Supplementary information ## Mechanics of Nanoscale ε -Fe₂O₃/Organic Superlattices Towards Flexible Thin-Film Magnets Janne-Petteri Niemelä, ¹* Anish Philip, ² Nadia Rohbeck, ¹ Maarit Karppinen, ² Johann Michler, ¹ Ivo Utke, ¹ ¹Laboratory for Mechanics of Materials and Nanostructures, Empa – Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, Thun CH-3602, Switzerland. ²Department of Chemistry and Materials Science, Aalto University, FI-00076 Espoo, Finland *Corresponding author (E-mail: janne-petteri.niemelae@empa.ch) **Figure S1**. Optical micrographs for the ε -Fe₂O₃ film showing formation of two buckles. Evolution of the buckle from the triangular (top-view) shape into rectangular shape is depicted. Transverse cracks are seen to form at the apex of buckles along their shape evolution. The series begins from 2.2% tensile strain and spans over 0.14% strain interval (or 10s time interval). Width of each image is 300 μ m. **Figure S2**. A tilted scanning-electron-microscope cross-section view of the ε -Fe₂O₃ film on Si substrate. **Figure S3**. Optical top-view micrographs of the ε -Fe₂O₃ and SL10 film on the polyimide substrate after loading to 3.2 % tensile strain, and after subsequent unloading. Width of each image is 300 μ m. **Figure S4**. Magnetization vs. magnetic field curves for (a) the ε -Fe₂O₃ and (b) SL10 films. The data is shown for the as-deposited films and for the films after loading to 3.2 % tensile strain, followed by subsequent unloading. As the strained samples had undergone ~ 1 year storage in glovebox prior to the experiment, an additional reference measurement was done for unstrained samples with the same storage history ("aged"). **Table S1**. Fracture properties for the thin films: critical bending radius (R_c) on 50- μ m thick polyimide, crack onset strain (COS), elastic modulus (E), cohesive strain (ε_{coh}) , and cohesive strength (σ_{coh}) . The error bars represent the standard deviation over 3-5 measurements. The data is shown for values without thickness normalization. | Sample | R _c (mm) | COS (%) | E (GPa) | α | β | Ecoh (%) | σ _{coh} (MPa) | |----------------------------------|---------------------|---------------|---------|---------|-------------|---------------|------------------------| | ε-Fe ₂ O ₃ | 7.5±0.3 | 0.34±0.02 | 152±33 | 2.8±0.4 | 0.027±0.008 | 0.58±0.09 | 885±126 | | SL1 | 5.3±0.2 | 0.48 ± 0.02 | 145±37 | 5.0±1.1 | 0.015±0.004 | 0.66 ± 0.06 | 948±80 | | SL10 | 2.9±0.4 | 0.88±0.10 | 70±20 | 6.8±1.7 | 0.021±0.003 | 1.18±0.07 | 824±48 | | Fe-TP | 1.9±0.2 | 1.30±0.11 | 32±8 | 39±16 | 0.015±0.002 | ≥1.45±0.12 | ≥462±37 | **Table S2**. Interfacial properties for the film/substrate systems (polyimide substrate): saturation crack density (CDs), saturation crack spacing (L_s), interfacial shear strain (ϵ_i), and interfacial shear strength (σ_i). The error bars represent the standard deviation over 3-5 measurements. The data is shown for values without thickness normalization. | Sample | <i>CD</i> _s (mm ⁻¹) | L_s (μ m) | ε _i (%) | σ _i (MPa) | |----------------------------------|--|------------------|--------------------|----------------------| | ε-Fe ₂ O ₃ | 34±4 | 30±4 | 0.011±0.003 | 17±4 | | SL1 | 39±9 | 27±8 | 0.016±0.005 | 23±7 | | SL10 | 54±7 | 19±2 | 0.057±0.007 | 40±5 | | Fe-TP | ≥414±12 | ≤2.4±0.07 | ≥0.21±0.012 | ≥ 67±4 |