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Abstract—Terrestrial Radar Interferometry (TRI) can measure
displacements at high temporal resolution and potentially with
high accuracy. An application of this technique is the observation
of surface flow velocity of steep, fast flowing glaciers. For
these observations, the main factor limiting the accuracy of
TRI observations is the spatial and temporal variability in
the distribution of atmospheric water vapor content, causing a
phase delay (Atmospheric Phase Screen, (APS)) of a magnitude
comparable to the displacement signal. This contribution presents
a geostatistical analysis of the spatial and temporal behavior
of the APS in Ku-Band terrestrial radar interferometry. The
analysis bases on the assumption of a separable spatio-temporal
covariance structure, which is tested empirically using variogram
analysis. From this analysis, spatial and temporal APS statis-
tics are derived and used in a two-step procedure combining
regression-Kriging with generalized least squares (GLS) inversion
to estimate a velocity time-series. The performance of this method
is evaluated by cross-validation, using observation of stable
scatterers. This analysis shows a significant reduction in residual
phase variance compared to the commonly employed approach,
combining linear models of APS stratification and interferogram
stacking.

I. INTRODUCTION

A. Motivation

A
VALANCHING glaciers [1], [2] can pose a hazard to
alpine valleys. Ice calving at their terminus ca have

major consequences, both directly through the subsequent ice
avalanche, and indirectly, as the falling ice mass can start other
event as floods, snow avalanches and debris flows, sometimes
with severe consequences. The 1956 disaster at the Mattmark
dam construction site [3], the 1962 and 1967 Mount Huascaran
avalanches and the 2002 Kazbek massif debris flow [4] are
examples of the hazards of these types of glaciers [1].

Recent advances in the understanding of glacier failures [1]
suggest the possibility of early detection of developing glacier
failures for two classes of avalanching glaciers. In the case
of steep, unbalanced cold glaciers, such as in the Weisshorn
hanging glacier [2], [5], [6], mechanical instabilities in the
ice are the main mechanisms leading to break-off events,
where the rupture happens within the ice mass. A log-periodic
oscillation of the surface velocity superimposed to a power-law
acceleration is observed in these cases [6]. This behavior may
reveal useful to predict break-off times if frequent observations
of the surface velocity are available. In the second class
of steep, temperate glaciers, sliding is the main source of

instability conductive to break offs. Sub-glacial water pressure
reduces basal friction, causing a major portion of the tongue
to become unstable [7] and eventually to break off, such as
in the case of the Allalingletscher responsible for the 1956
Mattmark disaster. In this latter type of glacier, the surface
velocity increases during active phases, notably in summer [1].
However, these patterns only rarely correlate with break-off
events; surface velocity measurements alone are not sufficient
and must be combined with other methods such as seismic
measurements [8].

For both glacier types, reliable and precise measures of
surface velocities are necessary to monitor them and improve
the understanding of their dynamics. In this sense, area-wide
estimates at high temporal resolution and over long periods of
time are particularly useful. Remote sensing techniques [9]–
[11] are frequently employed for glacier flow measurements,
using visible and infrared images [12]–[14] or coherent [15]–
[19] and incoherent [17], [20] methods with spaceborne and
terrestrial [21]–[25] synthetic aperture radar (SAR) data.

In this context terrestrial radar interferometry [21]–[25]
(TRI) is complimentary to the more established space- and
airborne SAR observations. While the spatial coverage of
the former is normally smaller, these systems offer great
flexibility in the acquisition geometry and timing, both of
which are necessary for the surveillance and study of the fast
dynamics of avalanching glaciers. Moreover, one strength of
radar data is independence from external illumination and the
ability to image through fog and clouds, permitting continuous
observations during night and with cloud cover.

Among coherent techniques, the most useful for glacier
monitoring is differential radar interferometry (D-InSAR) [26],
which is uses the sensitivity of the phase of microwaves to the
length of the propagation path from the sensor to the observed
surface. By computing the difference of phase measurements
at subsequent times, D-InSAR can estimate displacements with
a precision theoretically limited by the wavelength employed
by the radar.

Temporal variations in the spatial distribution of the atmo-
spheric water vapor content causing time-varying heterogene-
ity in the propagation speed of light are one of the largest
source of errors in displacement estimation with differential
radar interferometry —both in the spaceborne and in the
terrestrial case— These nuisances are known as Atmospheric
Phase Screen (APS) [27]–[29].
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Precise estimation of displacements with D-InSAR requires
phase calibration to remove —or at least mitigate— the phase
contribution caused by the APS.

This task has been extensively studied for spaceborne In-
SAR, but in smaller measure for TRI observations, owing to
the relative scarcity of such data sets. The different acquisition
geometry and the short revisit times frequently employed in
these cases suggest a reevaluation of common APS correction
strategies, since these were originally developed for space-
borne InSAR.

B. State of the Art

The atmosphere is a complex, dynamic object: temporal
fluctuations of temperature, pressure and water vapor con-
tent [30] and their heterogeneous spatial distribution produce
spatial and temporal variations in the atmospheric refraction
index. These variations in propagation speed are the causes of
the APS in differential radar interferometry.

Complementary observations are sometimes employed to
model the distribution of refractivity at the time of the acqui-
sitions and hence correct the phase delays in interferometric
observations. Examples of external observations are weather
model outputs [31] and wet zenith delays (WZD) maps
derived from Global Navigation Satellite System (GNSS)
observations [27], [32]–[34] or from spaceborne microwaves
radiometers and imaging spectrometers [35]–[38].

In most cases, APS estimation methods base on a com-
bined model of the atmospheric phase screen, partitioning its
variability [39], [40] between a deterministic component a
stochastic contribution.

The first component is a phase screen of low spatial
frequency, attributed to vertical stratification [31], [41]–[48],
often observed to correlate with terrain relief. The random
contribution is attributed to turbulent mixing of water vapor in
the troposphere. The turbulent component shows and complex
behavior in time and space and cannot be modeled determinis-
tically. Because the APS is correlated in space, it is described
through its spatial covariance or semivariance functions [29],
[30], [32], which in some cases are derived from turbulence
theory [30], [49].

The turbulent contribution is frequently assumed to be un-
correlated in time [39], [50], [51]. Thanks to this assumption,
the APS separated from other sources of phase nuisance and
from the deformation phase using time series analysis applied
on a set of scatterers whose phase response is stable in
time, the so-called persistent scatterers [52]. These point-wise
estimates of the APS are then extrapolated to a regular grid
covering the area of interest using geostatistical interpolators
such as Kriging [50], [53], which account for its spatially
correlated nature. The extrapolated APS can then be subtracted
from the interferometric phase observations, which are then
processed to estimate the displacement signal [54], [55].

C. Research Gaps

These solutions are primarily applicable to spaceborne In-
SAR: in the terrestrial case the spatial extent of the scene

can be much smaller than the resolutions of external weather
models.

Moreover, in TRI only a portion of the atmospheric air
column is traversed, while the auxiliary data acquired from
space would give the total phase delay through the entire
height of the troposphere. However, similar concepts employ-
ing automatic weather station (AWS) data exist for TRI [44],
[56]. Unfortunately, such observations are often not available
during a TRI monitoring campaign. Even if this data is
acquired, these approaches can only correct large-scale, low
frequency phase variations and cannot compensate local phase
heterogeneities of high spatial frequency.

These limitations suffered by external observations moti-
vates the development of APS correction approaches based
only on the statistical behavior of the APS, which operate
exclusively on radar data.

However, the applicability of the statistical assumptions
used in spaceborne D-InSAR to TRI is doubtful because
of the smaller spatial coverage of the data and the peculiar
acquisition geometry, very different to the one of spaceborne
SAR.

In the TRI case, the radar signal only travels through a
small vertical portion of the troposphere, while in spaceborne
SAR the entire atmospheric air column is traversed. Because
of this, both the deterministic models of stratified APS and
of the statistical model of turbulence derived for spaceborne
InSAR may not apply to TRI observations.

The smaller scene size, the shorter vertical propagation path
and — in the case of observation of fast displacements— the
short time interval between acquisitions in TRI reduce the
effect of atmospheric stratification as well. This in turn reduces
the performance of APS stratification models in the TRI case.

With respect to the turbulent APS, the statistical assump-
tions of temporal uncorrelatedness has to be assessed consid-
ering the shorter revisit times often used in TRI.

D. Contributions of This Paper

This work presents a geostatistical analysis of the atmo-
spheric phase screen [27]–[29] (APS) affecting Ku-Band TRI
data with the aim of studying the research gaps discussed
above. To do so, the study starts from an APS model similar
to the one customarily employed in In-SAR studies, assuming
a combination of turbulent and stratified atmosphere. Using
this mathematical setup, several issues are investigated:

1) The performance of several models for APS stratification
is assessed statistically by measuring their ability to
describe the phase variance observed at a set of persistent
scatterers (PS). These points are chosen at locations
known to be only affected by atmospheric disturbances.

2) The assumption of spatially correlated, temporal uncor-
related statistics, which is commonly used to model the
APS in spaceborne InSAR data is replaced by a separable
spatio-temporal covariance model. The suitability of this
model is tested with variogram analysis.

3) The performance of APS correction using a regression-
Kriging interpolator accounting for stratification effects
and a spatial covariance model of turbulence is evaluated.
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Its performance is measured by computing the residual
phase variance at a set of non-moving PS.

4) A time-series inversion approach employing the temporal
covariance model is presented. Its performance in miti-
gating the residual APS observed after regression-Kriging
correction is assessed.

II. METHODS

A. Differential Radar Interferometry: Signal Model

Differential radar interferometry [57], [58] uses the phase
coherency exhibited by radar images: the phase of a scat-
terer acquired by a coherent radar contains a contribution
proportional to the line-of-sight distance from the sensor to
the object. Therefore, the phase difference computed from a
pair of images taken at different times contains a contribution
proportional to the displacements of the scatterers composing
the scene.

More precisely, consider a radar placed at a fixed location
where the origin 0 of a Cartesian coordinate system is set.
Consider a scatterer located at s at time tk; its phase measured
by the above radar is:

φ (tk) =
4π

λ
R (tk) + φscat (tk) + φatm (tk) (1)

where R = |s| is the distance between scatterer and sensor
and φscat is the scattering phase, which depends on dielectric
properties, shape of the object and to a radar-specific phase
offset due to delays in the electronics and cables, λ is the
wavelength and finally φatm is the excess phase delay caused
by the atmosphere.

On scatterer moving with velocity v = ∆R
tl+m−tl

along the
line of sight (LOS) in a period of duration ∆t between times
tl and tl+m the interferometric phase or interferometric phase

difference is:

∆φ =
4π

λ
∆R+ 2πn+ ǫatm + ǫdecorr

=
4π

λ
∆tv + 2πn+ ǫatm + ǫdecorr

(2)

where ∆t is often called the temporal baseline; the term 2πn
indicates that phase measurements are ambiguous modulo half
the wavelength, ǫatm = φatm (tl+m) − φatm (tl) represents
the additional differential phase delay due to changes in
atmospheric refraction index and ǫdecorr describes the noise-
like phase error due to thermal noise in the radar and to
changes φscat due to variations the scatterer’s properties.

Equation (2) shows that the interferometric phase difference
is sensitive to the displacement ∆R but also to changes in
the dielectric properties of the imaged objects and to changes
in the propagation medium. In differential interferometry, the
objective is the estimation of the displacement ∆R (or the
velocity v) from noisy phase observations; therefore all terms
but the displacement are considered nuisances. To improve
the displacement estimation robustness —and possibly to
estimate an object’s displacement history—, multiple phase
measurements at different times are often used. Thus, the
model describing a single interferometric phase observation
of (2) is extended to muliple observations as follows:

Given a vector y of PN radar phases y (i, l) derive from
single look complex data (SLC) acquired at N times tk and P
locations si, estimate the (PN)-element vector v of surface
velocities v (i, l) at times tl = tk+tk+1

2 with 0 < k < N
between subsequent acquisitions and at locations si with 0 <
i < P [59], [60].

In analogy to (2), it is convenient to replace the SLC phase
vector y with the PM -dimensional vector of interferometric
phases z:

z = Āy (3)

where z is a PM -dimensional vector of phase differences
at P locations and M times. Here M is the number of
interferograms, which can be at most N+1

2 , the number of
unique pairs that can be formed from N SLC images. The
matrix Ā = IP ⊗ A is the incidence matrix; a MP × NP
block-diagonal matrix used to compute the interferometric
phases from the SLC phase vector. Each of its blocks A

indicates which of the N acquisitions are paired to form
interferograms in z: entries Amk and Aml are -1 and 1 for the
m-th interferogram between the l-th and the k-th acquisition.
For example, given N = 4 SLC images, the matrix A used to
compute the three unique interferograms between successive
acquisitions is:

A =





1 −1 0 0
0 1 −1 0
0 0 1 −1



 . (4)

The (PN)-element vector of velocities v can be related to
the vector of interferometric phases [30], [39], [59], [60] in
analogy with (2):

z = B̄v + ǫz. (5)

Where B̄ = IP ⊗ B and B is a M × N matrix of the time
spans between the acquisition times of the SLC images used to
compute z. Its construction from the interferogram incidence
matrix A is described in [59]. As an example, using the
incidence matrix A of equation (4) and assuming regularly
spaced acquisitions with ∆t seconds separation, B will be:

B =





∆t 0 0 0
0 ∆t 0 0
0 0 ∆t 0



 . (6)

Finally, ǫz is a term subsuming all the noise-like contributions,
assumed to be a zero-mean Gaussian random process with a
PM × PM covariance matrix Σz , describing the spatial and
temporal correlation of the nuisance terms.

As the noise is assumed to be drawn from a multivariate
Gaussian distribution of known covariance, the generalized
least squares (GLS) solution of equation (5) is the minimum
variance, unbiased estimator for v [61], [62] :

v̂ =
(

B̄TΣ−1
z B̄

)

B̄TΣ−1
z z. (7)

In many cases, acquisitions too distant in time cannot be
used to form interferograms because they would show a too
high level of phase noise caused by temporal decorrelation
and will be affected by excessive phase wrapping. In this
case, A will only consists of those rows where the temporal
baseline is shorter than a given threshold, thus M < (N)(N−1)

2
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and the rank of B is deficient. In this case the problem is
underdetermined and there is no unique solution for v. An
example of this situation is shown in equation (6), where only
three interferograms are available to estimate four parameters.

The problem of decorrelation can be mitigated by adopting
approaches based on persistent scatterers (PS), where only
observations at highly coherent scatterers [50], [52], [63] un-
affected by temporal decorrelation are used for the inversion.
These methods are of limited use when the surface flow
velocity of glaciers is studied, since the continuously changing
surface features and the rapid motion make the detection of
PS very unlikely. As an alternative, the rank of (5) can be
increased by using a simplified velocity model, described by
a vector p with a smaller number of parameters d < PN [59]:

v = Mp (8)

For example, assuming constant velocity v0 over time, the
model for the i-th pixel is:

vi =







v0
...
v0






= IN,1v0 = Mip (9)

and M is the block-diagonal matrix IN,1 ⊗ IN,P .
M can be any PN × d matrix describing a simplified spa-

tial and temporal displacement model and possibly imposing
spatio-temporal smoothness constraints.

Thus, the problem is rewritten as:

z = B̄Mp+ ǫz = Ḡp+ ǫz. (10)

Where the design matrix Ḡ is written with a bar to indicate
that it is the design matrix for the whole set of P pixels in
the set of all M interferograms. For simplicity Ḡ is assumed
to be a block matrix with P blocks G —the same velocity
model is assumed for each pixel and no spatial constraints are
set—

The GLS estimate of p is obtained with:

p̂ =
(

ḠTΣ−1
z Ḡ

)

ḠTΣ−1
z z. (11)

The variance of the estimates is given by:

var (p̂) = ḠTΣ−1
z Ḡ. (12)

Without further assumptions, the covariance matrix of the
nuisance, Σz must only be positive-semidefinite. As the APS
is known to be spatially correlated and can potentially show
temporal correlations, its inversion can be computationally
very costly [39].

However, by making certain assumptions that will be dis-
cussed later, the spatially correlated contributions in Σz can
be estimated and removed before the least-squares inversion.
By doing so, a new data set is obtained, where the APS
is approximately uncorrelated in space, making the inversion
computationally easier.

Whether the full inversion is attempted or the latter approach
is used, knowledge of the covariance matrix of the interfer-
ogram network is required for the inversion and to provide
uncertainty estimates for the derived parameter. As the inter-
ferometric phases z are derived from the SLC phases via (3),

the interferogram covariance is related to the covariance of the
SLC phase vector y[39]:

Σz = ĀΣyĀ
T . (13)

ǫy is [30], [39]:

ǫy = ǫy,atm + ǫy,decorr, (14)

where ǫy,atm is the phase contribution from the atmospheric
phase screen and ǫy,decorr represents the phase noise due to the
effect of temporal decorrelation in each acquisition. These two
terms are assumed to be mutually uncorrelated because they
are produced by different physical mechanisms; therefore they
can be written a sum of separate terms. When discussing the
SLC phase, the noise terms must be seen as deviations from
the noise-free SLC phases consisting only of the propagation
term and the intrinsic scattering phase as in (1) [39]. These
equations are only a tool to model the covariance of the
interferometric phases. By linearity, the same decomposition
applies to the covariance matrix of the interferometric phase
vector Σz:

Σz = Σz,atm +Σz,decorr. (15)

The following sections are dedicated to the individual covari-
ance terms.

1) Covariance of Decorrelation Phase Noise: Σz,decorr

models the effect of thermal noise in the measurement system
and random changes in reflectivity on the stability of the
observed interferometric phases. This is usually quantified
through the magnitude of the interferometric phase coherence,
γ [64] derived from spatial or temporal multilooking by
assuming ergodicity [65]. The coherence magnitude is used
to estimated the interferometric phase variance through the
Cramer-Rao lower bound [66]. The phase variance for a
interferogram pixel located at si at time tl =

to+tp
2 , derived

from acquisitions at times to and tp is:

V ar [zi,o,p] ≥

√

1− γ2
i,o,p

γi,o,p
√
2L

. (16)

where the notation γi,o,p indicates the coherence estimate at
pixel i from acquisitions o and p.

In the case considered here, with interferograms acquired
at zero spatial baseline, the decorrelation noise is spatially
uncorrelated. Σz,decorr is a block-diagonal matrix, where each
M ×M block represents the covariance of the decorrelation
process for an individual pixel [39]. In this work, the temporal
covariance Σz,decorr (i) for the i-th pixel is assumed to follow
the Brownian decorrelation model. This is derived assuming
the displacement of each scatterer composing a resolution cell
to be drawn from a uniform distribution at any time [39], [64],
[67]. This model creates an exponential decay in coherence
between acquisitions:

γ (∆T ) = γ0e
−∆t
τ . (17)

The Brownian motion model is not suitable to model decorre-
lation for all types of terrain; it was found to be applicable to
urban areas in [67]. In many cases the coherence shows more
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complex patterns such as seasonal trends or variations corre-
lated with weather conditions. These cases are not modeled in
this work.

2) Covariance of Atmospheric Phase Screen: The term
ǫy,atm models the phase delay caused by the inhomogeneous
distribution of atmospheric water vapor in the scene [27]–[29].
Its effect can not be appreciated in the SLC phase, only in
interferograms: temporal changes in the spatial distribution of
atmospheric delay ǫy,atm between acquisitions are revealed in
the interferometric phase difference as low spatial frequency
atmospheric phase screens.

Part of the spatial phase trends can be approximated using
linear models by assuming homogeneous or layered distri-
butions of atmospheric water vapor [31], [41]–[48]. These
models are often not sufficient to capture the full APS phase
variability and must be augmented with a statistical descrip-
tion. Thus, the APS is written as the superposition of these
terms [39], [40]:

ǫy,atm = ǫy,atm,strat + ǫy,atm,turb. (18)

where ǫy,atm,strat is the stratified APS and ǫy,atm,turb is the
turbulent APS, due to turbulent mixing in the troposphere [30],
[32], which is modeled statistically as a zero mean random
process with covariance matrix Σy,atm.

More precisely, the random process generating the APS can
be described through a covariance matrix Σy,atm if and only if
its covariance function C is stationary in space and time. This
means that C depends only the spatial separation d = s1− s2
and on the temporal lag t = t1 − t2, not on the locations
themselves [68]. This assumption is frequently accompanied
by the one of isotropy in space, where C does not depend on
the direction of d but only on its magnitude d = |d|.

In spaceborne InSAR studies, the APS covariance is further
simplified by assuming lack of temporal correlation [39], thus:

C (d, t) = Cs (d) δ (t) . (19)

Where δ (t) is the Dirac delta function. The assumption of
uncorrelatedness in time is justifiable because in spaceborne
InSAR the acquisition repetition times are in the order of days,
where it is reasonable to expect that the turbulent behavior in
troposphere changed completely.

This assumption is a particular case of the more general
property of separability which is assumed in this work. A
separable covariance function C can be factorized in the
product of temporal and spatial covariances:

C (d, t) = Ct (t)Cs (d) . (20)

Separability implies that the spatial statistics are not a function
of time; this is a very stringent assumption, which is seldom
entirely applicable. As an example, it is violated by Taylor’s

hypothesis [28], [29], [33], [34], [68]–[70]. In the latter, it is
assumed that turbulent eddies are transported by a mean wind
field v which does not change their structure. Therefore, the
temporal covariance function can be written as a function of
the spatial covariance and of the velocity field:

Ct (d, t) = Cs (d− vt) . (21)

Despite its limitations, separability is very useful as it greatly
simplifies fitting statistical models; more practically, it greatly
reduces the size of covariance matrices.

Consider the APS covariance matrix of the SLC phase
vector— the discrete form of the covariance function in (20)—
In the stationary, separable case, this matrix can be written
as a Kronecker product of a P × P spatial covariance ma-
trix Σy,atm,s and of a N × N temporal covariance matrix
Σy,atm,t[39], [71]:

Σy,atm = Σy,atm,s ⊗Σy,atm,t. (22)

Using (13) the APS covariance matrix of the interferogram
vector is:

Σz,atm = ĀΣy,atmĀT =

(I⊗A) (Σy,atm,s ⊗Σy,atm,t)
(

AT ⊗ IT
)

=

= Σy,atm,s ⊗
(

AΣy,atm,tA
T
)

(23)

where the last step follows from the mixed product property
of the Kronecker product.

In summary the considerations made above, together with
the assumption of spatio-temporal separability lead to the
following APS model:

1) Assuming the APS in the SLC phase vector to have
a separable covariance, the APS in the interferogram
vector has separable covariance as well. The estimation
and correction of the spatially and temporally correlated
components can be performed separately.

2) The turbulent APS contribution in the interferogram
phase vector has the same spatial covariance matrix as
the unobservable APS in the SLC phase vector. The
covariance does not depend on the acquisition times.

3) If a linear model is used to describe the stratified APS
in the SLC phase, the stratified APS observed in an
interferogram can be described by a functionally identical
model with different model parameters.

3) Inversion Strategy: To summarize the findings of the
previous sections, ǫz , the noise affecting the interferograms
is assumed to be a zero-mean Gaussian random vector with
covariance:

Σz = Σy,atm,s ⊗
(

AΣy,atm,tA
T
)

+Σz,decorr (24)

where Σy,atm,s is the P × P matrix of the spatial APS
covariance, Σy,atm,t the N ×N matrix of the temporal APS
covariance and Σz,decorr is the PM×PM diagonal or block-
diagonal matrix of the decorrelation phase noise. Finally, each
interferogram is affected by a stratified APS, which is assumed
to be deterministic and is predicted by a linear model of
stratification.

The following procedure is used to estimate the APS
affecting the interferogram vector and to reconstruct p:

• For each interferogram l at time tl an estimate ǫ̂z,atm (tl)
of the spatially correlated APS is obtained by regression-
Kriging interpolation of the interferometric phases ob-
served on a set of persistent scatterers (PS) whose phase
should not be affected by displacements. These estimates
are subtracted from the interferogram vector z, reducing
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Fig. 1: Illustration of the computation procedure for the spatio-temporal variogram, used to estimate the space-time covariance
of the APS, Σy,atm. Assuming separability, the spatial covariance of the APS has the same structure as the covariance of the
interferograms and can be estimated as the spatial variogram averaged over all temporal baselines. The temporal variogram
corresponds to the mean phase variance of the interferogram grouped by temporal lags.

the spatial correlation in the residual interferogram vector
zres to an extent where it can be assumed to be negligible.

• The generalized least squared inversion for p can then
be performed on the residual interferogram vector zres
independently for each pixel, provided that the design
matrix Ḡ can be written as a block-diagonal matrix with
P blocks and assuming each pixel i to be affected by
a spatially uncorrelated, temporal correlated APS and
decorrelation noise contribution, which is assumed to
have a covariance matrix:

Σz,res (i) = Σz,t (i) =

I⊗
(

AΣy,atm,tA
T
)

+Σz,decorr (i) .
(25)

The correction of the spatially correlated contribution ǫy,atm,s

will be described in detail in subsection II-B, while the pixel-
wise GLS inversion to obtain estimates of the displacement
parameters is discussed in subsection II-C.

A block diagram showing the general principle of the
employed APS correction and inversion scheme is shown
in Fig. 2. The next sections will be devoted to the discussion
of the various steps used in this approach.

B. Spatial Correction of APS

1) Regression-Kriging: According to the model setup, the
interferometric phase z (i, l) at time tl and any location si
is written as the superposition of displacement phase and
stratified and turbulent APS:

z (i, l) =

zdisp (i, l) + ǫz,atm (i, l) =

= zdisp (i, l) + ǫz,atm,strat (i, l) + ǫz,atm,turb (i, l)

= zdisp (i, l) +Xβ (l) + ǫz,atm,turb (i, l)

(26)

where X is a matrix of regressors, which are either functions
of the coordinates si or measurement of auxiliary variables at
the same positions. β (l) is the vector of unknown stratified
APS parameters at time tl and ǫz,atm,turb is the turbulent APS.

The parameter vector β̂ (l) of the stratified APS model can
be estimated given prior information on the distribution of
displacement throughout the scene, which is easily inferred
in the case of TRI monitoring of fast moving alpine glaciers:
the area undergoing displacement is of limited spatial extent
and often surrounded by features such as mountain flanks and
rocks that are effectively immobile relative to the flow of the
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Fig. 2: Schematic description of the two-step spatial APS mitigation and time-series inversion.

glacier —which can be in the order of meters per days in the
case studied in this paper—

To estimate β̂ a subset S of persistent scatterers (PS) from
the P pixels in the interferogram is used; it is assumed that
their phase at any time only consist of the stratified and
turbulent APS contributions, with spatial covariance ΣPS

z,atm,s.
The best linear unbiased estimator of β (l) is given by the GLS
estimator [72]–[74]:

β̂ (l) =
(

XΣPS
z,atm,s

−1
X
)−1

ΣPS
z,atm,s

−1
Xz (j, l) .

(27)

where X is the matrix of regressors at locations sjj ∈ S,
z (j, l) the vector of PS phases and ΣPS

z,atm,s is the spatial
covariance of the APS between the PS locations. Using β̂, the
stratified APS contribution at any pixel i in the interferogram
can be predicted:

ǫ̂z,atm,strat (i, l) = X (i, l) β̂ (l) . (28)

However using (28) does not give predictions for the turbulent
component of the APS, which is often the dominant source
of phase variability in the interferograms. Due to the spatial
correlation of the APS, it is reasonable to assume that the
turbulent APS at a location si near a PS observation sj , j ∈ S

is similar to the phase residual —measured phase minus GLS
prediction of stratification— of (27) at that PS:

ǫPS
res (j, l) = z (j, l)−X (j, l) β̂ (l) . (29)

The similarity should decrease with increasing distance from
the PS as the spatial correlation decreases with spatial sepa-
ration.

A time l, the turbulent APS at si can be approximated as
a weighted average of the GLS residuals ǫPS

res at the available
PS sj , j ∈ S,

ǫ̂z,atm,turb (i, l) = w (l) ǫPS
res (l) (30)

where w is a weight vector which is a function of the
distances between si and sj , j ∈ S. Under these conditions,
the minimum variance, unbiased estimator for the turbulent
APS is given by the Kriging equation [53], [72]:

ǫ̂z,atm,turb (i, l) = vTΣPS
res

−1
ǫPS
res (31)

where v is the vector of spatial APS covariances between
z (i, l) and z (j, l) , j ∈ S and ΣPS

res is the covariance matrix
of the regression residuals at the PS.

The predictor of the combined deterministic and turbulent
APS at any point si is then the regression Kriging estimator:

ǫ̂z,atm,s (i, l) = x (i, l) β̂ (l) + vTΣPS
res

−1
ǫPS
res (32)

A similar approach is presented in [75], where intrinsic ran-
dom functions of order k (IRF-k) [76] are used to predict the
spatially correlated APS contribution from observations at a
set of PS locations. This method is similar to regression Krig-
ing [77], [78], with the difference that in the form presented
in [75] external regressors cannot be employed [78].
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In practice, only the nearest K PS to any prediction point
si are used in order to speedup the inversion of ΣPS

res
−1

. This
is justifiable since the farther an observation is located to a re-
construction point, the smaller its weight will be. Furthermore,
when the APS is extrapolated to the entire interferogram, the
Kriging prediction is computed on a grid whose spacing is
larger than the interferogram pixel spacing, the gaps are filled
using a distance-weighted bilinear interpolator.

2) Selection of Stratified APS Model: The choice of a
model for the stratified APS component according to (28)
deserves separate consideration. Homogeneity and isotropy of
the atmospheric refraction index distribution are commonly
assumed in the case of terrestrial interferometry, where the
scene is often of limited size [41]. These assumptions predict
an APS proportional to the range distance from the radar [24],
[41]–[43], [47]. To account for spatial inhomogeneities in
water vapor distribution, other authors propose polynomial
models of higher order, usually restricted to second order [42].

In situations with large variations in terrain height, the as-
sumption of homogeneous atmospheric refraction index is not
suitable; in these cases atmospheric layering is modeled as a
height dependent component added to the above homogeneous
model [45]–[47]. These model mostly account for the variation
in atmospheric density with increasing elevation, frequently
known as the hydrostatic delay.

An alternative approach is to use weather parameters [44],
[56] to model variations of the atmospheric refraction index.
However, given the large vertical extents expected when mon-
itoring steep alpine glaciers, from which significant vertical
temperature and water vapor gradients can be expected and
which are not included in the models, and because no precise
weather data is available, these models are not considered in
this study.

The models described in this section are summarized in Ta-
ble I. In the table, the variable r represents the slant range
from the radar, while h is the elevation and θ is the azimuth
angle. The selection of a stratified APS model best fitting
the measurement data is made according to an automatic
procedure: The interferometric phases at the PS for a large set
of interferograms are used to compute ordinary least squares
(OLS) fit for each model. The fitting is repeated for each of
the available interferograms. The relative performance of the
models is evaluated comparing the distribution of the Akaike
Information Criterion (AIC) [80] and of R2 for the models
over the set of interferograms.

It must be remembered that the model fit used in model
comparison are obtained with ordinary least squares (OLS) and
not with the optimal minimum variance GLS estimator of (27).
This approximate shortcut seems reasonable since the purpose
of this analysis is comparison of the relative performance of
models.

3) Spatial Covariance Model For Turbulent APS: Com-
puting the regression-Kriging prediction according to (32)
requires knowledge of v, which is derived from covariance
of the APS between two points in space si, sj . Theoretical
considerations from turbulence theory [30], [33], [34], [49],
[70], [81] and data derived from GNSS or spaceborne SAR
observations [29], [32], [49] are often employed to derive APS

spatial structure functions [82] —variograms, correlograms or
periodograms— from which the covariance can be determined
or approximated.

Nonetheless, the validity of these covariance models in the
TRI case is uncertain, given the small number of studies
available, the large variability in acquisition setups and scene
choice and also due to the fact that the imaging geometry
specific to TRI is very different to the one in spaceborne
InSAR studies. Thanks to the assumption of spatio-temporal
separability and isotropy, the spatial covariance function can
be estimated from the data using a variogram estimator:

γs (d) =

1

2 |N (d)|MPS

MPS
∑

l=0

∑

(i,j)∈N(d)

|z (j, l)− z (i, l)|2 (33)

where the sum index l runs over MPS interferograms at
different temporal baselines. For each interferogram the mean
square phase difference between all PS with spatial separation
d, given by the index set N (d) is computed. Since z is the in-
terferometric phase difference at a fixed location, the empirical
spatial variogram estimator corresponds to the mean squared
double phase difference —single difference in time and double
difference in space— over the set of all interferograms.

To reduce the estimation bias caused by the stratified
component of the APS in z[83] the variogram γs is estimated
using on OLS estimation residuals of the stratified model [72].

From this empirical spatial variogramγs, a variogram model
is fitted using a nonlinear fitting procedure; the variogram
model is used to obtain an approximation v̂ of the covariance
between observations and test points, which can be used for
the Kriging predictor. If a bounded spatial variogram model
γs,m can be fit to the empirical variogram estimate, the value
of the spatial covariance function at any spatial lag is computed
with [74]:

Cs (d) = γs,m (∞)− γs,m (d) . (34)

Where γs,m (∞) is the variogram sill, the value that the var-
iogram attains at infinite spatial separation between samples,
which corresponds to the phase variance of the interferograms.
If spatial statistics of the APS are estimated from the data, it
is advisable to strive for a spatially homogeneous distribution
of PS, such that a homogeneous distribution of lags d between
PS locations is achieved, ensuring a reliable estimate of the
spatial variogram.

The imaging geometry of TRI should also be considered.
Due to the limited aperture size the images are acquired in
a polar geometry. Thus, the data matrix as returned by the
radar is defined on a polar grid in the range-azimuth plane
(r, θ). For this type of sampling the spatial lag d between two
points must be determined using the distance formula for polar
coordinates and not with the euclidean distance normally used
in most geostatistics packages.

In this paper a more convenient approach is chosen: the data
is geocoded using a digital elevation model. The variograms
are estimated on the geocoded data, which is now resampled
in 3D Cartesian coordinates, where the true distance between
points is easily determined. This is relevant in scenes with
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Name Trend Comments References

Unprocessed φ = β0

No atmospheric trend is modeled;
included for performance compari-
son.

-

Linear φ = β0 + β1r

Assumes homogeneous, isotropic
atmospheric refraction index. This
model is applicable with little to-
pography and small height extents,
where no stratification is expected.

[41]–[43]

Quadratic Range φ = β0 + β1r + β2r
2

Models inhomogeneities of refrac-
tion index as a linear trend in
range.

[24], [42]

Height dependent I φ = β0 + β1r + β2rh

Assumes a horizontally isotropic
and homogeneous troposphere with
vertical layers [79], resulting in an
exponential dependence of refrac-
tion index with height, which is
approximated to the first order.

[45], [46]

Height dependent II φ = β0 + β1r + β2h
2

Similar assumptions as Height De-

pendent I, here the horizontal and
vertical components of refraction
are considered to be separable.

[47]

Quadratic 2D Range φ = β0 + β1r + β2θ + β3θr + β4r
2 + β5θ

2

Includes a lateral component de-
scribing inhomogeneity of the at-
mospheric conditions due to the
wide field of view of the real aper-
ture radar imaging geometry. This
model is purely empirical.

Quadratic 2D Height φ = β0 + β1h+ β2θ + β3θr + β4h
2 + β5θ

2

Analogous to “Quadratic 2D
Range” but replacing the slant
range with elevation.

TABLE I: Summary of stratified APS models employed in terrestrial radar interferometry.

large variations in elevation, because distances in the slant-
range azimuth grid could substantially differ from the ground
distance between points. This difference ca hinder fair com-
parisons of empirical variograms with theoretical covariance
or semivariance functions derived from turbulence theory.

C. Temporal Inversion

1) Temporal Covariance Model: Even after removing the
APS estimate from the interferogram vector, considerable
phase variability in time is observed in the residual interfero-
metric phases [84], [85]:

zres (i, l) = z (i, l)− ǫ̂z,atm,s (i, l) (35)

where ǫ̂z,atm,s is the regression-Kriging prediction of the
spatially correlated APS, whose estimation is detailed in sub-
section II-B.

Caudff [84] reported residual phase variations after correct-
ing the APS by interpolating the spatially low-pass filtered
phase observations of stable areas, a method similar to the
Kriging interpolation proposed in subsection II-B but which
does not use the spatial covariance structure of the APS in the
prediction. In that case, the residual phases were observed to
correlate with variation in the solar radiation.

Similar observations were made by Butt in [75], where after
interpolating the APS observed at a set of PS using IRF-K,
a significant residual phase error was observed, especially for

areas with a low density of PS. This was explained through
the short correlation length of the APS in space and its high
temporal frequency.

Under the separable covariance model described in subsec-
tion II-A, the residual APS in zres (i, l) is a realization of a
Gaussian random process ǫz,atm,t with no spatial correlation
and a temporal correlation matrix Σz,t, approximately the sum
of a block diagonal matrix of APS and of a block diagonal
or diagonal matrix of noise contributions due to temporal
decorrelation, as described in (25):

Σz,res ≈ I⊗Σz,atm,t +Σz,decorr,t. (36)

This formulation is not exact because of the sparse distribution
of the PS across the scene and the approximated covariance
obtained from the variogram; a residual spatial correlation of
the APS can be expected. The residual error will increase with
increasing distance from the PS; for the sake of simplicity this
aspect has not been considered in this analysis.

If the noise in the corrected interferogram vector Σz,res is
assumed to be spatially uncorrelated, it is only necessary to
consider the temporal correlation of APS and decorrelation
in the solution of (5). In this case, the temporal covariance
structure is described a block-diagonal matrix Σz,res, the
sum of the temporal APS covariance and of the decorrelation
covariance (see (36)).

Since Σz,res is a block-diagonal matrix, i.e the noise in zres
is not correlated across pixels, the problem of (5) can be solved
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separately for each of the P pixels since G is a block-diagonal
matrix of compatible size and shape, i.e the displacement
model does not include spatial dependence across different
locations.

The APS covariance Σz,atm,t is estimated through Σy,atm,t

using an experimental temporal variogram, computed as the
variance of the interferometric phases grouped by temporal
baselines ∆T , as illustrated in Fig. 1:

γt (∆T ) =

1

2 |N (∆T )|NPS

NPS
∑

l=0

∑

i∈N(∆T )

|z (l, i)|2 (37)

where N (∆T ) is the set of all interferograms with temporal
baseline ∆T and z is the unwrapped interferometric phase.

Estimating the temporal covariance of the APS requires the
computation of interferograms covering all temporal baselines
up to a reasonably long time-lag. This is needed even if only
a subset of these interferograms can be effectively employed
for the inversion. This requirement is not as stringent as it
may seem, since only the interferometric phases at the PS are
required, which can be computed efficiently and do not suffer
from decorrelation.

Similarly, the decorrelation covariance Σz,decorr can be
derived from the SLC covariance matrix Σy,decorr [86] and
the incidence matrix A. In this paper the approach suggested
in [39] is used to generate covariance matrices for the decor-
relation signal, assuming a Brownian decorrelation process:

• The interferometric coherence between two SLCs pixels
y (i, tl) and y (i, tl +∆T ) separated by a time ∆T is
modeled with an exponential decay γ (∆T ) = γ0e

−∆T/τ .
The observed coherence as a function of temporal base-
line ∆T is computed by averaging interferograms with
the same ∆T , giving γ̂ (∆T ). The parameters γ0 and τ
are estimated by minimizing |γ̂ (∆T )− γ (∆T )| [67].

• The model parameters are used to generate the coherence
matrix of the SLC vector, Γ. Then Γ is converted into
the (incorrectly scaled) covariance matrix of the interfer-
ograms z using A. For a pixel i:

Ωz,i =
1

2
AΓiA

T . (38)

• Finally, Ωz is rescaled to a covariance matrix using the
observed interferometric coherences and the expression
for the interferometric phase standard deviation of (16).
For the i-th pixel, the new matrix is:

Σz,decorr,i = DΩz,iD (39)

where D is a diagonal matrix with the j-th entry corre-
sponding to V ar[zj,i]

Ωz,ijj

.

To improve the robustness of the estimated decorrelation
covariance matrix and to reduce computational load, γ0 and
τ are binned in 30 classes, the average covariance matrix for
each class is used in the inversion.

2) Pixel-wise GLS Inversion: Thanks to the spatial correc-
tion of the APS described in subsection II-B the problem can
be solved for each pixel individually using zres instead of z to

yield the estimate p̂ for all times tl, l = 1...M at each location
si:

p̂ (i) =
(

GTΣz,res (i)
−1

G
)−1

Σz,t (i)
−1

Gzres.
(40)

where Σz,res (i) indicates the i-th block of zres corresponding
to the i-th pixel.

The feasibility and robustness of the inversion described
by (40) are heavily influenced by the interplay of the available
interferograms, controlled A and by the employed displace-
ment model, chosen by p through the design of M.

In designing A for high repeat interval observations of fast-
moving terrain, one must balance between computational and
storage costs associated with computing and unwrapping all
the possible interferometric pairs and the unreliable phase
information provided by interferograms with large temporal
baselines, that are prone to low coherence and phase wrapping.

A conservative choice is to combine only consecutive SLC
images in an interferogram chain [22], [25], [87], [88] so that
the reference acquisition in l-th interferogram appears again
as the slave of the l+1-th interferogram. In this configuration,
N − 1 unique interferograms are produced.

An interferogram chain is convenient in combination with
a displacement model assuming a constant velocity i.e p = v

with v a P × 1 vector. In that case, phase contributions that
appear only once in a master SLC and in a slave SLC cancel
each other in the GLS solution, leaving only the contributions
from interferograms at the beginning and end of the stack [89].

Assuming a single velocity for the entire time-series negates
the purpose of high repeat-rate TRI monitoring because varia-
tions in displacement velocity over time are lost. The interfer-
ogram chain is also not suitable to estimate the full time-series
of N velocities for each pixel, i.e M = IPN,PN with v a PN -
vector. This formulation likely results in unreliable estimates
because only one noisy interferometric phase observation is
available for each model parameter.

Redundancy in the form of a simpler displacement model
and of more interferometric pairs can improve estimation ro-
bustness. Optimally, all possible N(N−1)

2 interferometric pairs
can be used to obtain maximum likelihood (ML) estimates
of (N − 1) unwrapped differential phases [67], [86], [90] as
if they were interferograms computed from a single master
acquisition. These ML-estimate can then be converted into a
displacement history with N − 1 displacement relative to a
virtual master.

This method is not applicable in the case presented in this
work: the number of interferograms to compute and store
would be too large. Other than these technical limitations,
temporal decorrelation and the fast flow of the glacier would
make most of the interferograms very challenging to unwrap.

As to the latter issue, assuming a maximum velocity of
2 m

day in the fastest parts of the glacier, phase wraps can be
expected for interferometric pairs with a temporal separation
of approximately 6min.

Since the data is acquired with a repeat interval of 150 s,
this allows wrap-free interferograms between the l-th and the
l+1-th and l+2-th SLC at the most. Such large displacement
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velocities are not expected to be routinely observed; therefore
a maximum temporal baseline of 500 s has been used. This
choice should not result in displacement-induced phase wraps
except for the most severe surges in glacier velocity. This
interferogram network is described by the following incidence
matrix:

A =






















1 −1 0 0 0 . . . . . .
1 0 −1 0 0 . . . . . .
1 0 0 −1 0 . . . . . .
0 1 −1 0 0 0 . . .
0 1 0 −1 0 0 . . .
0 1 0 0 −1 0 . . .
...

...
...

...
. . .























.
(41)

The time-series is inverted using a displacement model
forcing a constant velocity for a duration ts longer than the
SLC repeat interval. In this manner the interferograms can
be divided into stacks during which the velocity is assumed
constant. In this case, M is:

M = IP ⊗













[

1 0 . . . 0
]

×Ns
[

0 1 . . . 0
]

×Ns

...
[

0 . . . 0 1
]

×Ns













(42)

where Ns is the number of interferograms in each stack.
The GLS solution obtained with this model is a modified

form of interferogram stacking [32], [34], [91], where a
constant velocity for each pixel is assumed for the entire
duration covered by the interferograms. In the modified model
Ns velocities are estimated, using the parameter to control the
balance between reliable estimates and temporal resolution. In
this study Ns = 16 was empirically selected, corresponding
to about 30 minutes.

III. DATA

A. Device: KAPRI

The data used in this work was acquired with KAPRI [92],
[93] (Ku -Band Advanced Polarimetric Radar Interferometer),
a fully polarimetric version of the Gamma Portable Radar
Interferometer II (GPRI-II) [94]; a Ku-Band portable terrestrial
radar interferometer. The radar is based on the dechirp-on-
receive frequency modulated continuous wave (FMCW) archi-
tecture [95]. With a chirp bandwidth of 200MHz a nominal
distance resolution of 0.75m is achieved. Since a windowing
filter is used to suppress processing sidelobes caused by the
Discrete Fourier transform (DFT) used for range compression,
the effective range resolution is 0.9m. Resolution in the
direction perpendicular to line of sight is given by a 2m-
long slotted waveguide array with a half power beamwidth of
0.385 ◦, corresponding to a ground cross-range resolution of
7m at 1 km slant range.

B. Bisgletscher 2015 Campaign

A series of KAPRI data spanning the period between July to
late August 2015 was acquired from the Domhütte mountain
hut, at an altitude of 2940m, looking at the Bisgletscher on
the opposite side of the valley (see Fig. 3), covering a range
of distances between 4000m and 8000m. At these distances,
GPRI data have a cross-range resolution between 30m and
60m and a range resolution of approximately 0.9m. A SLC
image was acquired every 150 s; the repeat time is chosen to
minimize temporal decorrelation and to avoid phase wrapping
due to the rapid motion of the glaciers surface, estimated using
time-lapse camera to be as large as 2 m

day . The data set does
not uniformly cover the duration of the measurement campaign
due to a combination of technical and logistical limitations:

1) The radar installation used the hut’s electrical power
supply, consisting of solar panels supplemented by a
small hydroelectric plant. During times of high activity at
the hut, the radar had to be disconnected form its power
supply. A buffer battery permitted to continue acquisition
forapproximately 6 h from the power cut-off. However, in
some cases of longer interruptions this alternative supply
was not sufficient to ensure continuous operation.

2) Nearly 200GB of SLC data was produced every day.
To provide data download and control the radar was
connected to a Wi-Fi link provided by the PermaSense/X-
Sense project [96]. Since this link is designed to connect a
low-power sensor network, which is expected to produce
a much lower daily data volume, daily transfers of the
entire radar data set were not possible. Therefore, the SLC
images were stored locally on a network attached storage
(NAS) system connected to the radar using an local area
network connection. Since only an 100 MB

s Ethernet cable
was installed, the maximum daily data amount that could
be transferred from the radars own storage to the NAS
was still smaller than the predicted daily amount. To avoid
running out of storage space on the computer controlling
the radar, acquisitions were only carried out for 12 h each
day, while the remaining time was dedicated to copying
the data to the NAS system.

From the acquired data, a subset of data is sampled for the
analysis of the APS: ten timestamps are chosen randomly from
the set of acquisitions. For each of these timestamps, all SLC
closer than one hour are used for the analysis. The random
sampling is used to ensure that different atmospheric condi-
tions are represented in the study since they are presumably
influenced by the weather and the time of the day.

C. Data Processing

The acquired SLCs are coregistered to a common master
acquisition by amplitude cross correlation, to minimize loss of
coherence. Interferograms are formed by complex multiplica-
tion, followed by 5×2 multilooking. A larger range multilook-
ing is used in order to minimize the loss of azimuth resolution,
which by virtue of the acquisition geometry increases linearly
with slant range distance. Interferograms are unwrapped using
the minimum cost flow unwrapping algorithm and referenced
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(a)
(b)

DomhütteReference

(d) (c)

Fig. 3: Overview of the area under study. (a) Approximate location of the Bisgletscher in the Canton of Valais, Switzerland. (b)
Image of the Bisgletscher as seen from the radar point of view at Domütte, with glacier outline drawn in purple. (c) Geocoded
average backscatter power map geocoded in Swiss map coordinates. (d) Locations of radar at Domhütte, glacier and reference
location for interferogram referencing, overlaid on a topographic map with 1 : 50000 scale. (Basemap: [97]).

to a reference point corresponding to a stable rock face close
to the glacier, as visible in Fig. 3.

The persistent scatterers used to derive spatial and temporal
statistics were detected using the intensity mean to standard
deviation ratio [50] on an SLC stack of 50 acquisitions and
by removing the PS found in areas known to be moving. The
initial list of candidate PS was reduced to an approximately
homogeneous spatial PS density using the method described
by [98], employing the interferometric coherence with respect
to the first SLC in the stack as a quality measure. The pro-
cessing chain is automated using the Nextflow [99] dataflow
engine, that allows a reproducible analysis of the time-series.

IV. RESULTS

A. Spatial Correction of APS

1) Selection of Stratified APS Model: As discussed in sub-
section II-B, the phase contribution of the atmospheric phase
screen in the interferograms is modeled as the sum of a deter-
ministic delay predicted by an atmospheric stratification model
and a turbulent atmospheric delay contribution, modeled as a
Gaussian random variable.

In order to select the best performing linear model for
the stratified APS phase ǫz,atm,strat, a statistical model com-

parison is made on a large set interferograms. For each
interferogram l at time tl in the network, an ordinary least
squares (OLS) estimate for β (tl) is computed for every linear
model to be compared among those described in Table I.

The model fit parameters β (tl) alongside summary statis-
tics, such as the sum of residuals, the R2 value and the Akaike
Information Criterion (AIC)[80] are stored for each model run.
The results of the numerical evaluation are displayed in Fig. 4a
as a boxplot of AIC values divided by model; each model is
assigned a different color in the bar plot. A statistical summary
of R2 values is shown in Fig. 4b using a similar visualization.

2) Spatial Covariance Model For Turbulent APS: The spa-
tial correction of the APS contribution is performed by predict-
ing the unobserved APS at the locations of interest s according
to the regression-Kriging equation (32). The estimated APS is
then subtracted from the interferogram as in (35). The predic-
tion at a point si requires the spatial covariance of the APS
between this point and the PS used as observations. As the true
APS covariance is not known, it is replaced with a covariance
model derived from an experimental variogram, as illustrated
by (34). The variogram is computed by averaging individual
spatial variograms obtained from a number of interferograms,
according to (33). These interferograms are generated using
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Method Stacking approacb Bias Standard deviation

kriged OLS −4.11 · 10−3 5.8 · 10−2

kriged APS+Coh −2.82 · 10−3 5.48 · 10−2

kriged Coh −2.67 · 10−3 5.76 · 10−2

kriged APS −1.99 · 10−3 5.43 · 10−2

kriged no −1.06 · 10−3 0.26

lm no 1.96 · 10−2 0.96

unprocessed no 4.9 · 10−2 1.44

unprocessed OLS 5.04 · 10−2 0.49

lm OLS 5.25 · 10−2 0.49

unprocessed APS 5.38 · 10−2 0.47

lm APS 5.62 · 10−2 0.46

unprocessed APS+Coh 6.76 · 10−2 0.47

lm APS+Coh 7.17 · 10−2 0.47

unprocessed Coh 8.89 · 10−2 0.47

lm Coh 9.74 · 10−2 0.47

TABLE II: Bias and standard deviation of the residual displacement rate in m
day extracted from a set of PS located outside of

the glacier and assumed not to be undergoing displacement.
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Fig. 4: (a) Boxplot of the of the Akaike Information Criterion (AIC) values for a selection of models described in Table I.
To produce this figure, 508interferograms were considered. Each of the models discussed was applied to every interferogram,
the AIC statistic was computed. The AIC is plotted as a color-coded histogram, the model whose AIC is lower is the one
whose performance is best relative to the other models it is compared with. (b) Boxplot of the R2 values for the models listed
in Table I. The plot is obtained with the same procedure as (a).

100 SLC acquisitions, from which all PS interferograms with
a maximum temporal baseline of 120 minutes are formed.

The spatial variograms obtained from each interferogram
are plotted as dots in Fig. 5a, their color encodes the temporal
baseline. Assuming the validity of the separable covariance,
there should be no variation in spatial covariance between
interferograms; this is tested empirically by plotting the stan-
dard deviation of the spatial variograms across realizations,
shown in Fig. 5a as the gray ribbon around the averaged
variogram, plotted as a dashed black line. An exponential
variogram model, shown as a blue line, is fitted to the average.

3) Performance of Spatial APS Removal: The performance
of the spatial APS estimation is assessed by cross validation.
A second set of PS was located on stable areas around the
glacier, excluding those used to compute the RK prediction.
The phases of each interferogram and the residual phase after
removal of the APS estimates at these points were extracted,
converted into velocities and stored.

The results of cross validation as displayed as histograms
in the no row of Fig. 6. Three method are compared. The
regression-Kriging is shown in the column labeled kriged.
The reference case with no correction applied is displayed
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of all interferograms and the gray ribbon its standard deviation. The
blue line show an exponential variogram model fit, which is used to
generate temporal covariance matrices used in the inversion.

Fig. 5: Spatial and temporal variograms derived from 1535 PS interferograms computed from 100 SLC acquisitions. All
possible interferogram up to a maximum temporal baseline of 120 minutes were computed and unwrapped.

in the column unprocessed while the results after removal
of the stratified APS contribution is shown in the column
labeled lm. The interferometric phases outside of the glacier
correspond to the APS only, because on rocks no displacement
is expected at the scale of the interferogram’s spatial baseline.
Therefore, the distribution of the estimated velocities on PS
can be used as a proxy for the APS correction quality. A visual
comparison of these methods, in form of standard deviation
maps, is shown by the first row of Fig. 9, panels (a), (b)
and (c) for the uncorrected case, the stratification model and
regression-Kriging respectively. These maps are obtained with
a sample estimator for the standard deviation, applied on the
estimated velocity time-series.

A more quantitative assessment of the standard deviation of
these residuals is given by the summary statistics Table II in
the rows labeled “no". The table shows the bias and standard
deviation of the displacement estimates, calculated over all
times and locations.

B. Temporal Inversion

As explained in subsection II-C, it is assumed that the
APS correction using regression-Kriging removes the spatial
correlation of pixels; only the temporal correlation of pixels
along the stack, attributed to the residual APS, described
by Σz,atm,t, and the decorrelation, described by Σz,decorr,

must be considered in the GLS inversion, which can be now
performed pixel by pixel.

1) Temporal Covariance Model: The Brownian coherence
decay model parameters τ and γ0 were computed using a
subset of the interferograms. These estimates are useful to
quantify the rapidity of the decorrelation process and are
used to construct the covariance matrix Σz,decorr as described
in subsection II-C. The estimates of γ0 and τ are plotted as a
geocoded maps overlaid on a topographic map in Fig. 7.

The second component of the temporal covariance is the
covariance of the APS; assuming spatio-temporal separability
of the APS statistics Σy,atm,t is estimated from a temporal
variogram using a set of PS interferograms with increasing
temporal baselines. Using this method, the variogram at lag t
corresponds to the phase variance computed for all interfer-
ogram with temporal baseline t, as illustrated in Fig. 1. The
resulting temporal variogram is plotted in Fig. 5b along with
a curve showing the fitted exponential variogram model.

2) Performance of Pixel-wise GLS Inversion: The pixel-
wise GLS inversion performance is tested by the same cross-
validation procedure described in subsection IV-A. The phases
at the same set of points described above are extracted,
converted in displacement velocities and plotted in Fig. 6,
in the row named OLS, Coh, APS+Coh, APS that represent
four inversion approaches using different temporal covariance
matrices:
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Fig. 6: Histogram of estimated velocities at non-moving location for different combinations of APS correction and time-series
inversion methods.
Each column corresponds to a spatial APS correction method: kriged is obtained using regression-Kriging, lm using the stratified
APS only while in the column unprocessed no spatial APS correction is applied. Across rows, different temporal covariance
models are used for the GLS time series inversion. In APS only the temporal covariance of the APS is considered, in Coh

only the covariance of the temporal decorrelation process, while APS + Coh uses both. In OLS no covariance model is used,
while in No the interferometric phases are converted in velocities.

• OLS: Ordinary least squares inversion, the temporal co-
variance matrix is set to the identity matrix.

• Coh: GLS inversion, temporal covariance only includes
the Brownian decorrelation model.

• APS: GLS inversion, temporal covariance only includes
APS.

• APS+Coh: GLS inversion, temporal covariance according
to (36).

The same plots are repeated across three columns (Kriged, LM,
unprocessed), showing the combined effect of different spatial
APS removal techniques and temporal covariance models.

The average velocity at the non-moving location is expected
to be close to zero with a small variance, as they are derived
from the interferometric phases of parts of the scene that do not
displace significantly at the timescales of the interferograms. A
larger variance indicates a larger uncorrected APS contribution
or a higher level of decorrelation, causing more phase noise.

A visual representation of the estimated velocity maps is
shown in Fig. 8 for a small selection of times. Three maps
obtained without spatial APS correction and using a pixel-wise
OLS inversion are displayed in a. The same maps obtained
with regression-Kriging and a OLS inversion are shown in b.
Finally, in c regression-Kriging is combined with GLS using a
temporal covariance considering both APS and decorrelation.
The temporal standard deviation of the estimates is plotted
in Fig. 9, in panel d through i.

V. DISCUSSION

A. Spatial Correction of APS

1) Selection of Stratified APS Model: The stratified APS
contribution is predicted by a linear model. It is hard to
know a priori which of the models listed in Table I is the
most suitable to the situation analyzed in this paper. Model
selection was made using a statistical comparison, as described
in subsection IV-A. Fig. 4a displays a statistical summary of
the Akaike Information Criterion (AIC) values, while Fig. 4b
shows a similar summary of R2 values.

The AIC values are only meaningful in the relative sense:
among the investigated models, the one with the lowest AIC
will have the best fit quality, in the maximum likelihood
sense [80]. As shown by the box plot in 4a, all models
have a very similar distribution of the AIC values over the
interferograms considered for the analysis, with the “Quadratic
Height 2D” model showing the best AIC and the higher R2

in Fig. 4b.
It appears that the very similar distributions of the AIC

statistics across models could be due to multicollinearity be-
tween the slant range distance and height variables in the linear
regression, which is explained by the observation geometry
shown in Fig. 3: an increase in distance from the radar
corresponds to increasing terrain elevations. The presence of
multicollinearity is verified empirically in Fig. 10 by plotting r
against h for the points used in the regression. The possibility
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Fig. 7: Estimated short term coherence γ0 (a) and time constant τ (b) parameters for the Brownian coherence decay model
γ (∆t) = γ0e

∆t
τ . The data was obtained by fitting an exponential decay on average coherence maps binned by temporal

baseline. The outline of Bisgletscher is shown as a black polygon. (Basemap: [97], swisstopo, outline: [100]). )

of multicollinearity seems realistic considering the correlation
of r and h. In this case, either regressor can be included in
the stratified APS model.

The 2D model including height and azimuth angle was
chosen for regression-Kriging as it showed the highest R2

in Fig. 4b. The inclusion of the azimuth angle presumably
increases the model fit quality because it can better describe
lateral variations in the APS, due to the wide field of view
of the radar. Even this model only shows a median R2 of
0.25 and an interquartile range of 0.3. This means that for
most interferograms, between 80 percent and 60 percent of
the total phase variability is not explained by stratification.

Considering the initial assumption of the APS being the
superposition of stratification and turbulence, this results im-
plies that a majority of phase variability should be attributed to
turbulent mixing, highlighting the importance of its statistical
modeling.

The relatively poor performance of APS stratification mod-
els can also be appreciated in Table II in the row where
“Method” is “lm” and “Stacking Approach” is “no”. Compared
to the uncorrected case, shown in the very last row of that
table. The estimation standard deviation is reduced by only
0.4 m

day , but is still of a magnitude comparable to the glacier’s
daily displacement.

These results are in contradiction with several studies of
APS correction in TRI [31], [41]–[47], [56], where a stratifi-
cation model is shown to significantly reduce both bias and
variance. However, these studies were sometimes performed

in less challenging environments and for the purpose of
monitoring slower displacements. Hence, in most cases using
a single reference interferogram network.

In [41], a single reference interferogram network was con-
sidered, where interferograms are computed with respect to
one master acquisition, with the purpose of detecting very
small displacements. In that case, the scene under study was
located at distances between 0m and 1400m from the radar;
thus the total propagation path is almost 1/8 of the path
experienced in the Bisgletscher scenario.

Similar consideration apply to [42], where again the scene
under study is located much closer to the radar and inter-
ferograms are computed with respect to a single reference
acquisition. The scenario considered in [44], [56] is again
similar, since a single-reference network is considered and the
radar-scene distance is once more significantly smaller than in
the Bisgletscher study. A similar scenario is considered in [45],
[46].

A single-reference interferogram network means that with
increasing temporal baselines the effects of global or low-
spatial-frequency changes in the atmospheric propagation
speed become appreciable. This can be explained as follows:
weather-driven changes in the atmospheric water content and
especially changes atmospheric pressure —the hydrostatic
delay—, are presumably of lower spatial frequency compared
to the turbulent structures. Moreover, these large scale offset
are not likely to vary at the time scale of the radar’s repetition
rate, in the order of two minutes for the present case study.
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(b) Spatial APS correction using regression-Kriging and OLS inversion.
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(c) Spatial APS correction using regression-Kriging and GLS inversion with full covariance model.
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day ]

Fig. 8: time-series of estimated velocity maps for a subset of times. From left to right: July 14 2:33 , July 26 16:32 and August
2 11:36, central European summer time (CEST). (a) no spatial APS correction and OLS solution for the velocity. (b) spatial
APS correction using regression-Kriging combined with OLS inversion. (c) spatial APS correction using regression-Kriging
and velocity inversion with full covariance model (APS and decorrelation). The outline of Bisgletscher is shown in black.
(Basemap: [97], outline: [100] ).

Therefore, for short temporal baselines, the magnitude of the
phase delay caused by turbulence —mostly associated with
turbulent mixing of wet air, the wet delay— may be stronger
than the stratification signal.

In contrast to these studies, Dematteis [47] computed inter-
ferograms between subsequent data takes. He reported a good
performance of the stratification model fit; however, the author
is using a longer repeat time of 16min, almost eight times as

large as the one employed in the Bisgletscher observation. In
addition to this, the observation geometry is different from
the one used in the Bisgletscher campaign. In the former, the
radar is looking upwards from a much lower elevation (1500
m) towards the glacier located at higher altitudes, while in the
latter the glacier is observed from almost the same elevation
as the glacier’s center but with the propagation path crossing
a valley.
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Reference

(a) No Spatial APS correction.

Reference

(b) Spatial APS correction with stratified
model.

Reference

(c) Spatial APS correction using
regression-Kriging.

The velocity in this group of maps was estimated from individual interferograms.
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(d)
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(e)

Reference

(f)
The velocity in this group of maps was estimated using OLS inversion on the corrected interferograms.

Reference

(g)
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(h)
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(i)
The velocity in this group of maps was estimated with GLS inversion and a temporal covariance model considering APS and decorrelation.
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Standard deviation of the estimates LOS velocity [m/day]

Fig. 9: Standard deviation maps of velocity estimates for different combinations of APS correction and velocity inversion
methods. From left to right: no correction, stratified APS model, regression-Kriging. From top to bottom: velocities estimated
from single interferograms, OLS inversion, GLS inversion with the APS+Coh covariance model. (Basemap: [97]).

2) Covariance Model For Turbulent APS: In Fig. 5a, the
individual spatial variograms obtained from a number of
PS interferograms are shown as dots colored by temporal
baseline. Under the separable covariance model, increases in
the temporal baseline can only scale or offset the spatial
variogram but not modify its shape [101].

In the experimental variograms the shape changes with

increasing temporal lags, as shown by the different shapes of
the upper and lower range of the standard deviation ribbon
plot. With increasing temporal lags, an oscillation in the
middle at 2500m sample separation becomes visible; this type
of periodic structure of the variogram is likely a combination
of the hole effect [102], which is observed for spatially periodic
structures, and of anisotropy in the spatial correlation structure
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Fig. 10: Scatterplot illustrating the correlation between the slant range (r) and height (h) used as regressors for several models
of atmospheric stratification listed in Table I.

of the APS, which was assumed to be isotropic.
Moreover, the variation in spatial variogram shape as a

function of temporal lags indicates the possibility of space-
time interactions. Given the relatively short repeat interval, it
is not surprising that these interactions may happen. A classic
example is Taylor’s hypothesis [33], [68] (or the frozen-flow
model), where turbulent structures are transported by the wind
without changing their shape.

Despite the variability, suggesting some instationarity, a
separable covariance model is chosen as an approximation,
because of its clear computational advantage. Under this
model, only one spatial covariance function needs to be fit to
the average of individual spatial variograms. This function can
be used to predict the unobserved APS in all interferograms.

The average variogram is shown in the plot as a dashed
black line; the blue line shows an exponential variogram
fit. The average spatial variogram shows again the same
oscillation that was observed in the individual variograms,
especially in those at larger temporal lags. This is likely a sign
of periodic structures in the APS or of anisotropies. The former
could be caused by phase unwrapping error, while the latter
suggest that a more comprehensive variogram model including
anisotropy could result in a better fit [103], [104].

A more sophisticated approach to spatial covariance mod-
eling has been suggested [75], where instead of stationary,
isotropic covariance functions, the author proposed to use
intrinsic random functions of order k (IRF-K). This frame-
work permits to estimate non-stationary, anisotropic covari-
ance functions. The authors used this method to extrapolate
the observed APS from the PS to the rest of the scene.

However, in the case study presented by Butt, performed on
another interferometric time-series of the same Bisgletscher

scene, only an isotropic –albeit instationary– covariance func-
tion was used in the interpolation.

3) Performance of Spatial APS Removal: The performance
of APS prediction and removal using regression-Kriging is
evaluated in Fig. 6 in the row named no by plotting the his-
togram of velocity estimates obtained from corrected interfer-
ogram pixels on stable areas, as described in subsection II-B.

If no spatial APS correction is applied (column no, of Fig. 6
and last row of Table II), a large bias and standard deviation
are observed. The latter is almost as high as one half of
the expected maximum displacement of the glacier’s surface.
Obviously, if no correction of the APS is used, the estimated
displacement will be very unreliable.

The large error variance is also visible in the standard
deviation map in Fig. 9a. Interestingly, a minimum in standard
deviation is observed in the vicinity of the reference point. This
is because referencing the phase is able to mitigate some APS
contribution by exploiting to its spatial correlation.

By subtracting an estimate of the stratified APS (column
lm of Fig. 6 and second-to-last row of Table II) a reduction
in phase variance is visible in comparison to the uncorrected
interferograms. However, the standard deviation of the esti-
mates is only reduced by one third, as shown in the summary
statistics of Table II. This is also appreciated in Fig. 9b, where
the overall variance is reduced. The latter result is consistent
with the poor performance of stratified APS model, as no
model was capable to explain more than 30 percent of the
phase variance of the APS. This is observed in the R2 plot
of Fig. 4b. Thus, most of the observed phase variation it should
likely be attributed to the turbulent APS.

Compared to the uncorrected case, the subtraction of the
regression-Kriging estimates (column kriged of Fig. 6 and row
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“kriged, no” Table II) of APS reduces the standard deviation
by three quarters.

In the map (c) of Fig. 9, the standard deviation is lower
overall: now instead of using a single phase reference as in the
uncorrected base case, a set of phase references —the locations
of the non-moving PS— is used to extrapolate the APS using
the estimated covariance function.

An area of high estimation variance is still observed in the
center of the scene, at the location of Bisgletscher. A part
of this variance is probabily caused by natural variations in
the glacier’s surface speed. The remaining variance is likely
the inherent regression-Kriging prediction variance, which
increases with increasing distance between observations at the
PS and reconstruction locations.

Namely, in the case of the glacier, the average distance
between pixels on the glacier surface and the nearest PS is
larger than in the rest of the scene. A similar pattern was seen
in the theoretical variance maps produced by the regression-
Kriging procedure.

A similar APS correction performance is observed in the
IRF-k approach described by [75]. This result is expected
given the fact that intrinsic random functions are comparable
to regression-Kriging if the covariance function for the latter is
estimated in a manner accounting for the non-stationarity [78],
which is partly obtained by removing the stratification trend
before variogram estimation.

B. Temporal Inversion

1) Temporal Covariance Model: The temporally correlated
noise in the interferogram phase vector is modeled as the
sum of a residual APS plus the phase noise due to decor-
relation. The latter is described with a Brownian motion
model, attributed to random motion of many scatterers in
each resolution cell, resulting in an exponential decay of the
interferometric coherence γ.

The estimated exponential decay parameters are displayed
in Fig. 7; a very wide spread of the decorrelation time constant
τ is noticeable in Fig. 7b, probably due to the variety of
surfaces types, from rocks to forests and glaciated areas. Of
particular interest for this analysis is the surface of the glacier,
outlined by the polygon.

There, a time constant between 5min and 2 h is observed.
This ensures reliable interferometric phases up to temporal
baselines of approximately 1 h for the slower decorrelating
areas, assuming a minimum coherence threshold of 0.6. Given
the high probability of displacements producing phase wraps,
it is not advisable to include interferograms with such large
temporal baselines in the time-series inversion.

On the other hand, the spatial variability in the short-
term coherence γ0, which roughly corresponds to the mean
coherence at the shortest temporal baseline of 150 s, is lower
(see Fig. 7a). Areas that show a low short-term coherence
correspond chiefly to vegetation and regions of low backscatter
intensity, while the estimate over the glaciers tongue displays
high coherence, suggesting the suitability of the chosen repeat
time of 150 s for this study.

The other component of the temporal covariance matrix
is represented by the temporally correlated contribution of

the APS, which is estimated by an empirical variogram, as
discussed in subsection II-C. The experimental variogram is
displayed in Fig. 5b together with an exponential variogram
model fit; it appears that the semivariance rapidly increases
and settles at 90 percent of the sill after about 500 s, such
that after this time the APS can be effectively considered
uncorrelated. However, significant variability is observed be-
tween variograms computed at different dates (represented
as different colors in the plot), presumably reflecting the
large variability in propagation conditions related to weather
changes.

The rapid settling of the variogram at the sill is in contrast
with the observation made by Iannini [56], where the semivari-
ance was observed to increase up to a time lag of 5 days before
settling to a sill. The observation conditions were significantly
different in that case, since the targets of interest where much
closer to the radar (600m vs 8 km for the Bisgletscher data
set) and measurements were performed at lower elevations.
Moreover, the variograms in that work were estimated without
removing the stratification trends, thus possibly explaining the
longer correlation time —up to five days— claimed by the
authors.

This result suggests that the APS is not significantly corre-
lated in time at the timescales of the acquisition rate of 2.5min
minutes. Specific experiments —for example by observing a
single location at high repeat interval— would be necessary
to determine the decorrelation time of the APS.

2) Performance of Pixel-wise GLS Inversion: When both
components of the temporal covariance matrix are estimated,
the inversion for the estimated velocity is performed according
to (40). An assessment of inversion quality is made with the
same cross-validation method employed to evaluated spatial
APS removal, shown in Fig. 6.

All temporal inversion approaches result in a lower variance
of residual velocities for stable areas compared to the inversion
of the velocity performed on individual interferograms. The
differences in performance between temporal covariance mod-
els appear not to be significant, with both cases considering
either the decorrelation or the APS only showing a very
similar residual distribution as the OLS inversion. This is
quantified in Table II, where the bias and standard deviation
for the APS+Coh, Coh and OLS covariance models are almost
identical for all spatial APS correction approaches.

Including the Brownian coherence decay model does not
affect estimation standard deviation and bias because these
parameters are estimated using cross/validation on a set of
PS, which are not affected by temporal decorrelation.

Similarly, including the APS covariance model seems not to
significantly reduce the variance of the estimates. This could
be explained by the short temporal correlation, as observed
in Fig. 5b: after 500 s the semivariance attains a value very
close to the sill, implying that the APS between temporally
close acquisitions is not significantly correlated. A higher
sampling rate —that is shorter acquisition repat times— is
necessary to observe significant temporal correlation, suggest-
ing the potential for future studies.

In the data set analyzed by this paper, including the temporal
APS covariance model in the pixel-wise inversion does not
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appreciably change the estimation performance. Therefore, the
covariance model could be reduced to the one used for space-
borne InSAR [39], where the APS is assumed uncorrelated in
time.

An analysis of the general pattern of the estimated LOS
velocity fields can be made considering the plots in Fig. 8.
In Fig. 8a the velocity maps were generated directly from
uncorrected interferograms, by converting the phases into daily
displacement velocities.

These maps appear to correctly capture the spatial patterns
of motion known from previous optical observations, where
the highest velocities were observed at the glacier’s tongue
and near the upper and lower icefalls. However, a gross
overestimation of displacement rates on areas located outside
of the glacier —which should not move during the timespan
covered by the acquisitions— is observed. The overestimation
is presumably caused by the uncompensated APS; this can
lead to misinterpretations of the velocity maps.

The overestimation is reduced in Fig. 8c, showing the stan-
dard deviation of the estimates obtained by extrapolating the
APS using regression-Kriging and then applying the pixel-wise
GLS inversion with the APS+Coherence covariance model.

Finally, a visualization of the spatial distribution of correc-
tion and estimation quality is shown in Fig. 9 in the second
and third row, which display the temporal standard deviation of
velocity estimates for several combinations of APS correction
and covariance models used for the GLS inversion.

As seen in the velocity histograms in Fig. 6, there is no
difference in velocity estimation variance across the solution
obtained combining regression-Kriging and an OLS inversion
(Fig. 9f) and the GLS solution considering the temporal
correlation due to the APS and to the decorrelation signal
(Fig. 9i). This seems plausible given the short correlation
time of the APS, as determined by the means of the temporal
variogram in Fig. 5b.

VI. CONCLUSIONS

This paper present a study on estimation and correction
of the atmospheric phase screen(APS) in Ku-Band terrestrial
radar interferometry. The APS is one of the most important
factor affecting the precision of displacement estimates in
radar interferometry. While for spaceborne SAR interferom-
etry a vast literature of approaches for APS modeling and
mitigation is available, only few studies are dedicated to the
APS in terrestrial radar interferometry.

This study contributes to close this research gap by ad-
dressing several aspects of the modeling and correction of
APS for terrestrial radar interferometry. To do so, this paper
proposes an expansion of the common APS model tailored to
TRI. The conventional model —a combination of a stratified
atmospheric contribution and of a temporally uncorrelated,
spatially correlated stochastic term describing turbulence— is
modified by allowing the APS to be correlated in time to
account for the short revisit times. To reduce its complexity,
the covariance structure of the turbulent component is assumed
to be stationary in space and time and separable. Under
this assumption, covariance model parameters are fitted by

performing marginal spatial and temporal variogram analysis
on a large set of interferograms acquired at different times.

This framework is the foundation of a method for APS
correction based on an interferogram stack, from which a set of
persistent scatterers unaffected by displacement is determined.
The interferometric phase observations at these PS — assumed
to contain solely an APS contribution— are used to extrap-
olate the APS to a regular grid covering the interferograms
using regression-Kriging, which accounts for both a model
of atmospheric stratification and for the spatial correlation of
the atmospheric turbulence. Since separable spatio-temporal
statistics are assumed, the interpolation is performed using a
single covariance function for the entire stack.

By this method, a phase calibrated stack is obtained,
where the residual nuisances, namely unmodeled APS and
decorrelation are assumed to be spatially uncorrelated. In this
manner, a pixel-wise generalized least squares estimator using
the temporal covariance model can be applied to the phase-
calibrated stack to estimate displacement rates. This approach
reduces the computational load since spatial correlations are
assumed to be removed by the preceding Kriging-based APS
phase calibration step.

The proposed approach is tested using a Ku-Band radar data
set over the Bisgletscher, southwestern Swiss Alps. Regression
analysis using a set of persistent scatterers located on stable
areas shows that stratification models have a poor ability to
explain a significant portion of the phase variance caused by
the APS, highlighting the importance of statistical description
of the turbulent APS.

Variogram analysis suggest that a separable spatio-temporal
covariance model is a sufficient approximation for the case
considered in the study and that the APS only shows a
weak correlation in time. The spatial covariance function
derived from this analysis is used for the regression-Kriging
APS phase calibration, whose performance is evaluated by
estimating the residual velocities at locations known not to
be affected by displacements.

This analysis shows a significant reduction in phase variance
after the regression-Kriging based phase calibration. The same
performance analysis is repeated with the output of the time-
series inversion applied on the stack of calibrated interfero-
grams. The results show an additional reduction in residual
phase variance, at the cost of a coarser temporal resolution
caused by the choice of a simplified displacement model.
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