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Abstract. Materials composed of Ag, Au, and AgAu alloys remain of great interest despite
decades of intense research scrutiny. We interpret these efforts as an impetus for developing
robust, accurate, and relatively fast computational methods for modeling these materials. Herein,
we describe the training, development, and validation of a machine learning deep neural network
potential (DNP) for improved modeling of Ag-Au systems. This DNP was iteratively trained using
density functional theory (DFT) to produce a robust multi-length scale potential, which yields
results comparable to DFT on a wide range of properties such as equilibrium and non-equilibrium
lattices, mechanical properties, and defect energies. Further, this DNP can well describe adatoms
(Ag or Au) energy barriers for diffusion on {100}, {110}, and {111} terminated surfaces (Ag or

Au), in agreement with previously reported works. We utilized the DNP to study the nucleation



and growth of simulated seeded core-shell Ag and Au nanoparticles (NP). We show that both
nanoalloys grow such that {111} facets significantly increase at the expense of the {100} ones. In
contrast, the Ag core NP is found to have a more disordered inner structure than the Au one, and
that Ag adatoms in Au@Ag NP have a more pronounced penetration power than Au in Ag@Au

NP. These findings are rationalized in terms of adatom adsorption and diffusion energies.

Introduction. Materials composed of Ag, Au, or Ag-Au alloys have been of great interest for
many centuries due to their unusual properties, including the resistance to chemical corrosion of
Au coins and the array of colloidal Au- and Ag-based pigments in ancient works of art (e.g., the
Lycurgus cup'), and more recently, the antibacterial properties of Ag materials?>. Research of Au-
Ag materials has explored properties across many length scales from clusters, nanoparticles (NP),

thin films of pure metals, and alloys. For instance, Ag-Au clusters and smaller diameter (d < 3

13—4 t5—8

nm) NPs have distinct catalytica and photoluminescent”™™ properties as utilized in different
applications®!!!; Ag-Au NPs with diameters > ~3 nm have morphologically tunable localized
surface plasmon resonances'?!#; thin films are used in surface-enhanced Raman spectroscopy

applications'>!”

. Computational modeling is an invaluable tool that can minimize bench time and
trial-and-error synthetic approach by providing powerful insight into alloying mechanisms, mixing
patterns, electron structures, and surface segregation. Such insight will ultimately lead to improved
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synthetic development and controlled synthesis'®. Specifically, modeling surface energies and

diffusion barriers can provide precise predictions into growth mechanisms.

In 2020 more than 1000 research articles'” were published investigating Ag, Au, and/or
Ag-Au using embedded-atom method (EAM) potentials; thus, demonstrating the importance of

atomistic calculations and their broad impact across many active areas of material research.



Typically, EAM potentials are trained on a mixture of experimental and first-principles results to
describe a material's behavior under specific conditions for targeted property considerations.
Therefore, each of these EAM potentials has predictive strengths and weaknesses; e.g., trained for
clusters, NPs, alloys, high-temperature, bulk materials, and/or liquids®. Recently, a detailed study
compared two atomistic potentials of Zhou et al. (EAM1)?! and Foiles et al. (EAM2)*, with
density functional theory (DFT), and concluded that the classical potentials could both

underestimate/overestimate diffusion barriers during Au-Ag NPs growth.??

Research on the development of novel potential functions for metals and alloys has
experienced a vast expansion in the last few years, particularly due to the application of modern
methods of machine learning (ML) to the creation of transferable and efficient potentials with the
accuracy of ab initio schemes for the derivation of micro-and macroscopic properties. A recent
paper by Rosenbrock et al.** demonstrated, for example, the ability of gaussian approximation
potential and moment tensor potential, both ML interaction potentials, to reproduce the potential
energy surface and properties like the phonon dispersion relation for the bimetallic system Ag-Pd,
with DFT accuracy across the entire space of configuration and composition for the solid and

liquid space. Less attention is paid to the finite size and surface systems.

Hence, we posit that this is an opportunity to develop a robust multiscale atom-based
potential using ML that can produce results with a near DFT accuracy but with computational
costs closer to calculations relying on EAM potential. We employ a deep neural-network potential
(DNP), which has the flexibility and non-linearity necessary to describe various complex potential

2531 enabling more versatility and broader applications. Most importantly, this

energy surfaces
DNP potential allows us to readily hone, modify, optimize, and expand the database to account for

specific environmental properties with greater ease than an EAM potential (see ref 32).



We developed DNP for the Ag-Au bimetallic alloy system using DeepPot-SE approach™

as implemented in DeePMD-Kit**

, and systematically analyzed its fidelity in describing a wide
range of properties. Indeed, the suitability of such an approach has been demonstrated in the
challenge of structural prediction for bulk systems in Al-Mg intermetallic compounds by Wang et
al*®> We followed an adaptive iterative-learning approach throughout this development to
systematically augment the training dataset from regions of the phase space that are not adequately
sampled. We further demonstrate that the developed DNP can describe Ag-Au nanoalloys and bulk
materials with near DFT accuracy from cluster to bulk materials. Specifically, we modeled Ag and
Y37,

Au adatoms' diffusion behavior on three different low-index Ag and Au surfaces (Figure 1

which are essential for studying Ag-Au deposition and the growth of nanomaterials. We pursue
these research efforts to aid in the elucidation of nanomaterial growth, as this topic is an active

area of research?®3°,
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Figure 1. Example surfaces used for the NEB simulations, Ag adatom (silver circle) on Au slabs
(gold circle) final position of the Ag adatom (blue circle) for A) exchange on {100}, B) {100}
hopping, C) exchange on {110}, D) SB and LB hopping on {110}, E) hcp-hollow on {111} and
)0

F) fcc-hollow on {111}. Images generated using Atomic Simulation Environment (ASE

software.



Methods

DFT Calculations. The DFT database was generated using the Vienna Ab Initio Simulation

Package (VASP)**? employing the Perdew-Burke-Ernzerhof (PBE)* exchange-correlational

functional to solve the Kohn-Sham equations within periodic boundary conditions. As discussed
in our previous work?’, PBE+D3 (van der Waals corrections by Grimme) would provide a better
agreement with the experiment than PBE, in particular considering the surface-energy ranking
between Au and Ag, nevertheless remaining non-quantitative. We decided to utilize PBE in this
study so as not to introduce additional empirical parametrization in the standard reference to
develop the atomistic potential. Further, PBE is a good compromise between speed and accuracy.
A fully quantitative description would require a refinement based on a higher-level functional (e.g.,
hybrid, meta-GGA) which is not practical at this stage, considering the large data needed to
generate the potential. The electron-nucleus interactions are described using the projector
augmented wave (PAW) method implemented in VASP* using 4d'%5s! and 5d'%6s' valence
configurations for Ag and Au, respectively. Single-particle orbitals are expanded in plane waves
generated within a cutoff of 400 eV. We use a dense gamma-centered k-grid with a 0.24 A’
spacing between k-points, equivalent to an 8x8x8 mesh for bulk Ag/Au with a conventional four
atom face-centered cubic (fcc) unit cell. Further, to aid in the k-grid convergence, we use
Methfessel-Paxton®> of order 1 with a 0.15 eV smearing. We terminate the self-consistent
electronic loop using a 10® eV energy-change tolerance to ensure adequate convergence on

energies, forces, and virials.



DNP Training database. To build a general DNP that can describe crystalline and amorphous
phases of Ag-Au alloys equally, we constructed a training database that includes bulk, surfaces,
and amorphous systems. Model Au-Ag systems are depicted in Figure 1. In total, the database
comprises ~85 k different atomic configurations to ensure that the intrinsically nonphysical form
of the ML model has "learned" the relevant physics of the system. Most configurations (~30 k) are
obtained for the small Au-Ag ordered compounds with less than 10 atoms per unit cell after
applying different distortions to the system. The total number of Au-Ag slab models is ~20 k with
(100), (111), and (110) orientations employing supercells with 20-80 atoms. The alloy surface
configurations are obtained using a fcc lattice with an Ag/Au random occupancy. Also, we
augmented the database with ~5 k random Au-Ag configurations with ~100 atoms per unit cell
generated using Packmol*. Further, we included around 15 k NP configurations with less than 100
atoms.

The DFT database was mainly populated from ab initio molecular dynamics (AIMD)
trajectories within a constant volume and temperature (NVT) ensemble at a temperature that ranges
between 100 and 1500 K. We employed a relatively large 2-4 fs timestep in the AIMD simulations.
While this large step could render long AIMD trajectories unstable, it is nevertheless advantageous
for the DNP training as it decreases the correlations between the configurations and increases

sampling of the relevant phase space.

DNP Model. The DNP was developed using the DeepPot-SE approach® as implemented in
DeePMD-Kit**. As discussed before*’, we use a cutoff radius of 7 A for neighbor searching with
2 A as the smooth cutoff. The maximum number of neighbors within the cutoff radius is set at
200 though a smaller value of ~100 yields similar accuracy potentials. The dimensions of the

embedding and fitting nets are set at 25x50x100 and 240x240x240, respectively. The DNP is
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optimized using Adam stochastic gradient descent method with a learning rate that decreases
exponentially from the starting value of 0.001. We used an adaptive-learning loop, which will
continue until convergence is met when no extrapolative configurations are found within the

selection pool.*’

Validation of Ag-Au DNP. For the elemental metals, we determine the optimum lattice constants,
the energy of cohesion (E.,}), defects (point and planar), surface energies, and elastic constants.
Further details for specific approaches are found in the supporting information section. For
comparison purposes, we selected two standard Ag-Au EAM atomistic potentials EAM1%! and
EAM2%. 1t should be noted that these EAM potentials were previously used for comparison to
DFT diffusion calculations®®. We utilized the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS, 16 Mar 2018 version)* for all of our atomic calculations. Our simulations
employed atomic structures that are either constructed using Atomsk*, generated in LAMMPS, or

downloaded from the Material Project Database (MPDB)*°.

We quantify the errors of the potentials using a simple evaluation of percent differences
for different properties with respect to the DFT values. The percent difference (%ZEpir) is expressed

by equation 1, where Epnp and Eprr are the system's DNP and DFT energies.

%Epir = (Epne = Eppr)/Eppr * 100 (1)

We note that the comparison of the EAM to the DFT values is not on an equal footing to the DNP
case, which is solely trained on DFT structures, whereas EAMs are trained on a mixture of
theoretical and experimental values. The construction of the validation structures is described in

our previous work,*’, and details specific to this work can be found in the SI.



Adatom Adsorption Energies and NEB for Diffusion Barriers. Adsorption sites and diffusion
mechanisms on representative surfaces are shown in Figure 1, and the corresponding results are
reported in SI and shown in Figure S1. The adsorption energies (AEaps) were calculated from

equation 2.

AEaps = E - Eglap - Eatom (2)

E is the slab's energy with the atom, Eg,p, is the energy of the slab without the adatom, and E 3o,
is the energy of the isolated atom. Diffusion barriers (AE") were evaluated via NEB calculations®’.
We used 16 replicas linearly interpolated along the diffusion paths for each NEB trajectory and

employed 5x5x10 slabs for all surfaces and adatom combinations (Figure 1).

Nanoalloy Growth. Following a commonly used computational protocol®?, we simulated the
growth of two different Ag-Au nanoalloys starting from two equilibrated 201-atoms seeds (Ag2o1
and Auor). These were generated via Wulff construction®, using surface energies from the
literature?®. The two seeds correspond to truncated octahedrons, exposing {100} and {111} facets.
Simulations were run in the gas phase employing NVT ensemble and a velocity rescaling

thermostat®*

setat T =297 K. The time step for integrating Newton's equations of motion was set
to 4 fs. Adatoms were deposited on the thermalized seeds every 2 ps while allowing all atoms to
freely move between two subsequent depositions. We quantified the chemical ordering of the
nanoalloy using the radial distribution functions from the seed center.’® Further, we analyzed the
atomic migration towards the outer shell or adatom penetration using common-neighbor analysis.>

We would like to emphasize that these growth simulations are for illustrative purposes, and to
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prove the reliability of the developed DNP model, by comparing some among the predicted

configurations (not included in the initial training) with DFT predictions. To deeply explore Au-

Ag NP growth, one should test different simulation conditions, e.g., different seed shapes,

deposition rates, and temperature. These aspects will be the subject of a future investigation.

Results and Discussion.

We first report on the validation of the Au-Ag DNP model, which not only describes the
binary alloys but pure bulk Ag and Au phases as well. For each metal (Ag or Au), we compare our
DNP derived values to known DFT values for lattice parameter (fcc, bee, sc, diamond, hep) and
cohesive energy (Econ), point defects (vacancies and interstitial atoms), elastic constants (bulk
modulus, Young's modulus, shear modulus, and Poisson's ratio), 2D and 3D cluster structures
(n=6-9 atoms), surface energies of different terminations (Miller indices less than 4) and planar
defects, calumniating in a total of 56 validated properties for each bulk metal (Ag and Au),
respectively. We quantify the potentials' difference using a simple evaluation Eq. (1) of the percent

difference with the DFT wvalues.

Lattice Constants, Energy of Cohesion, Elastic Constants. Accurate modeling of a material's
mechanic properties is a fundamental first step in validating new potential and an area where EAM
potentials have been demonstrated to perform well compared with DFT and experimental results.
The lattice constants, energies of cohesion (E..,), elastic constants, and calculated moduli are
listed in Table 1 for Ag and Table 2 for Au. Additional Ag and Au benchmarks for bulk point
defects (Table S1), cluster energies (Table S2), non-ground state lattices (Table S3) are listed with

comparisons to EAM1 and EAM2, in the SI.

Table 1. Experimental, EAM, DNP, and DFT mechanical properties of bulk Ag.
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Property EXP DNP EAM1 EAM2 DFT>?

fcca 4.07%¢ 4.15 4.09 4.09 4.15
fce Econ -2.85°7 -2.71 -2.85 -2.85 -2.83
Vo (A3/atom) 16.9 17.9 17.0 17.0 18.0
Ci 13238 115 129 143 100
Cn 97°8 88 91 150 82
Cus 51°8 44 57 35 41
Bulk Modulus (Kn) 1008 97 104 148 88
Shear Modulus (Gn) 308 32 42 20 28
Young's Modulus (En) 8338 86 110 56 57
Poisson’s Ratio (v) 0.37°% 0.35 0.32 0.44 0.38

Lattice constants (a) are in A, Econ in €V/atom, and elastic constants and moduli in GPa. EXP V,
and DFT Ey were calculated from the measured literature values for comparison. Ky Guand En
are the bulk modulus, shear modulus, and Young's Modulus defined by Hill (see SI for all
equations).>¢!

Table 2. Experimental, EAM, DNP, and DFT mechanical properties of bulk fcc Au.

Property EXP DNP EAM1 EAM2 DFT>?
fcca 4.07%? 4.16 4.08 4.04 4.17
fee Econ -3.93%7 -3.22 -3.93 -3.93 -3.27
Vo (A3/atom) 16.9 18.0 17.0 17.0 18.2
Ci 1938 170 165 186 144
Ci2 163 138 131 157 134
Cua 4238 36 33 42 29
Bulk Modulus (Kn) 180°8 149 143 167 137
Shear Modulus (Gn) 278 28 27 31 19
Young’s Modulus (En) 173 79 75 88 89
Poisson’s Ratio (V) 0.42°8 0.41 0.41 0.41 0.45

Units and symbols are defined in Table 1 footnote.

Free Surfaces Energies for low index Ag and Au surfaces. We modeled Ag and Au terminated
surfaces for Miller indices < 4 as some larger NPs have highly faceted surfaces; therefore, further
enhancing the importance of accurately modeling these surface energies. These slab models are
constructed using the optimized lattice constants by orienting the surface perpendicular to the z-
axis and doubling the simulation box's z length to add a vacuum in the non-periodic direction to
mitigate spurious interactions. The surface energies are reported in Table 3 (see Table S4 and Table
S5 for EAM1 and EAM2 results, respectively). We obtained similar surface energy values using
either the direct or the Fiorentini-Methfessel method®>. As seen from Table 3, for the Ag and Au
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surfaces, the surfaces follow the correct order of increasing surface energies {111} < {100} <
{110}. We also highlight our DNP results' excellent agreement with the DFT values obtained from

MPDB? as the percent difference is lower than 9%.

Table 3. Surface energies ys in (mJ/m?) for Ag and Au slabs.

Surface Vs Ag Ys Au
Termination DNP DFT % EDIFF DNP DFT % EDIFF
100 821 820 <1 835 860 3
110 871 870 <1 855 830 3
111 695 760 9 648 710 9
210 940 900 5 895 910 2
211 843 879 4 818 820 <1
221 829 820 1 752 780 4
310 925 890 4 898 910 1
311 877 860 2 834 870 4
320 931 890 5 881 910 3
321 880 860 3 827 850 3
322 809 770 5 736 750 2
331 857 850 1 791 830 5
332 801 790 1 722 750 4

Planar Defects. Planar defects are common structures found in Au and Ag monometallic
nanosystems. In particular, twin boundaries are significant growth-directing defects for
anisotropic NPs, which significantly impacts the resulting morphologies (e.g., Au nanoprisms,
Au/Ag nanorods)®*¢7. Although we did not include these structures in our DNP training, we found
that we can predict the DFT energies of these defects relatively well (Table 4). We observe less
agreement for the Au planar defects, which indicates that more training is needed to better describe
these properties. Nevertheless, we observe similar accuracy compared to EAM1 and EAM?2 (Table
S6 and Table S7). We also note that this current version of the DNP fails to accurately describe
the (111) twin plane energy compared to DFT values. In summary, the DFT agreement on most
planar defects is an excellent demonstration of the DNP ability to interpolate structures in the

training set.
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Table 4. Ag and Au planar defects surface energies (mJ/m?) compared to DFT. Notably, the DNP
training dataset did not include similar defects.

Sigma Defect Rotation Rotation vs Ag vs Au
Plane Plane DNP DFT %Epirr| DNP DFT %Epirr
3 112 110 180.0 362 430 16 603 460 31
3 110 111 109.5 586 540 8.6 254 340 25
3 111 111 60.0 8 70 88 74 30 150
5 013 100 53.1 491 550 11 499 450 11
5 021 100 36.9 531 590 10 493 520 4.4
5 100 100 36.9 407 420 3.0 352 320 9.8
7 111 111 36.9 183 210 13 404 440 8.3
7 321 111 38.2 514 540 4.6 181 170 6.3
9 110 110 38.9 458 510 10 412 390 5.5
9 221 110 38.9 677 710 4.7 613 610 <1

Diffusion on {100} surfaces. Our results confirm previous findings by Bon et al.?* as we observe
that the Au adatoms have larger adsorption energy (AEaps) than Ag (Table 5) compared to the
same slab surface, as predicted previously. We also note that an adatom has lower AEaps on a slab
with the same chemical identity (Table 5), e.g., Au on an Au slab is of lower energy (3.30 eV) than
Au on a Ag slab (3.36 ¢V). Diffusion is initiated with Ag and/or Au adsorption process on clean
{100} surfaces at hollow sites only®>%%%°_ followed by hopping or exchange diffusion (Figure 1).

The NEB energy barriers for each adatom on each {100} slab are shown in Figure 2.
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Figure 2. NEB energy barrier plot showing the system energy for both adatoms along the diffusion

pathway on a {100} slab for A) Ag and B) Au surface slabs. Lines are added to guide the eye.

The hetero-adsorption diffusion, Ag on a Au-slab and Au on a Ag-slab, favors an exchange
mechanism AEgx*<AEnop*, where AEgx is the barrier energy to exchange the adatom with a
surface atom and Hop is the barrier for the adatom to move to a new hollow site. This smaller
barrier to exchange suggests a favorability of mixing coupled with AEgx < AEaps for heteroatom
systems. The adatom energetically favors incorporation into the slab surface rather than diffusion

across the surface, consistent with the literature®* 707!,
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Table 5. Adsorption energy and diffusion barriers (eV) for adatoms on {100} surface. * indicates

NEB barrier.

Slab  Adatom Property DNP PBE? % EpIrr

AEaps 2.55 2.37 8

Ag AEop* 0.42 0.46 8
________________ AEpx* 0.39 0.52 26

Ag AEAaps 3.36 2.99 12

AEEgx 2.97 3.02 2

Au

AEnep* 0.64 0.55 15

AEgx* 0.37 0.43 15

AEAaps 2.79 2.70 3

Ag AEEgx 2.59 2.88 10

ABjiop* 0.41 0.53 21

Au AEgx* 0.16 0.19 16

AEAaps 3.30 3.06 8

Au AB3op* 0.57 0.61 7

AEgx* 0.12 0.11 5

Diffusion on {110} surfaces. As shown in Figure 1, the diffusion path on {110} slabs is

complicated, as the Ag and Au adatoms that occupy hollow sites have four competing diffusion

mechanisms/pathways (Figure 3), namely short-bridge (AEsg), long-bridge (AErg), or cross-

channel diffusion via adatom exchange.? ® 72
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Figure 3. NEB energy barrier plot shows the system energy for both adatoms along the diffusion

pathway {110} slab for A) Ag and B) Au slabs. Lines are added to guide the eye.

For both Ag and Au {110} surfaces, the adsorption energies after the in-channel hetero-adsorption
(AEEgx) are higher compared to adsorption at the hollow site (AEaps), as was also observed by
DFT?® (Table 5 and Table 6). We note that the diffusion short-bond hop (AEsg*) is the most
favorable mechanism for all adatoms on either Au or Ag slab, excluding Au adatoms on an Au
slab that slightly favor an AEgx®. Our results suggest that adatoms on the {110} surface will

preferentially diffuse via a AEsg* mechanism. Although the barrier for AEex* is only ~0.03 eV
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larger than AEsg* for most of these systems (excluding Ag on Au slab with a 0.13 eV difference),
which may suggest another available albeit a less probable diffusion pathway for these adatoms

on the {110} surface.

Table 6. Adsorption energy and diffusion barriers (eV) for adatoms on {110} surface. *
indicatesindicates NEB barrier.

Slab  Adatom Property DNP PBE! % Ep1rr
AEaps 2.28 247 8
AErp* 0.71 0.73 2
Ag
AEsp* 0.33 0.36 8
____________ AEgx* 036037 3
Ag AEAps 3.30 3.14 5
AEgx 3.39 3.05 11
Au AELg* 0.94 0.77 22
AEsp* 0.35 0.44 20
AEgx* 0.38 0.41 7
AEADs 2.50 2.53 1
AEEgx 2.55 2.81 9
Ag AE_ p* 0.56 0.69 19
AEsp* 0.33 0.38 13
Au AEgx* 046 044 5
AEADs 3.00 2.93 2
Au AErp* 041 0.66 38
AEsp* 0.40 0.45 11
AEgx* 0.38 0.48 20

Diffusion on {111} surfaces. The two adatoms binding sites show that the fcc (fcc-hollow) and
hep (hep-hollow) are nearly equal in energy (AEfc and AEne), which have similar adsorption
energies (Figure 4, Table 7) consistent with literature?®. We also observe a trend of higher Au
adatom adsorption energy than Ag, which is also observed for both adatoms on the {100} and
{110} surfaces. However, we note a difference in the trend of the adatom adsorption energies for

the {111} surface, where we observe that the adsorption of adatoms on the Ag surface is more
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favorable than the Ag surface. Due to the low barrier of AEnop™ for all systems on {111}, the

diffusion from fcc to hep or hep to fce hollow are nearly equal in energy, which suggests that

diffusion of the adatom (Ag or Au) on {111} surface (Ag or Au slab) from the hollow site (hcp or

fec) is the favored mechanism, consistent with experimental and theoretical observations in the

literature®> 3> 73,
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Figure 4. NEB energy barrier plot showing the system energy for both adatoms along the diffusion

pathway on A) Ag {111} and B) Au {111} surface slabs. Lines are added to guide the eye.
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Table 7. Adsorption energy and diffusion barriers (eV) for adatoms on {111} surface. * indicates
NEB barrier.

Slab Adatom Property DNP PBE" % EpIrr
R AEfee 1.64 2.16 24
& AEhep 1.64 2.16 24
Ag AEep 0.06 0.06 7
AEfee 2.13 2.68 21
Au AEnep 2.14 2.68 20
AEhop" 0.09 0.08 17
AEfec 1.83 2.07 12
Ag AEhep 1.83 2.07 12
Au AHop® 0.08 0.08 4
AEfec 2.31 2.31 <1
Au AEnep 2.31 2.30 <1
AEHop 0.12 0.11 8

Taken together we observe good agreement with the previously reported DFT-PBE
literature values (Tables 5-7). However, note that some of the deviations (%Epirr) from the
literature values are smaller than others e.g., in Table 5 for Ag adatoms on a Ag slab AEnep* and
AEgx* are 8 and 26%, respectively. These differences are likely due to a combination of factors
such as different DFT simulation codes were used in these studies (VASP and QUANTUM-
ESPRESSO™), or different computational framework. Additionally, the DNP values may over- or
under-estimate the energies as noted before when comparing the DFT-PBE results to available

EAM potentials.

Comparison of Surfaces. When comparing the adatom energies across the surfaces, we notice
trends consistent for slab and adatom regardless of chemical identity. For both slabs, the energies
of the adatom adsorption energies (both AEaps.ag and AEaps,au) follow {110} > {100} > {111}.
Previous DFT (PBE) results indicated a similar trend with the exclusion of Ag on an Au slab

showing {100} > {110} > {111}.% Note that, in general, we do observe modestly improved DNP
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accuracy with the DFT {100} and {110} surfaces than with the {111} surface. However, this
energy difference may be ascribed to the differences between the computational setup employed

in constructing the DNP training datasets and those employed in the DFT PBE calculations.

Nanoalloy Growth. After showing that the DNP can accurately describe adsorption energies and
diffusion events on surfaces of different orientations, we next apply it to study the growth of Ag-
Au nanoalloys starting from Ag and Au seeds (Figure 5). Consistent with previous theoretical
studies,” 7> we find for both seeds that the {111} facets significantly increase in size, at the
expense of the {100} surfaces that are progressively disappearing during the nanoalloy growth
process. This behavior can be explained based on diffusion barriers on corresponding terraces.
Namely, as reported in Tables 5-7, diffusion from {111} Ag/Au surfaces is the fastest (i.e.,
associated with the lowest potential energy barrier) among all the interface diffusion processes. As
a result, the nanoalloy tends to be octahedral in shape, as seen in Figure 5SA. However, we note
that adatom crossing from (111) to (100) is faster than (100) to (111), which results in the apparent
trapping of adatoms on the (100) facets’®. For this validation, the favorable comparison of DNP
energies against DFT for selected configurations from the trajectory shown in Figure S2 indicates

that the DNP can well describe this process.
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Agro1@Auzi. (bottom panel) Auwoi@Agro1. In silver, Ag atoms, and gold, Au adatoms
distributions. C) Percentage of atoms deposited migrating inside the NP. The gold curve is

associated with Agzo1@Auzo1, while the silver one with Auzo1@Ag2o1.

Growth simulations allow us to estimate phenomena like order/disorder, alloying, and
penetration of adatoms (with simultaneous migration from the core to the surface) as a function of
the deposited atoms. For both nanoclusters, adatoms diffusion is limited within the outer shells,
generating a core-shell structure (cross-sections in Figure 5B) in line with experimental
evidence.”?> Nevertheless, a more disordered core structure is observed for the Agoo1@Auzo1 NP

than for the Au-seed NP. This is evidenced by analyzing the radial distribution function, psg 4y

that measures the distribution of the atoms from the center of the seed (equation 5):

nag Au(r) 5)

pAgAu(r) = 42 AL

Here ny4 4, (1) is the number of atoms of the two species in a shell at a distance between r and
7 + Ar. As seen in Figure 5B, the inter-separation of the inner peaks is less sharp (more disordered
inner structure) for the Ag than for the Au core atoms. We stress the importance of the simulation
to shed light on this structural aspect because such information is easy to measure for bulk
materials (via diffraction measurements) but difficult to capture in physical experiments for this

length scale.’: 7378

Further, we examined the distribution of the atoms during deposition to quantify the core-
atoms migration to the outer shell. To distinguish between atoms belonging to the surface and the
core, we relied on coordination number (CN) analysis. Namely, atoms belonging to the surface

have — by definition — a lower number of first neighbors. In this CNN analysis, the nearest
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neighbors' cutoff distance was set to 3.65 A, and atoms with CN = 12 were considered inside the
NP. As is clear from Figure 5C, a more pronounced penetration power of the Ag adatoms in the
Au201@Ag201 NP than Au in the Ag201@Au201 NP (Figure 5) into the NP core is observed.
These results are consistent with the hetero-adsorption energies of Table 6 that is the first step
toward diffusion towards the NP core. Namely, in Table 6, we showed larger adsorption energies
of Agon Au {111} and {100} compared to the ones of Au adatoms on the same Miller index Ag

surfaces.

Conclusions. We have developed an atomistic potential based on deep neural networks using the
DeepPot-SE approach for the Au-Ag system. Our DNP was validated against DFT values we
trained on and other properties that DNP was not explicitly trained on, such as bulk Ag and Au
planar defects. Overall, we found the DNP is robust for calculating Ag-Au properties from
molecular clusters to bulk materials. Furthermore, our DNP potential can reproduce DFT PBE
approach benchmarks for modeling the diffusion of adatoms on clean {100}, {110}, and {111}
terminated surfaces and is likely a good descriptor of nanoscale diffusion processes for Au-Ag
NPs. The growth simulations of Agzo1@Auz1 and Auzo1@Ag201 results are consistent with
previous theoretical and experimental observations, as we observe core-shell structures to grow in
both simulations. Ultimately, this work will help accelerate the understanding and controlled
synthesis of Ag-Au nanoalloys. Also, this approach is readily adaptable to other bimetallic systems

allowing for systematic explorations.
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