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Abstract: Dedicated technology platforms gain interest for enhancing the performance and 

efficiency of neuromorphic computing. We demonstrate integrated optic devices for convolutional 

signal processing and neural network training. © 2021 The Author(s) 

 

1. Introduction 

Recently, new computing paradigms gained tremendous interest. This trend originates from several developments, 

especially the slow-down in traditional computing hardware scaling and the increasing importance of processing 

unstructured data. While the human brain is capable of interpreting complex information, such as in image or speech 

recognition, at reasonable speeds (100’s ms) and ultra-low power (20W), large scale and power-hungry computing 

systems are required to tackle such tasks. Brain-inspired architectural concepts regained attention, holding the 

promise to improve the power efficiency and performance of computing systems. A wide range of neural 

networking concepts has been explored, differing in architecture, signal transmission scheme, synaptic control, 

activation function and complexity. The performance of such networks has in many applications reached levels 

beyond human capabilities. However, these novel compute schemes are still executed on legacy hardware systems 

based on the Von Neumann architecture. Consequently, the signal processing and architectural properties known 

from the biological brain, such as dispersed compute kernels (neurons) linked through weighted connections 

(synapses) to a complex network, is only implemented at software level. Despite the existence of a wide range of 

neural networks, they all build on the same basic operations to infer the output result: the calculation of the weighted 

interconnects and the nonlinear activation function. Computing the interconnections in the network scales with the 

square of the number of neurons and constitutes the bulk of the compute effort. Accelerators such as graphic 

processing units (GPUs) and tensor processing units (TPUs) are designed to parallelize and optimize the underlying 

multiply & accumulate (MAC) operation. 

 

2. Neuromorphic computing hardware 

It is our goal to analyze the power drivers and performance bottlenecks in today’s computing systems to overcome 

those, rather than realizing a fully new disruptive hardware platform, by extending the capabilities of today’s silicon 

CMOS technology in a ‘more than Moore’ approach. In today’s computing systems, the central processing unit 

(CPU) is connected to memory through a bus. Data is fetched from memory, processed in the CPU, and written back 

to memory. In general, the energy required to transfer the data exceeds that for processing. In addition, the data 

transfer itself poses a serious performance and latency bottleneck, making signal processing a serial operation. 

Furthermore, the handling of digital signals represents an overhead as multiple operations are required for 

processing all bits, representing the values involved. 

We overcome these bottlenecks by employing calculation concepts incorporating ‘in-memory computing’, 

parallel operation and analog signal processing. Neural network accelerators based on these concepts will be 

integrated in legacy digital computing systems as dedicated high-performance engines with a focus on performing 

MAC and especially vector matrix multiplications, representing the synaptic operation in a neural network. Such 

engines were evaluated to provide performance and efficiency improvements up to several orders of magnitude 

compared to today’s systems [1]. 

 

3. The prospects of photonic systems 

Various technology platforms are under development for realizing the analog signal processing accelerators 

described above. Memristive structures integrated in the back-end-of-line of a CMOS process are an exciting 

candidate, providing high density and tight integration with all functions of the neural network [2]. A strong focus is 

on establishing the memristor technology with the desired specifications and stability, several concepts are under 

evaluation [3]. Here we focus on opportunities for applying photonic technologies [4-6]. 
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Photonic signal processing structures exhibit some inherent properties, in line with the requirements described 

above. The multiply operation can be performed as a transmission or gain factor, a reflection or diffraction 

efficiency or a change of the phase of the optical signal. The accumulation function is obtained by collecting 

multiple optical beams in an output waveguide or on a detector. When coherent light is used, interference 

phenomena must be considered, which offer the additional advantage of complex valued signal processing. A wide 

range of systems have been implemented, ranging from 3D bulk optical systems based on spatial light modulators 

[7], fibers [8] and integrated optic structures [9]. The inherent parallel nature of optical systems, the ability to 

process ultra-high bandwidth signals and real-time operation, make photonic systems a unique platform for 

computing. Furthermore, non-linear optical materials enable ultra-fast and accurate control of the device 

architecture, for example adapting the synaptic weights of an accelerator engine in real time with the incoming data 

stream.  

Whether these prospects make optics the candidate of choice depends strongly on the application. It is critical to 

target problems leveraging the described properties. A detailed system-level performance analysis is required, 

comparing the available technological options for making the final judgement. In the following, we will discuss 

some potential applications in convolutional neural networks and for neural network training. 

 

3. Integrated optic convolutional signal processor 

Integrated optical finite impulse response (FIR) filters, implemented as cascaded Mach-Zehnder interferometer 

structures, are well-known in integrated optics for a range of applications, such as tunable dispersion equalizers [10], 

add-drop filters or dynamic gain equalizers [11]. Here we demonstrate their application for convolutional signal 

processing exploiting the fact that an FIR filter represents a 1D convolution. Our convolutional optical processor is 

fabricated in silicon photonics technology. The tunable couplers are realized as balanced Mach-Zehnder 

interferometers and can be controlled by the voltage applied across the thermo-optic phase shifter in one of the arms. 

Figure 1a shows the device in a subassembly with the electrical connections for applying the control voltages. In 

Figure 1b, the operation of a two-stage device for edge detection is demonstrated.  

a.  b.  

Fig. 1. Silicon photonics convolutional optical processor (a) and edge detection measurement (b). 

 

This device is well suited as a vehicle to analyze the performance efficiency (Operations per Watt). We consider 

the power dissipation of the device itself as well as the power consumption of the peripheric infrastructure required 

to operate the device. These peripheric elements, such as the laser, the electronics to control the phase shifters, as 

well as the detector and transimpedance amplifier dominate the power metric. The total power dissipation is below 

1W at an operating efficiency of 1.5 TOps/W. Here we assume power efficient bariumtitanate phase shifters as the 

Mach-Zehnder tuning elements [12], also a non-volatile optical phase shifting element based on this technology 

could be applied [13]. The operating efficiency is in the same range as today’s top performing digital systems such 

as the GPU or TPU. By moving to more efficient integrated elements, there is room for further improvement. This 

example shows that photonic devices might be able to outperform complex digital systems for specific tasks. 

However, the photonic devices will have a challenge in addressing general purpose operations as the device size and 

non-negligible propagation losses limit the functionality to be integrated on a chip. 
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4. Synaptic optical crossbars for neural network inference and training 

Crossbar structures are an efficient means for interconnecting two activation layers in a neural network [1]. 

Photonic crossbar arrangements were for example implemented as discrete waveguide arrays interconnected by a 

transmission tuning element [14]. The transmission values are mostly set or adapted through an external signal. Such 

structures are well suited for neural network inference. 

By exploiting the parallelism of optics, other types of crossbar structures based on diffraction can be realized [4]. 

A diffractive structure is established in a photorefractive material through the interference of optical beams. The 

interference pattern generates free carriers in the photorefractive material, in the high intensity regions, that diffuse 

and get trapped in regions with low intensity. The charge separation in the photorefractive layer is turned into a 

refractive index corrugation through the Pockels effect [15] and remains available over the carrier decay time. 

During this period, the applied diffraction pattern can be read out by an optical beam. Multiple of such corrugation 

patterns can be written in the layer, enabling vector matrix operations with multiple input and output beams. As the 

performance of such a crossbar system scales quadratically with the number of inputs, large performance 

enhancements can be obtained. A distinct advantage of using a photorefractive material as the weight storage 

medium is the ability to accurately control the stored values by applying the appropriate optical interference pattern 

and energy. This is a critical feature for neural network training, making such structures suited for inference and 

training of neuromorphic architectures. 

 

5. Conclusions 

Integrated optic devices offer opportunities for executing functions in neuromorphic computing. The ability to 

process ultra-high-speed signals, low latency and parallelism make photonics of interest for dedicated applications, 

as accelerators in larger networks. A holistic system-level analysis, taking the performance, power and interface 

requirements into account, is essential for obtaining insight in the areas where optics can make a difference. 
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