered. Hence, the processes of collection, transportation,
intermediate processing (sorting and handling), thermal treatment,
biological treatment, material reprocessing and reuse, and landfill
were individually quantitatively analysed in terms of their resource
consumption and emissions.

2.2.1. System boundaries

The spatial boundary of the system was defined by the admin-
istrative boundary of Cardiff County Council, i.e. only waste
generated within this defined spatial boundary was considered in
the analysis. The temporal boundary was the April 2012 to March
2013 fiscal year. In this study, the “zero burden assumption” was
adopted, whereby the environmental impacts from upstream life
cycle stages prior to the collection of LACW were not included
(Ekvall et al., 2007). Environmental impacts from capital goods
were also excluded, an approach consistent with other LCA studies
of waste management systems (Cleary, 2009). Due to difficulties in
data collection, environmental burdens from operation of HWRCs
were also excluded.

Processes included in the assessed system comprise collection
and transport of LACW, waste management facilities (including
those for the treatment of residuals, such as incinerator bottom ash
or fly ash), and utilisation of secondary products (e.g. digestate or
compost). Waste management facilities included in the assessed
system were identified from Cardiff's WasteDataFlow1 Question
1002 returns for the four quarters of the fiscal year 2012e2013
(WasteDataFlow, 2014), which include details of facilities that
handled collected LACW. The Cardiff LACW management system
comprised 158 individual facilities located across nine different
countries. 139 facilities are located in the UK (41 in Wales and 98 in
England), five were located in Europe, and 13 were located in Asia.
Facilities was categorised into one of 11 different waste treatment
technology types (e.g. AD, incineration, material reprocessing, etc.),
based on their description in WasteDataFlow, and were allocated
individual identification codes that reflected the facility type and
location (domestic or foreign). In addition, 15 generic processes
were included to manage collected waste where no waste treat-
ment facility was specified in WasteDataFlow. Details of the facil-
ities (unit processes) included in the assessed system are provided
in Appendix B. Facilities were modelled in the MFA and LCA as unit
processes.

2.2.2. Impact coverage

The quantitative potential environmental impact assessment of
this study focused on GHG emissions. Hence, climate change was
the only potential impact category included in the life cycle impact
assessment. This decision was made for two principal reasons:

� Climate change is recognised as being a significant global
environmental problem of foremost importance (IPCC, 2014;
ISWA, 2015; WAG, 2010a); and

� Climate change impact has been identified as being a good
proxy for the overall environmental impacts of SWM (Defra,
2011).

The GHGs considered in the assessment were carbon dioxide
(CO2) (fossil and biogenic), methane (CH4), and nitrous oxide (N2O).
Emissions of these GHG represent more than 90% of total GHG
emissions from SWM (Bogner et al., 2007).

2.2.3. Scenarios

Four scenarios are compared in this study. The first scenario
represents the existing LACW management system, whilst the
other scenarios reflect different systems based on national waste
policies. Scenarios are compared on the basis of functional equiv-
alence e i.e. it was assumed that waste generation was not influ-
enced by the different scenario assumptions.

S1 Baseline scenario Baseline scenario representing the existing
LACW management system for Cardiff in April 2012 to March
2013.
S2 Enhanced food waste capture Wales' Municipal sector plan

(WAG, 2011) states that in order for Wales' 70% recycling target
for 2025 to be met, it is likely that local authorities will need to
separately collect for biological treatment at least 80% of
biodegradable waste. To evaluate the potential GHG impacts of
enhanced biodegradable waste capture, in this scenario an 80%
capture rate of food waste via household kerbside food waste
collection is assumed, with food waste diverted from the
household residual waste stream. All foodwaste that is collected
is sent to AD, the priority destination for food waste in Wales
(WAG, 2010b).
S3 Enhanced incineration The Towards Zero Waste (WAG, 2010b)
waste strategy for Wales sets a target for a maximum level of
incineration (with energy recovery) of MSW of 30% by 2025.
This scenario was constructed to evaluate the impact of
enhanced incineration of LACW. Based on the total quantity of
collected LACW for Cardiff in 2012e2013 (168,426 t), the 30%
limit set by WG allows for up to 50,530 t of LACW to be incin-
erated. In this scenario, 50,000 t of residual waste originally
collected and sent to landfill is instead sent for incineration.
S4 Enhanced dry recycling A target for a minimum level of
recycling and biological treatment of municipal solid waste of
70% by 2025 was set by the WG in Towards Zero Waste (WAG,
2010b). To evaluate the impact of an enhanced dry recycling
strategy, in this scenario optimum household kerbside collec-
tion recycling rates (taken from Eunomia et al., 2011), are ach-
ieved for key recyclable wastematerials (glass, paper, cardboard,
steel cans, aluminium cans, and plastics), with materials diver-
ted from the household kerbside collected residual waste
stream.

2.3. Life cycle inventory

2.3.1. Reference flow characterisation

A static MFA approach was applied to characterise the mass
flows and stocks of LACW into, within, and from the defined sys-
tem. Due to its complexity and size, the system was divided into
four subsystems, representing the management of primary waste
streams (residual waste, commingled materials, source segregated
dry recyclables, and source segregated food and garden wastes).
The import flows into each system were the collected LACW pri-
mary waste streams, and the export flows comprised secondary
products and emissions. To account for flow multidimensionality,
secondary waste types (e.g. paper, glass, food waste) were charac-
terised as fractions of the primary waste stream.

Due to the functional complexity of many processes and the
profusion of functionally equivalent processes in the system (i.e.
SWM facilities engaged in the same activity), it was necessary to
divide many processes into subsystems that contain subprocesses

1 WasteDataFlow is a publically-available, web-based system established in 2004
to enable local authorities in the UK to report certain municipal solid waste data to
the national government.
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and, in some cases, further subsystems. The four defined systems
for the baseline scenario (S1) are, collectively, composed of 548
processes and 1042 flows.

Mass flows of waste into the LACW management system and to
and between processes were estimated by aggregating Cardiff's
WasteDataFlow Question 100 returns for the four quarters of the
fiscal year 2012e2013. Where data were not available from
WasteDataFlow (e.g. mass flows of wastes and secondary products
from treatment facilities and reprocessing), process transfer co-
efficients were derived from the LCI process inventory models
(detailed below). All data used in this study were single value and
were inputted into the MFA as mean values and an associated un-
certainty, expressed as a percentage. Details of the data reconcili-
ation approach are provided in Appendix C.

2.3.2. Waste composition

The overall waste composition for the investigated system is
presented in Fig. 1. Further details are provided in Appendix D.

2.3.3. Collection and transport

Details of the modelling approach for collection and transport
are presented in Appendix E.

2.3.4. Transfer station

Transfer station process electricity and diesel consumptions of
4 kWh/t and 1 l/t, respectively, were assumed, based on measured
data from UK based transfer stations reported by Eunomia et al.
(2011).

2.3.5. Anaerobic digestion (food waste only)

The AD of food waste process was modelled based on dry,
mesophilic (one stage, one phase) technology, as described by
Møller et al. (2009). Details of process inputs and parameter values

are presented in Table 1. During waste reception, reject rates of 8%,
50%, and 95% were applied for food waste and fine material, other
biodegradable waste, and non biodegradable waste, respectively
(Bernstad and la Cour Jansen, 2011). Biogas was assumed to be
utilised on site in a CHP engine - the most common biogas uti-
lisation technology in the UK (Horne et al., 2013) - with gross
electrical and heat energy generation efficiencies of 31% and 49%,
respectively (DECC, 2014b). Heat energy was assumed to be used
internally. CHP unit process emissions, produced through incom-
plete combustion, of 434 mg CH4/MJbiogas and 1.6 mg N2O/MJbiogas
were assumed (Nielsen et al., 2010). Digestate application was
modelled based on the average situation in the UK in 2012, with
91% applied to agricultural land, 6% used in horticulture/gardening,

Paper & card

20.7%

Fine material

1.2%

Plastic film

3.3%

Dense plastics

6.3%

Textiles

2.9%

HHW

0.4%

Other combustibles

9.9%

Other non-

combustibles

5.5%

Glass

8.5%

WEEE

1.9%

Putrescibles

35.8%

Ferrous metals

2.4%

Non-ferrous metals

1.1%

Fig. 1. Composition of LACW collected in Cardiff in 2012e2013 by primary material category (% of total LACW input mass flow). LACW, local authority collected waste; WEEE, waste
electrical and electronic equipment; HHW, household hazardous waste.

Table 1

LCI data for the AD (food waste only) process. Note that data are presented per tonne
throughput.

Unit Value Reference

Pre-treatment

Inputs
Diesel l 0.12 Primary data from industrial source.
Electricity kWh 1.1 Primary data from industrial source.

Anaerobic digestion

Inputs
Diesel kg 1.3 Fisher (2006).
Electricity kWh 20.6 Fisher (2006).

Process parameters

Degradation ratio %C_bio_and 70 Gallert and Winter (1997); Davidsson
et al. (2007); Yoshida et al. (2012).

CH4 content of biogas %biogas 63 Smith et al. (2001); Møller et al. (2009);
Banks et al. (2011); EASETECH database.
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and 3% used as alternative landfill daily cover (Horne et al., 2013).
See Section 2.3.8 for details.

2.3.6. Composting

Two composting processes were modelled: in vessel compost-
ing (IVC) and open windrow composting (OWC). During waste
reception, reject rates of 8% and 95%were applied for biodegradable
waste and non biodegradable waste, respectively (Bernstad and la
Cour Jansen, 2011). Details of process inputs and parameter
values are presented in Table 2. The IVC process was assumed to be
equipped with a biofilter. Biofilter CH4 oxidation efficiency was
modelled based on the mean of reported values in the literature,
whilst the biofilter was assumed to have no effect on N2O emissions
due to a lack of consensus in the literature. A biofilter was not
included in the OWC process as it is an open technology. Applica-
tion of compost produced through IVC and OWC was modelled
based on the average situation in the UK in 2012 as follows: for IVC
derived compost, 68% to agricultural landspreading, 29% in horti-
culture/gardening, 2% as alternative landfill daily cover, and 1% for
incineration; and for OWC derived compost, 73% to agricultural
landspreading, 21% in horticulture/gardening, 5% as alternative
landfill daily cover, and 1% for incineration (Horne et al., 2013). See
Section 2.3.8 for details.

2.3.7. Mechanical biological treatment

Mechanical biological treatment (MBT) involves a combination
of mechanical separation and biological treatment (either bio sta-
bilisation/bio drying, IVC, or AD) (Defra, 2013b). The MBT facility in
the investigated system comprised integrated IVC technology.

Based on primary data from a UK based MBT facility, process diesel
and electricity consumption was assumed to be 0.32 l/t and
7.1 kWh/t, respectively. During mechanical separation, waste is
sorted and classified to separate a fine, compostable fraction and
two coarse fractions: one for refuse derived fuel (RDF) preparation
and the other for disposal in landfill. Ferrous and non ferrous
metals are recovered by overband magnets and eddy current sep-
arators, respectively, whilst plastics are recovered by near infra red
optical separation. Waste transfer coefficients for the mechanical
separation stage were derived from facility specific data from
WasteDataFlow. For biodegradable waste, 28% is sent for com-
posting, 64% is used as RDF, and 8% is sent for disposal in landfill.
100% of metals and plastics are recovered for recycling. 5% of non
biodegradable waste is sent for composting and 95% is sent for
disposal in landfill (Bernstad and la Cour Jansen, 2011). The bio-
logical treatment stage was modelled based the IVC process model
described in Section 2.3.6. The MBT process produces a solid, res-
idue called compost like output. Compost like output application
was modelled based on the average situation in the UK in 2012,
with 3% applied to agricultural land, 80% used as alternative landfill
daily cover, and 17% disposed of in landfill (Horne et al., 2013). See
Section 2.3.8 for details.

2.3.8. Application to land

Application to agricultural land was assumed to require use of a
manure spreader, consuming 0.3 l/t and 0.45 l/t of diesel for
compost/compost like output and digestate, respectively (Bernstad
and la Cour Jansen, 2011; Boldrin et al., 2009b). The degradation
and fate of carbon and nitrogen in solid residues after they have
been applied to land was modelled using proxy data from Denmark
(Bruun et al., 2006; Hansen, 2006b) and Europe (Smith et al., 2001),
presented in Table 3. Solid residues applied to agricultural land
were assumed to partially substitute for commercial fertilisers,
with the amounts substituted calculated based on the solid residue
nutrient content and a substitution rate. Solid residues used in
gardening/horticulture were assumed to substitute for peat (Smith
et al., 2001). Details of fertiliser and peat substitution rates applied
are presented in Table 3.

2.3.9. Material recovery facility

Two material recovery facility (MRF) processes were modelled:
single stream commingled materials MRF and residual waste MRF.
The single stream commingled materials MRF process comprises a
series of mechanical separation activities designed to recover the
following product streams: mixed container glass, paper, card, high
density polyethylene bottles, polyethylene terephthalate bottles,
mixed plastics, plastic film, steel cans, and aluminium cans. A re-
sidual waste stream is also produced and sent for landfilling.
Electricity and diesel consumption of 35 kWh/t and 2 kg/t,
respectively, was assumed for the single stream commingled ma-
terials MRF process, based on measured data from UK based MRFs
reported by Eunomia (2011). Details of product stream material
composition are provided in Appendix D. Due to a lack of specific
data, electricity consumption for the residual waste MRF process
was assumed, based on Pressley et al. (2015), to be approximately
25% more than that of a single stream commingled materials MRF.
Hence, an electricity consumption of 44 kWh/t was assumed. Diesel
consumption was based on the single stream commingled mate-
rials MRF process. The mass of materials recovered at residual
waste MRFs was modelled using facility specific data from
WasteDataFlow.

2.3.10. Refuse derived fuel production

The RDF production process was modelled based on a theoret-
ical facility with a gas fired drying stage. Electricity consumption of

Table 2

LCI data for the IVC and OWC processes. Note that data are presented per tonne
throughput.

Unit Value

IVC OWC

Pre-treatment

Inputs
Diesel l 0.12a 0.12a

Electricity kWh 1.1a 1.1a

Aerobic composting

Inputs
Diesel kg 0.26a 3b,c,d

Electricity kWh 42.4a 0.51b

Lubricating oil l e 0.023c

Process parameters

C degradation rates
Paper and card & wood %C bio 35d 35e

Food waste & fine material %C bio 75d 75e

Garden waste %C bio 50d 50e

N degradation rates
Food waste & fine material %N 70e 70f

Garden waste %N 10e 10f

Other biodegradable waste %N 25e 25f

Biofilter CH4 oxidation efficiency %CH4
75g e

Outputs

Emissions to air
CH4 g/kgDegraded C 2.4h 2.1d

N2O g/kgN 1.8h,i 1.5h

a Source: Primary data from industrial source.
b Source: Fisher (2006).
c Source: Boldrin et al. (2009a).
d Source: Andersen et al. (2010).
e Source: Smith et al. (2001).
f Source: EASETECH database.
g Source: Based on the mean of reported values from Dalemo et al. (1997); du

Plessis et al. (2003); Streese and Stegmann (2005); Brown et al. (2008); Boldrin
et al. (2009b, 2011); Qiang et al. (2011); Yazdani et al. (2012).

h Source: Boldrin et al. (2009b).
i Source: Amlinger et al. (2008).
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40 kWh/t of RDF produced was assumed (Burnley et al., 2011).
Process RDF yield was based on facility specific data from
WasteDataFlow.

2.3.11. Merchant/exporter

The merchant and exporter processes were modelled using the
transfer station process as a proxy.

2.3.12. Incineration

The incineration process was modelled based on an average
grate furnace incinerator e the most common incinerator type
worldwide (Defra, 2013a)ewith dry flue gas scrubbing and de NOx

technology, as described by Boesch et al. (2014). Details of energy
and material inputs and waste characteristic transfer coefficients
for the incineration process are presented in Table 4 and Table 5,
respectively. Thermal energy released during the incineration
process is recovered via a boiler and a fully condensing turbine and
transformed into electrical energy by a generator at an assumed
gross generation efficiency of 22% (EC, 2006; Defra, 2013a). A 2%
electrical energy loss was included to account for part load oper-
ation and heat transfer losses (Consonni and Vigan�o, 2011).

Non combustible solid residues (i.e. bottom ash and fly ash) are
discharged from the base of the furnace and cooled. Fly ash was
assumed to be utilised as a backfilling material, with electricity and
diesel consumption of 29 kWh/t and 1.5 l/t, respectively, assumed
for the process (Fruergaard et al., 2010). Bottom ash is sent for de
scrapping to recover metals for recycling. The de scrapping process
was modelled using data from Bosech et al. (2014). 97% of incin-
erator bottom ash is sent for de scrapping, with the remaining 3%
sent to landfill. Recovery rates of 30%, 80%, and 30% were assumed
for aluminium, steel, and copper, respectively, with non recovered
material sent to landfill. 3 kWh/t of electricity is required for de
scrapping process.

2.3.13. Landfill

The non hazardous landfill process (also used as a proxy for inert
landfill) was modelled based on an average UK medium sized
conventional landfill with gas utilisation. Emissions were modelled
over a 100 year time period. Waste material decay rates were taken
from IPCC (2006). Energy and material inputs are presented in
Table 6. Details of the gas management system and its performance
over time are presented in Table 7. Landfill gas recovery efficiencies
were averaged over the 100 year time period to better reflect an
average tonne of waste deposited, rather than the first mass of
waste deposited (see Table 8). Collected landfill gas is utilised in an
internal combustion engine to generate electricity, with a gross
efficiency of 32% assumed (Patterson et al., 2011). A 1% fugitive CH4

emissions rate was specified for gas utilisation processes (US EPA,
2011).

2.3.14. Material reprocessing

Reprocessing of different dry recyclables was modelled using
the processmodels and LCI data presented in Turner et al. (in press).

2.3.15. Reuse

2.3.15.1. Books and bric a brac. Books and bric a brac were each
assumed to be resold in charity shops. An electricity input at the
charity shop of 357 kWh/t was assumed (James et al., 2011). No
material loss or avoided production was assumed.

2.3.15.2. Paint. No energy or material inputs were included for the
reuse of waste paint process. Post reuse, the steel container
(200 kg/t) was assumed to be sent for reprocessing. Reused waste
paint was assumed to substitute for primary paint production. No
material quality loss was assumed. Data for the production of pri-
mary paints were adapted for the UK situation from a study un-
dertaken in Abu Dhabi (Nayak and Kumar, 2008). Assuming a paint
density of 1 kg/litre, inputs of 33 kWh/t of electricity and 200 kg/t of
steel (Saft, 2007) were assumed for the primary paint production
process.

2.3.15.3. Textiles and footwear. The reuse of textiles and footwear
process comprises three stages: 1) sorting; 2) transport to end
markets; and 3) reuse. Data for the sorting process were taken from
the a UK based textiles recovery plant (EA, 2010). Based on Bartlett
et al. (2013), it was assumed that 37% of sorted textiles and foot-
wear are reused domestically, whilst 63% are exported for reuse
abroad. Based on the market situation in the year 2008, we
assumed that 50% of textiles and footwear exported for reuse
abroad are sent to Eastern Europe,17% to South Asia, and 33% to Sub
Saharan Africa (McGill, 2009). Textiles and footwear sent for reuse
domestically were assumed to be resold in charity shops (see
Section 2.3.15.1). No energy ormaterial inputs were includedwhere
textiles and footwear are exported. Reused textiles and footwear
were assumed to substitute for the production of textiles from

Table 3

LCI data for the application to land process. Note that data are presented per tonne
throughput.

Unit Value

Compost/CLO Digestate

Process parameters

Carbon bound in soila

Food waste-derived output %C bio 8.2b 8.2b,c

Garden waste-derived output %C bio 14d e

Mixed organic waste-derived outputd %C bio 12b,d 12b,c,d

Fertiliser substitution rates
Nitrogen fertiliser t/tN applied 0.2f 0.48g

Phosphorous fertiliser t/tP applied 0.5g 0.5g

Potassium fertiliser t/tK applied 0.8g 0.8g

Peat substitution rate m3 1.47h 1.47h

Outputs

Emissions to air
N2O g/kgN 1.4d 1.4d

CO2 biogenic

Food waste-derived output g/kgC bio 91.8b 91.8b,c

Garden waste-derived output g/kgC bio 86d e

Mixed organic waste-derived outpute g/kgC bio 88b,d 88b,c,d

a Relevant for the sensitivity analysis only.
b Source: Smith et al. (2001).
c Source: Møller et al. (2009).
d Source: Bruun et al. (2006).
e Based on an assumed composition of 1/3 food waste and 2/3 garden waste.
f Source: Hansen (2006a).
g Source: Evangelisti et al. (2014).
h Based on assumed bulk densities of peat and compost/CLO/digestate of 0.3 t m�3

and 0.68 t m�3, respectively (Smith et al., 2001), and an assumed substitution rate of
1 m3

peat m
�3

compost/CLO/digestate (Boldrin et al., 2010).

Table 4

Energy andmaterial inputs for the incineration process. Note that data are presented
per tonne throughput.

Unit Value Reference

Inputs

Water m3 1 Astrup et al. (2009); Boesch et al. (2014)
Electricity kWh 142 EC (2006); Boesch et al. (2014)
Heat, heavy fuel oil MJ 240 Boesch et al. (2014)
Ammonia kg 0.5 Astrup et al. (2009); EA (2010)
Lime kg 10 EA (2010)
Sodium hydroxide kg 0.19 Astrup et al. (2009); EA (2010)
Activated carbon kg 0.25 EA (2010)
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virgin fibres (for details, see Appendix A). Due to their compara-
tively shorter lifetimes and older fashions, market substitution
rates of 60%, 75%, and 85% were assumed for textiles and footwear
reused in the UK, Eastern Europe, and South Asia and Sub Saharan
Africa, respectively (Farrant et al., 2010; McGill, 2009).

2.3.15.4. Large domestic appliances. Waste electrical and electronic
equipment large domestic appliances (LDA) were assumed to be

reused domestically. However, based on James et al. (2011), it was
assumed that 35% of LDA send for reuse are actually recycled, due to
insufficient quality. No energy or material inputs were included for
the LDA reuse process. Reused LDA were assumed to substitute for
the production of primary LDA (for details, see Appendix A). Due to
the comparatively shorter lifetimes of reused LDA compared to new
LCA, a market substitution rate of 50% was assumed (James et al.,
2011).

2.4. Life cycle impact assessment

GHG emissions were characterised by GlobalWarming Potential
(GWP) using a 100 year time period (expressed as t CO2e), with
characterisation factors taken from the Intergovernmental Panel on
Climate Change (IPCC) Fourth Assessment Report (Forster et al.,
2007). The emissions “savings” from biogenic carbon sequestra-
tion in landfills or soils (see Christensen et al., 2009) were excluded.
This assumptionwas investigated as part of the sensitivity analysis.

3. Results and discussion

3.1. Material flow analysis

Comprehensive material flow diagrams for the LACW man-
agement systems of each scenario (i.e. the results of the mass
balance of waste) are presented in Appendix C. For S1, the base-
line scenario, the dominant primary waste stream was residual
waste (82,079 t), followed by commingled materials (42,065 t).
63,518 t of waste from the residual waste stream was sent directly
to landfill. Of the remaining waste, 18,562 t was sent to one of
three residual waste MRFs, with 9,829 t sorted and sent for
reprocessing (the remainder was sent to landfill), of which 7,843 t
was reprocessed into a secondary product; an overall recycling
rate of 42.3% (note that rates varied between facilities). By com-
parison, all commingled materials were sent to single stream
commingled MRFs, with 34,871 t recovered and sent for

Table 5

Material characteristic transfer coefficients (%) for the incineration process.

Bottom ash (%) Fly ash (%) Emissions to air (%) Reference

Ash 87 13 e EASETECH database
Volatile solids 1 e e EASETECH database
Energy 1 e e e

Fossil C e e 100 EASETECH database
Biogenic C 1 e 99 Boesch et al. (2014)
N 1 e 99 Boesch et al. (2014)
Fe 99 1 e Koehler et al. (2011); Boesch et al. (2014)
Al 82 18 e Koehler et al. (2011); Boesch et al. (2014)
Cu 95 5 e Koehler et al. (2011); Boesch et al. (2014)

Table 6

LCI data for the non-hazardous landfill process. Note that data are presented per
tonne throughput.

Inputs Unit Quantity Reference

Diesel kg 1.8 Hall et al. (2005)
Electricity kWh 8 Manfredi et al. (2009)
Water kg 0.00038 Hall et al. (2005)
HDPE (liner) kg 1 Hall et al. (2005)
Gravel kg 100 Manfredi et al. (2009)
Steel kg 0.12 Hall et al. (2005)
Synthetic rubber kg 0.0011 Hall et al. (2005)
Lubricant kg 0.0089 Hall et al. (2005)

HDPE, high-density polyethylene.

Table 7

Technical measures and performance associated with landfill gas recovery, uti-
lisation, and oxidation for different time periods.

Period 1 Period 2 Period 3 Period 4 Period 5

Duration (years) 1 4 15 30 50
CH4 oxidation (%) 10a 10a 20a 36b 36b

Gas collected (%) 0a 50a 75a 85a 0c

Gas management None Flare ICE ICE None

ICE, internal combustion engine.
a Source: US EPA (2011).
b Source: Chanton et al. (2009).
c Source: Spokas et al. (2006).

Table 8

Temporally-averaged landfill gas collection efficiencies.

Time period duration (years) Percentage landfill gas collected Percentage landfill gas not collected

1 0 100
1 35 65
1 50 50
1 65 35
1 70 30
11 75 25
1 77 23
1 79 21
1 81 19
1 83 17
30 85 15
50 0 100

Source: adapted from US EPA (2011).
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reprocessing and 27,920 t ultimately reprocessed into a secondary
product. This represents an overall single stream commingled
MRF recycling rate of 80.0% (note, again, that rates varied between
facilities). These results support those of Pressley et al. (2015),
who found that recovery rates at single stream commingled MRFs
were higher than those at residual waste MRFs. This suggest that
policies aiming to increase recycling rates should focus on
improving sorting efficiencies at the waste producer level (e.g.
households), rather than on recovering materials from the resid-
ual waste stream.

Table 9 displays a selection of key indicator results from the
MFAs for each scenario. For S1, a reuse/recycling/composting/AD
(henceforth, recycling rate) of 49.8% was calculated for the baseline
scenario, marginally higher than the 52.8% value reported by Car-
diff County Council (StatsWales, 2015b). However, where rejects
from reprocessing and biological treatment are included the final
(adjusted) recycling rate was estimated as being 45.2%, highlighting
the importance of considering downstream reject rates when
calculating recycling rates. The recycling rate was highest for S2
(enhanced food waste capture), where high rates of food waste
diversionwere achieved, whilst the recycling was also higher for S4
(enhanced dry recycling) compared to S1 due to the increased re-
covery of dry recyclables. For S1, over half of LACW was ultimately
landfilled, with 37.7% of LACW sent directly to landfill and 16.4%
rejected downstream (Table 9). S3 (enhanced incineration) was
found to result in the highest heat and power recovery rate, whilst
it was the most successful scenario in terms of diverting material
from landfill.

The results of the MFA suggest that it may not be possible for
Wales to achieve its recycling rate target of 70% by 2025 given
current waste arisings, even if optimum dry recycling and food
waste diversion rates are achieved. Rather, it is likely that signifi-
cant reductions in residual waste arisings will be required, as well
as improvements in recycling rates (Timlett and Williams, 2011).
Wales have alreadymade progress in this respect, with a steady rise
in the national LACW recycling rate from 37.5% in 2008e2009 to
52.3% in 2012e2013, accompanied by a 9.9% reduction in LACW
arisings over the same period (StatsWales, 2015a). However, re-
ductions in total waste arisings have stagnated in recent years. In
order for Wales to continue progressing towards its recycling tar-
gets, further reductions in waste arisings are likely to be required.

3.2. Life cycle interpretation

3.2.1. Evaluation of the existing LACW management system

Fig. 2 shows the total GHG emissions per scenario and the
contribution by primary waste stream. S1, the baseline scenario, was

found to result in a net GHG burden (8009 t CO2e). Note that positive
values represent an environmental load (i.e. GHG burden), whilst
negative values represent an environmental saving (i.e. GHG
benefit). GHG benefits were observed for the management of com-
mingled materials (�9410 t CO2e), source segregated dry recyclables
(�3212 t CO2e), and source segregated food waste (�2596 t CO2e).
However these benefits were heavily outweighed by the GHG bur-
dens from residual waste management (21,778 t CO2e).

Contribution to total primary waste stream GHG impacts by
process type for each scenario is shown in Fig. 3. For S1, the
dominant contribution in terms of GHG burdens was landfilling of
residual waste (25,866 t CO2e). Material reprocessing & reuse was
the only process type that consistently resulted in GHG benefits. For
S1, the most significant source of GHG benefits was from reproc-
essing of commingled materials (�19,219 t CO2e). The contribution
of biological treatment to total GHG impacts was found to be
negative for the source segregated food waste stream (i.e. GHG
benefit) but positive for the source segregated gardenwaste stream
(i.e. GHG burden). This is due to the different types of biological
treatment used to manage each waste stream (see Appendix C).
Foodwastewas treated predominately by AD, a process that utilises
produced biogas to generate electricity that is exported to the
National Grid and substitutes for electricity generated from CCGT,
resulting in GHG benefits. By comparison, gardenwastewas largely
treated by composting (either IVC or OWC), through which energy
cannot be recovered. This finding correlates with those of Yoshida
et al. (2012) and Bernstad and la Cour Jansen (2011) who each
found that AD of organic waste resulted in a greater GHG benefit
compared to composting.

Overall, transport was identified as the third largest contributor
to the total GHG impacts for S1 (Fig. 3; 7296 t CO2e; 10% contri-
bution). However, its relative contribution to the GHG impacts of
each primary waste stream management system was highly vari-
able. Whilst the contribution of transport to the GHG impacts from
the residual waste (1492 t CO2e; 4% contribution) and source
segregated dry recyclables (160 t CO2e; 3% contribution) manage-
ment systems was minor, transport contributed substantially to the
GHG impacts from source segregated garden waste management
(565 t CO2e; 24% contribution). This is likely due to the considerable
distances that garden waste was transported for treatment. For
example, 16,780 t of collected garden waste was transported be-
tween 78 and 181 km to an IVC facility, resulting in substantial GHG
burdens. The contribution of transport to the total GHG impacts of
commingled materials management was also found to be large
(4543 t CO2e; 16% contribution). This is likely due to the large
quantity of recyclate that was exported overseas for reprocessing.
Of the 42,055 t of commingled materials collected, 11,334 t

Table 9

Comparison of MFA indicator results for the four scenarios. Note that S1, S2, S3, and S4 refer to Scenarios 1e4, respectively.

Indicator Description Scenario

S1 S2 S3 S4

Landfill rate (%)a Total tonnage of LACW sent directly to landfill plus total tonnage rejected
from other facilities, divided by total tonnage of LACW arisings

54.0 48.0 29.0 52.3

Reuse/recycling/composting/AD rate (%)a Sum of tonnage of LACW sent for reuse, reprocessing, composting, or AD,
divided by the total tonnage of LACW arisings

52.8 59.5 52.8 55.1

Heat and power recovery rate (%)a Sum of tonnage of LACW sent for incineration or AD, divided by total
tonnage of LACW arisings

8.9 15.4 38.5 8.9

Landfill diversion rate (%) Sum of tonnage of LACW not sent directly to landfill (i.e. LACW sent to
reuse/recycling/composting/AD/thermal treatment), divided by total
tonnage of LACW

62.3 68.9 92.0 64.8

Adjusted reuse/recycling/
composting/AD rate (%)

Sum of tonnage of LACW sent for reuse, reprocessing, composting, or AD
minus sum of tonnage rejected, divided by the total tonnage of LACW arisings

45.2 50.8 44.4 47.0

MFA, material flow analysis; LACW, local authority collected waste; AD, anaerobic digestion.
a Waste management performance indicators for Welsh local authorities.
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Fig. 2. LCA results (GHG emissions, t CO2e/FU) of different scenarios and the contribution by primary waste stream. Note that S1, S2, S3, and S4 refer to Scenarios 1e4, respectively.
LCA, life cycle assessment; GHG, greenhouse gas; FU, functional unit.

Fig. 3. LCA results (GHG emissions, t CO2e/FU) of different scenarios per primary waste stream and the contribution process type. Note that S1, S2, S3, and S4 refer to Scenarios 1e4,
respectively. RW, residual waste; CM, commingled materials; SSDR, source-segregated dry recyclables; SSFW, source-segregated food waste; SSGW, source-segregated garden
waste; LCA, life Cycle Assessment; GHG, greenhouse gas; FU, functional unit.
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(predominately paper) was exported to reprocessing facilities in
Asia (see Appendix C). These results suggests that the calculated
GHG impacts from materials recycling in this situation are more
greatly affected by transport distance compared to results from
previous studies (Larsen et al., 2009; Merrild et al., 2012; Salhofer
et al., 2007). The formulation and implementation of policy mea-
sures that promote domestic reprocessing of waste materials may
help to reduce the GHG impacts of transport and, consequently,
enhance the overall GHG benefits from materials recycling.

Table 10 presents the contributions of wastes from different
collection sources to the total GHG impacts for each scenario. For
S1, the largest contribution to the total GHG impacts was from
household kerbside collected waste, particularly residual waste,
which was the most significant source of GHG burdens, and com-
mingled materials, the largest source of GHG benefits. Overall GHG
impacts from bulky waste collection, fly tipped materials, the
voluntary sector, and municipal parks/grounds waste collection
were found to be minor, with each contributing less than 1% to the
total GHG impacts. An interesting result from a policy perspective
concerns the contribution of street cleaning waste management to
the total GHG impacts. Street cleaning waste management was
found to contribute 8.8% (751 t CO2e) of total GHG impacts for S1.
Waste from street cleaning comprised both residual waste, the
management of which incurred a GHG burden of 2269 t CO2e, and

commingled materials, the management of which resulted in a
GHG saving of �1518 t CO2e. Diversion of street cleaning waste
from the residual waste stream by promoting recycling is an area
not commonly targeted by policy makers, but could be an effective
source of potential GHG benefits.

3.2.2. Comparison of scenarios

Compared to S1, each of the three alternative scenarios were
found to result in lower overall GHG burdens (Fig. 2). S2 was found
to be the best performer with an overall GHG impact of �1930 t
CO2e, the only scenario for which a net GHG benefit was found. The
contribution of household kerbside collection residual waste to
total GHG impacts was substantially reduced in S2 compared to S1
(Table 10), with a large portion of the GHG burdens of residual
waste management replaced by GHG benefits from the manage-
ment of source separated food waste. This highlights the consid-
erable influence of the organic content of residual waste on total
GHG burdens (see Section 3.2.3.2).

After S2, S3 was the next best performer (1046 t CO2e; Fig. 2). S3
showed the greatest reduction in GHG burdens from landfill
compared to S1 (Fig. 3). For S3, the substantial GHG burdens from
landfill were replaced by comparatively lower GHG burdens from
incineration (Fig. 3), suggesting that incineration represents a
better option with regards to GHG impacts compared to landfill.

Table 10

LCA results (GHG emissions, t CO2e) and contribution analysis (%t CO2e=FU) of different scenarios per collection source and primary waste stream. Note that S1, S2, S3, and S4
refer to Scenarios 1e4, respectively.

Scenario

S1 S2 S3 S4

t CO2e % t CO2e/FU t CO2e % t CO2e/FU t CO2e % t CO2e/FU t CO2e % t CO2e/FU

Household kerbside collection

Residual waste 17,457 40.3 9874 25.9 11,645 32.7 16,738 37.8
Commingled materials �7545 17.4 �7545 19.8 �7545 21.2 �9287 21.0
Source-segregated garden waste 1573 3.6 1573 4.1 1573 4.4 1573 3.6
Source-segregated food waste �2596 6.0 �4954 13.0 �2596 7.3 �2596 5.9
Source-segregated dry recyclables 15 0.0 15 0.0 15 0.0 15 0.0
Total 8904 67.4 �1,0367 63.0 3092 65.7 6443 68.2
Bulky waste collection

Source-segregated garden waste 2 0.0 2 0.0 2 0.0 2 0.0
Source-segregated dry recyclables �72 0.2 �72 0.2 �72 0.2 �72 0.2
Total �70 0.2 �70 0.2 �70 0.2 �70 0.2
HWRCs

Residual waste �2084 4.8 �2084 5.5 �1709 4.8 �2084 4.7
Commingled materials �319 0.7 �319 0.8 �319 0.9 �319 0.7
Source-segregated garden waste 192 0.4 192 0.5 192 0.5 192 0.4
Source-segregated dry recyclables �2560 5.9 �2560 6.7 �2560 7.2 �2560 5.8
Total �4771 11.9 �4771 13.5 �4396 13.4 �4771 11.6
Bring sites

Commingled materials �28 0.1 �28 0.1 �28 0.1 �28 0.1
Source-segregated dry recyclables �595 1.4 �595 1.6 �595 1.7 �595 1.3
Total �623 1.4 �623 1.6 �623 1.8 �623 1.4
Street cleaning

Residual waste 2270 5.2 2270 6.0 2017 5.7 2270 5.1
Commingled materials �1518 3.5 �1518 4.0 �1518 4.3 �1518 3.4
Total 752 8.8 752 10.0 499 9.9 752 8.6
Fly-tipped materials

Residual waste 208 0.5 208 0.5 237 0.7 208 0.5
Total 208 0.5 208 0.5 237 0.7 208 0.5
Non-household collection

Residual waste 3926 9.1 3926 10.3 2624 7.4 3926 8.9
Total 3926 9.1 3926 10.3 2624 7.4 3926 8.9
Voluntary sector/community collection

Source-segregated dry recyclables 0 0.0 0 0.0 0 0.0 0 0.0
Total 0 0.0 0 0.0 0 0.0 0 0.0
Municipal parks/grounds waste collection

Source-segregated garden waste �317 0.7 �317 0.8 �317 0.9 �317 0.7
Total �317 0.7 �317 0.8 �317 0.9 �317 0.7
Total 8008 100.0 �1930 100.0 1046 100.0 5548 100.0

GHG, greenhouse gas; FU, functional unit; LCA, Life Cycle Assessment; HWRC, household waste recycling centre; LACW, local authority collected waste.
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This compares favourably with the findings of previous studies (e.g.
Arena et al., 2003; Fern�andez-Nava et al., 2014; Massarutto et al.,
2011). The GHG benefits of S3 would likely be further enhanced if
district heating networks were more widely established in the UK.
This would create markets for thermal energy recovered through
incineration, leading to further GHG benefits through avoided
thermal energy production (Giugliano et al., 2011; Turconi et al.,
2011).

Of the three alternative scenarios, S4 was found to result in the
improvement on the results of the baseline scenario, with a total
GHG impact of 5548 t CO2e (Fig. 2). This is likely due to the rela-
tively high dry recyclables sorting efficiencies that are already
achieved in Cardiff, particularly for mixed glass, paper, and dense
plastics. Considering the results for S2, this finding also suggests
that waste policies that target residual waste prevention may be
more effective in achieving GHG emissions reductions compared to
those that target greater recovery of dry recyclables.

3.2.3. Scenario analysis

3.2.3.1. Carbon sequestration. A sensitivity analysis was performed
to investigate the impact of including carbon sequestration on the
LCA results through scenario analysis. For each scenario, the
amount of carbon sequestered was calculated as the amount of
biogenic carbon that, after 100 years, remains in a landfill or, in the
case landspreading of organic solid residues from biological treat-
ment, is bound to soil. Fig. 4 shows the total GHG impact for each
scenario and the contribution by process type. The inclusion of
carbon sequestration had a substantial impact on the calculated
results. Overall, net GHG benefits were observed for each of the four
scenarios. Landfilling was found to result in overall GHG benefits,
effectively rendering landfills a “carbon sink”. This contradicts the
findings of the UK's national GHG inventory return for GHG emis-
sions from SWM (Salisbury et al., 2015), despite the fact that carbon
sequestration is also considered in the national inventory analysis
(Hogg et al., 2011).

The ranking of scenarios in terms of their environmental per-
formance was affected by the choice of including carbon seques-
tration. Whilst S2 remained the best option and S4 was still found
to result in additional GHG benefits compared to S1, the overall
GHG burdens for S3 were found to be considerably higher than S1
(Fig. 4). This suggests that when carbon sequestration is included in
the calculations, landfilling is generally a better option compared to
incineration in terms of GHG impact, which contradicts the results

of previous studies (e.g. Arena et al., 2003; Fern�andez-Nava et al.,
2014; Massarutto et al., 2011). Given the significant effects of
including carbon sequestration in the LCA on the calculated results,
these authors suggest that further research into carbon degradation
rates for waste materials in UK landfills is needed.

3.2.3.2. Residual waste composition. A sensitivity analysis using
scenario analysis was performed to test the influence of the
modelled organic content of the residual waste stream on the
overall LCA results. In this study, residual waste composition data
were taken from a national waste composition study (WRAP, 2010)
that predates the introduction of separate household food waste
collection in Cardiff. The use of these data may, therefore, result in
an overestimation of GHG burdens as the total organic content of
the input waste may be overestimated. Two scenarios were ana-
lysed, with the proportion of organic material in residual waste
increased and decreased by 10% compared to the baseline values for
each scenario. Compared to the total GHG impact of S1 (8008 t
CO2e), the 10% increase in organic content resulted in a þ15.5%
variation (result: 9254 t CO2e), whilst the 10% decrease resulted in
a �9.4% variation (result: 6826 t CO2e). The sensitivity analysis
shows that the overall LCA results are highly sensitive to the
organic content of residual waste.

4. Conclusions and recommendations

In this paper we have presented an approach that combines the
systematic methodologies of MFA and LCA to quantitatively eval-
uate the environmental performance of large and complex SWM
systems. The approach was applied to evaluate the GHG emissions
performance of a local authority SWM system and compare its
performance with those of alternative systems to assess the po-
tential effectiveness of different waste policy measures. The results
of the MFA show that S2 (enhanced food waste capture) resulted in
the highest recycling rate of the investigated scenarios, whilst S3
(enhanced incineration) resulted in the highest rate of waste
diversion from landfill. Overall, our results suggest that, in this case,
the national government is unlikely to achieve its recycling targets,
even if each of the assessed policy measures are implemented
optimally. It is likely that in order for the recycling targets to be
achieved, these policy measures need to be combined with further
policies focused on waste prevention.

Fig. 4. Sensitivity analysis (SA1) results (GHG emissions, t CO2e/FU) of different scenarios and the contribution by process type e the inclusion of carbon sequestration. Note that
SA1.1, SA1.2, SA1.3, and SA1.4 refer to Scenarios 1e4, respectively. GHG, greenhouse gas; FU, functional unit.
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The GHG impacts of the existing SWM system were evaluated
through LCA, focusing on potential climate change impacts. The
results showed that the dominant source of GHG burdens was from
residual waste management, principally through landfilling, which
was the most significant source of GHG burdens. Material reproc-
essing and AD were found to be the greatest sources of GHG ben-
efits. GHG burdens from transport were found to be generally
minor, except with regards to the management of source segre-
gated garden waste and commingled materials.

Compared to the baseline scenario, each of the three alternative
scenarios were found to perform better in terms of GHG impact.
Overall, the best performing scenario was S2 (enhanced food waste
capture), which was the only scenario that resulted in an overall
GHG saving. However, the results of the LCA were found to be
highly sensitive to the choice of excluding GHG benefits from car-
bon sequestration. When carbon sequestration was included, all
four scenarios were found to result in net GHG benefits. The order
of the four scenarios in terms of overall performancewas also found
to be affected by the choice, with the GHG burdens for S3
(enhanced incineration) found to be greater than those of the
baseline scenario. The results were also found to be sensitive to the
organic content of the residual waste stream.

Overall, this paper has demonstrated that the complementary
methodologies of MFA and LCA can be used in combination to
provide valuable information about the environmental perfor-
mance of a SWM system. The approach can be applied to assist
national governments in appraising existing and possible waste
policies and to support local waste managers in identifying envi-
ronmentally optimal SWM strategies.
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