Synthesis of polar polynorbornenes with high dielectric relaxation strength as candidate materials for dielectric applications

Francis Owusu, ${ }^{\text {a,b }}$ Martin Tress, ${ }^{c}$ Frank A. Nüesch, ${ }^{\text {a,b,d }}$ Sandro Lehner, ${ }^{e}$ and Dorina M. Opris ${ }^{\text {a夫 }}$
a Swiss Federal Laboratories for Materials Science and Technology Empa, Laboratory for Functional Polymers, Überlandstr. 129, CH-8600, Dübendorf, Switzerland
${ }^{b}$ Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, EPFL, Station 6, CH-1015 Lausanne, Switzerland
c Leipzig University, Peter Debye Institute for Soft Matter Physics, Linne'straße 5, 04103 Leipzig, Germany
${ }^{\text {d École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux, Station 12, CH 1015, Lausanne, Switzerland. }}$
${ }^{e}$ Swiss Federal Laboratories for Materials Science and Technology Empa, Laboratory for Advanced Fibers, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
* Correspondence and requests for materials should be addressed to e-mail:dorina.opris@empa.ch

Contents Page
Synthesis of 2-(1-(2-hydroxyethyl)-2,6-dimethylpyridin-4(1H)-ylidene)malononitrile 2
Synthesis of bicyclo[2.2.1]het-5-ene-2-carbonyl chloride 3
Structure characterization of 2-(1-(2-hydroxyethyl)-2,6-dimethylpyridin-4(1H)-ylidene)malononitrile 4
Structure characterization of bicyco[2.2.1]hept-5-ene-2-carbonyl chloride 8
Structure characterization of monomers 10
Structure characterization of polymers 32
Thermal behaviour of polymers 40
Dielectric properties of polymers 45
Dipole moments of monomers 50
Appendices 51

Synthesis of 2-(1-(2-hydroxyethyl)-2,6-dimethylpyridin-4(1H)-ylidene)malononitrile

Scheme S1 Synthesis of compound 1

Compound 1 was designed and synthesized as shown in Scheme S1. Initially, 2,6-dimethyl-4H-pyran-4-one ($20.00 \mathrm{~g}, 161.10 \mathrm{mmol}$), malononitrile ($10.64 \mathrm{~g}, 161.10 \mathrm{mmol}$), and acetic anhydride (80 ml) were charged into a 200 ml round bottom flask. The system was refluxed at $130^{\circ} \mathrm{C}$ for 4 hours to obtain crude of compound (i) intermediate. The intermediate was purified by washing with warm water and recrystallizing from heptane to produce a dark brown powder (yield, 87%). Furtherly, a 200 ml round bottom flask was charged compound (i) intermediate ($15.00 \mathrm{~g}, 87.11 \mathrm{mmol}$), ethanolamine (44.7 ml , 740.46 mmol) and methanol (100 ml). The reaction was then refluxed at $70^{\circ} \mathrm{C}$ for 2 hours and left to stand overnight. The separated solid was collected by filtration, dried, and recrystallized in ethanol to produced compound 1 as brown flakes (yield, 60\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 6.68(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.17(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.17(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}-$ CH_{2}), $3.70\left(\mathrm{q}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{OH}\right.$), $2.53\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 155.40$ $\left(\mathrm{C}_{\mathrm{Ar}}=\mathrm{C}(\mathrm{CN})_{2}\right), 150.92\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{CH}_{3}\right), 119.43(\mathrm{CN}), 113.07\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 59.76\left(=\mathrm{C}(\mathrm{CN})_{2}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{OH}\right), 51.13(\mathrm{~N}-$ CH_{2}), $21.03\left(\mathrm{Ar}-\mathrm{CH}_{3}\right) . \mathrm{MS}(E S I) \mathrm{m} / \mathrm{z}$ for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$: calc. $=238.0951$; found $=238.0950$ Elemental analysis $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ (\%): calc. C 66.96, H 6.09, N 19.52, O 7.43; found: C 66.91, H 6.01, N 19.4307 .31

Synthesis of bicyclo[2.2.1]het-5-ene-2-carbonyl chloride

Scheme 2 Synthesis of compound (ii)
A 2-necked round bottom flask was charged with 5-norbornene-2-carboxylic acid ($15 \mathrm{~g}, 108.56 \mathrm{mmol}$), thionyl chloride ($19.37 \mathrm{~g}, 162.84 \mathrm{mmol}$), and anhydrous chloroform (10 ml). The reaction mixture was refluxed for 4 hours under argon protection. The solvent was then evaporated and the residue was distilled at $1 \mathrm{mbar}\left(40^{\circ} \mathrm{C}\right)$ to give the corresponding acyl chloride as colorless oily liquid (yield, 83%).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.26$ (ddd, $\left.J=19.1,5.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.06$ (dd, J=5.8, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (dd, $J=7.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 1 \mathrm{H}), 3.01(\mathrm{dt}, J=4.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.40(\mathrm{~m}, 2 \mathrm{H})$, $1.36(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.81,175.04,139.04,138.69,134.88,131.61$, 77.23, 56.43, 56.32, 49.22, 47.16, 46.90, 46.29, 42.89, 41.85, 31.22, 30.09 .

Structure characterization of 2-(1-(2-hydroxyethyl)-2,6-dimethylpyridin-4(1H)ylidene)malononitrile

Figure S1 ${ }^{1} \mathrm{H}$ NMR spectrum of 2-(1-(2-hydroxyethyl)-2,6-dimethylpyridin-4(1H)-ylidene)malononitrile

Figure S2 ${ }^{13} \mathrm{C}$ NMR spectrum of 2-(1-(2-hydroxyethyl)-2,6-dimethylpyridin-4(1H)-ylidene)malononitrile

Figure S3 COSY of 2-(1-(2-hydroxyethyl)-2,6-dimethylpyridin-4(1H)-ylidene)malononitrile

Figure S4 HSQC of 2-(1-(2-hydroxyethyl)-2,6-dimethylpyridin-4(1H)-ylidene)malononitrile

Eidgenössische Technische Hochschule Zürich
Laboratorium für Organische Chemie
ETH-Hönggerberg - HCI E304 8093 Zürich Tel: 044/633 4358

Mikroelementaranalyse

Name: Owusu FrancisLabor: LAl 82					Gruppe: Opris EMPA			
					Tel: 058/765 4801			
Substanz: 1								
Molekularformel: C12 H13 N3 O Mr $=215.25 \mathrm{~g} / \mathrm{mol}$								
Schmelzpunkt: gereinigt: ????????????????????????? getrocknet:								
Bestimmungen: CHNN								
Eingang: 19.09.19					Ausgang: 23.09 .19			
M-166261					Operator: PK			
Berechnete Gewichtsanteile:								
[C]	66.96%	[H]	6.09\%	[N]	19.52\%	[0]	7.43\%	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ $M=215.26 \mathrm{~g} / \mathrm{mol}$
Gefundene Gewichtsanteile:								
Einwaage: 0.910 mg					LECO Truspec Micro			
	66.91%	[H]	6.01\%	[N]	19.43\%			19.09 .19
Einwaage: 1.048 mg [0] 7.31\%					LECO RO-628			
								23.09 .19

Figure S5 Elemental analysis of 2-(1-(2-hydroxyethyl)-2,6-dimethylpyridin-4(1H)-ylidene)malononitrile

Acquisition Parameter

Method:	ETH_HyStar_HPLC_QTOF_POS_LowMass_Loop-AS.m		Acquisition Date:	10.10.2019 15:57:20	
File Name:	D:IDatalbmax0051xxIBMAX005105_44666.d		Operator:	Daniel Wirz	
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.6 Bar
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	$200{ }^{\circ} \mathrm{C} /$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Dry Gas	8.0 lmin
Scan End	$1300 \mathrm{~m} / \mathrm{z}$	Set Collision Cell RF	200.0 Vpp	Set Divert Valve	Source

Figure S6 Mass spectra of 2-(1-(2-hydroxyethyl)-2,6-dimethylpyridin-4(1H)-ylidene)malononitrile

Structure characterization of bicyco[2.2.1]hept-5-ene-2-carbonyl chloride

Figure S7 ${ }^{1} \mathrm{H}$ NMR spectrum of bicyclo[2.2.1]hept-5-ene-2-carbonyl chloride

Figure S8 13C NMR spectrum of bicyclo[2.2.1]hept-5-ene-2-carbonyl chloride

Figure S9 COSY of bicyclo[2.2.1]hept-5-ene-2-carbonyl chloride

Figure S10 HSQC of bicyclo[2.2.1]hept-5-ene-2-carbonyl chloride

Structure characterization of monomers

Figure S11 ${ }^{1} \mathrm{H}$ NMR spectrum of NBE-1

Figure S12 ${ }^{13} \mathrm{C}$ NMR spectrum of NBE-1

Figure S13 COSY of NBE-1

Figure S14 HSQC of NBE-1

Figure S15 Elemental analysis of NBE-1

Acquisition Parameter					
Method:	ETH_HyStar_HPLC_QTOF_POS_LowMass_Loop-AS.m		Acquisition Date:	10.10.2019 16:03:16	
File Name:	D:IDatalbmax0051xxIBMAX005107.d		Operator:	Daniel Wirz	
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.6 Bar
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	$200{ }^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Dry Gas	8.0 lmin
Scan End	$1300 \mathrm{~m} / \mathrm{z}$	Set Collision Cell RF	200.0 Vpp	Set Divert Valve	Source

Figure S16 Mass spectra of NBE-1

Figure $\mathbf{S 1 7}{ }^{1} \mathrm{H}$ NMR spectrum of NBE-2

Figure S18 ${ }^{13} \mathrm{C}$ NMR spectrum of NBE-2

Figure S19 COSY of NBE-2

Figure S20 HSQC of NBE-2

Eidgenössische Technische Hochschule Zürich
Laboratorium für Organische Chemie
ETH-Hönggerberg - HCI E304 8093 zürich Tel: 044/633 4358

Mikroelementaranalyse

Name: Owusu Francis	. Gruppe: Opris EMPA
Labor: LA182	
Tel: 058/765 48 01	

Siedepunkt:
gereinigt: ????????????????????????? getrocknet: HV
Bestimmungen: C H N
Eingang: 19.09.19 Ausgang: 19.09.19

M-166262

Operator: PK
Berechnete Gewichtsanteile:

[C] 64.54%	$[H]$	6.37%

Gefundene Gewichtsanteile:
Einwaage: $0.959 \mathrm{mg} \quad$ LECO TruSpec Micro
[C] 64.68% [H] 6.54%
[N] 8.92\%
19.09 .19

Von flüssigen Proben können nur CHN bestimmt werden.

Figure S21 Elemental analysis of NBE-2

Acquisition Parameter					
Method:	ETH_HyStar_HPLC_QTOF_POS_LowMass_Loop-AS.m		Acquisition Date:	10.10.2019 16:00:19	
File Name:	D:IDatalbmax0051xx1BMAX005106.d		Operator:	Daniel Wirz	
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.6 Bar
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	$200{ }^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Dry Gas	$8.0 \mathrm{l} / \mathrm{min}$
Scan End	$1300 \mathrm{~m} / \mathrm{z}$	Set Collision Cell RF	200.0 Vpp	Set Divert Valve	Source

Figure S22 Mass spectra of NBE-2

Figure S23 ${ }^{1} \mathrm{H}$ NMR spectrum of NBE-3

Figure S24 ${ }^{13} \mathrm{C}$ NMR spectrum of NBE-3

Figure S25 COSY of NBE-3

Figure S26 HSQC of NBE-3

Eidgenössische Technische Hochschule Zürich

wegen zu grosser Abweichung werden keine weiteren Bestimmungen durchgeführt

Figure S27 Elemental analysis of NBE-3

Acquisition Parameter					
Method:	ETH_HyStar_HPLC_QTOF_POS_LowMass_Loop-AS.m			Acquisition Date:	10.10.2019 16:06:14
File Name:	D:IDatalbmax0051xx\BMAX005108.d			Operator:	Daniel Wirz
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.6 Bar
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	$200^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Dry Gas	$8.01 / \mathrm{min}$
Scan End	1300 m/z	Set Collision Cell RF	200.0 Vpp	Set Divert Valve	Source

Figure S28 Mass spectra of NBE-3

Figure S29 ${ }^{1} \mathrm{H}$ NMR spectrum of NBE-4

Figure $\mathbf{S 3 0}{ }^{13} \mathrm{C}$ NMR spectrum of NBE-4

Figure S31 COSY of NBE-4

Figure S32 HSQC of NBE-4

```
Eidgenössische Technische Hochschule Zürich
Laboratorium für Organische Chemie
ETH-Hönggerberg - HCI E304 8093 Zürich Tel: 044/633 4358
Mikroelementaranalyse
\begin{tabular}{ll} 
Name: Owusu Francis & \begin{tabular}{l} 
Gruppe: Opris EMPA \\
Labor: LA182
\end{tabular} \\
Tel: 058/765 48 01
\end{tabular}
Siedepunkt:
gereinigt: ????????????????????????? getrocknet: HV
Bestimmungen: C H N
M-166265
Berechnete Gewichtsanteile:
[0] 33.58%
```

Eingang: 19.09.19 Ausgang: 20.09.19
[C] $60.50 \% \quad[\mathrm{H}] \quad 5.92$

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}$ $\mathrm{M}=238.24 \mathrm{~g} / \mathrm{mol}$

Gefundene Gewichtsanteile:

Einwaage: 0.982 mg			LECO TruSpec Micro	
[C] 60.78\%	[H]	6.44\%		20.09 .19
Einwaage: 0.971 mg			LECO TruSpec Micro	
[C] 60.83\%	[H]	6.22\%		20.09 .19

Von flüssigen Proben können nur CHN bestimmt werden. Probe ist nicht homoge n (Flüssig+Kristalle)

Acquisition Parameter					
Method:	ETH_HyStar_HPLC_QTOF_POS_LowMass_Loop-AS.m		Acquisition Date:	10.10.2019 16:09:13	
File Name:	D:IDatalbmax0051xxIBMAX005109.d		Operator:	Daniel Wirz	
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.6 Bar
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	$200^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Dry Gas	$8.0 \mathrm{l} / \mathrm{min}$
Scan End	$1300 \mathrm{~m} / \mathrm{z}$	Set Collision Cell RF	200.0 Vpp	Set Divert Valve	Source

Figure S34 Mass spectra of NBE-4

Figure S35 ${ }^{1} \mathrm{H}$ NMR spectrum of NBE-5

Figure S36 ${ }^{13} \mathrm{C}$ NMR spectrum of NBE-5

Figure S37 COSY of NBE-5

Figure S38 HQSC of NBE-5

Acquisition Parameter

Method:	ETH_HyStar_HPLC_QTOF_POS_LowMass_Loop-AS.m		Acquisition Date:	$26.08 .202013: 39: 31$	
File Name:	D:IDatalbmax0096xxIBMAX009630.d		Operator:	Michael Meier	
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.6 Bar
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	$200^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathbf{z}$	Set End Plate Offset	-500 V	Set Dry Gas	$8.01 / \mathrm{min}$
Scan End	$1300 \mathrm{~m} / \mathbf{z}$	Set Collision Cell RF	200.0 Vpp	Set Divert Valve	Source

Figure S39 Mass spectra of NBE-5

Figure S40 ${ }^{1} \mathrm{H}$ NMR spectrum of NBE-6

Figure S41 ${ }^{13} \mathrm{C}$ NMR spectrum of NBE-6

Figure S42 COSY of NBE-6

Figure S43 HSQC of NBE-6

Acquisition Parameter

Method:	ETH_HyStar_HPLC_QTOF_POS_LowMass_Loop-AS.m		Acquisition Date:	$26.08 .202013: 42: 29$	
File Name:	D:IDatalbmax0096xx\|BMAX009631.d		Operator:	Michael Meier	
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.6 Bar
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	$200^{\circ} \mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathbf{z}$	Set End Plate Offset	-500 V	Set Dry Gas	8.0 lmin
Scan End	$1300 \mathrm{~m} / \mathrm{z}$	Set Collision Cell RF	200.0 Vpp	Set Divert Valve	Source

Figure S44 Mass spectra of NBE-6

Structure characterization of polymers

Figure S45 ${ }^{1} \mathrm{H}$ NMR spectrum of PNBE-2

Figure S46 ${ }^{13} \mathrm{C}$ NMR spectrum of PNBE-2

PNBE-2

Figure S47 GPC elugrams of PNBE-2 synthesized by (a) Grubb's first- and (b) third generation catalyst; in HFIP + 20 mM sodium trifluoroacetate

Figure S48 ${ }^{1} \mathrm{H}$ NMR spectrum of PNBE-3

Figure S49 ${ }^{13} \mathrm{C}$ NMR spectrum of PNBE-3

PNBE-3

Figure S50 GPC elugrams of PNBE-3 synthesized by (a) Grubb's first- and (b) third generation catalyst; in THF

Figure $\mathbf{S 5 1}{ }^{1} \mathrm{H}$ NMR spectrum of PNBE-4

Figure S52 ${ }^{13} \mathrm{C}$ NMR spectrum of PNBE-4

Figure S53 GPC elugrams of PNBE-4 in HFIP

Figure S54 ${ }^{1} \mathrm{H}$ NMR spectrum of PNBE-5

Figure S55 ${ }^{13} \mathrm{C}$ NMR spectrum of PNBE-5

Figure S56 GPC elugrams of PNBE-5 in HFIP + 20 mM sodium trifluoroacetate

Figure $\mathbf{S 5 7}{ }^{1} \mathrm{H}$ NMR spectrum of PNBE-6

Figure S58 ${ }^{13} \mathrm{C}$ NMR spectrum of PNBE-6

Figure S59 GPC elugrams of PNBE-6 in THF

Thermal behaviour of polymers

Figure S60 DSC thermograms for PNBE-2 polymer sets in (a) second heating and (b) first cooling cycle

Figure $\mathbf{S 6 1}$ TGA curves for PNBE-2 polymer sets

Figure S62 DSC thermograms for PNBE-3 polymer sets in (a) second heating and (b) first cooling cycle

Figure S63 TGA curves for PNBE-3 polymer sets

Polymer $1 \mathrm{D}_{[\mathrm{M}]:[\mathrm{C]}}$	$\mathrm{T}_{\mathrm{g}}\left({ }^{\circ} \mathrm{C}\right)$	
	$2{ }^{\text {nd }}$ Heating cycle ${ }^{(a)}$	$1^{\text {st }}$ cooling cylce ${ }^{\text {(b) }}$
-PNBE-4 ${ }_{75: 1}$	84	79
- PNBE-4 ${ }_{150: 1}$	86	76
- PNBE-4 ${ }_{200: 1}$	87	80
- PNBE-4 ${ }_{300: 1}$	87	76
- PNBE-4 400:1 $^{\text {a }}$	88	80
-PNBE-4 800:1	86	80

Figure S64 DSC thermograms for PNBE-4 polymer sets in (a) second heating and (b) first cooling cycle

Figure S65 TGA curves for PNBE-2 polymer sets

Figure S66 DSC thermograms for PNBE-5 polymer sets in (a) second heating and (b) first cooling cycle

Figure $\mathbf{S 6 7}$ TGA curves for PNBE-5 polymer sets

Polymer $\mathrm{ID}_{[\mathrm{M}]:} \mathrm{CC]}$	$\mathrm{T}_{\mathrm{g}}\left({ }^{\circ} \mathrm{C}\right)$	
	$2^{\text {nd }}$ heating cycle ${ }^{(a)}$	$1^{\text {st }}$ cooling cycle ${ }^{(b)}$
- PNBE-6 200:1	62	55
- PNBE-6 400:1	62	52
- PNBE-6 800:1	58	48

Figure S68 DSC thermograms for PNBE-6 polymer sets in (a) second heating and (b) first cooling cycle

Figure S69 TGA curves for PNBE-6 polymer sets

Dielectric properties of polymers

Figure S70 Isothermal dielectric response of PNBE-2; (a) real permittivity, ε^{\prime}; (b) tangent loss Tan δ; of the complex dielectric function vs frequency

Figure S71 β-relaxation processes in PNBE-2: (a) isothermal plot of imaginary part $\varepsilon^{\prime \prime}$ of the complex dielectric permittivity versus frequency (b) Arrhenius plot of corresponding relaxation times obtained from Havriliak-Negami (HN)-fit versus inverse of temperature. The experimental data are represented by scattered dots and the fit functions are represented by shortdashed lines.

Figure S72 α-relaxation processes in PNBE-2: (a) isothermal plot of imaginary part $\varepsilon^{\prime \prime}$ of the complex dielectric permittivity versus frequency (b) Vogel-Fulcher-Tammann (VFT) plot of corresponding relaxation times obtained from Havriliak-Negami (HN)-fit versus inverse of temperature. The experimental data are represented by scattered dots and the fit functions are represented by short-dashed lines.

Figure S73 Isothermal dielectric response of PNBE-3; (a) real permittivity, ε^{\prime}; (b) tangent loss Tan δ; of the complex dielectric function vs frequency

Figure S74 β-relaxation processes in PNBE-3: (a) isothermal plot of imaginary part $\varepsilon^{\prime \prime}$ of the complex dielectric permittivity versus frequency (b) Arrhenius plot of corresponding relaxation times obtained from Havriliak-Negami (HN)-fit versus inverse of temperature. The experimental data are represented by scattered dots and the fit functions are represented by shortdashed lines.

Figure S75 α-relaxation processes in PNBE-3: (a) isothermal plot of imaginary part $\varepsilon^{\prime \prime}$ of the complex dielectric permittivity versus frequency (b) Vogel-Fulcher-Tammann (VFT) plot of corresponding relaxation times obtained from Havriliak-Negami (HN)-fit versus inverse of temperature. The experimental data are represented by scattered dots and the fit functions are represented by short-dashed lines.

Figure S76 Isothermal dielectric response of PNBE-4; (a) real permittivity, ε^{\prime}; (b) tangent loss Tan δ; of the complex dielectric function vs frequency

Figure S77 β-relaxation processes in PNBE-4: (a) isothermal plot of imaginary part $\varepsilon^{\prime \prime}$ of the complex dielectric permittivity versus frequency (b) Arrhenius plots of corresponding relaxation times obtained from Havriliak-Negami (HN)-fit versus inverse of temperature. The experimental data are represented by scattered dots and the fit functions are represented by shortdashed lines.

Figure $\mathbf{S 7 8} \alpha$-relaxation processes in PNBE-4: (a) isothermal plot of imaginary part $\varepsilon^{\prime \prime}$ of the complex dielectric permittivity versus frequency (b) Vogel-Fulcher-Tammann (VFT) plot of corresponding relaxation times obtained from Havriliak-Negami (HN)-fit versus the inverse of temperature. The experimental data are represented by scattered dots and the fit functions are represented by short-dashed lines.

Figure S79 Isothermal dielectric response of PNBE-5; (a) real permittivity, ε^{\prime}; (b) tangent loss Tan δ; of the complex dielectric function vs frequency

Figure S80 β-relaxation processes in PNBE-5: (a) isothermal plot of imaginary part $\varepsilon^{\prime \prime}$ of the complex dielectric permittivity versus frequency (b) Arrhenius plots of corresponding relaxation times obtained from Havriliak-Negami (HN)-fit versus inverse of temperature. The experimental data are represented by scattered dots and the fit functions are represented by shortdashed lines.

Figure S81 Isothermal dielectric response of PNBE-6; (a) real permittivity, ε^{\prime}; (b) tangent loss Tan δ; of the complex dielectric function vs frequency

Figure $\mathbf{S 8 2} \beta$-relaxation processes in PNBE-6: (a) isothermal plot of imaginary part $\varepsilon^{\prime \prime}$ of the complex dielectric permittivity versus frequency (b) Arrhenius plots of corresponding relaxation times obtained from Havriliak-Negami (HN)-fit versus inverse of temperature. The experimental data are represented by scattered dots and the fit functions are represented by shortdashed lines.

Dipole moments of monomers

NBE-X solutions of different concentrations were prepared by dissolving in chloroform. Dilute solutions of NBE-X were used to avoid antiparallel orientation of dipoles. Dielectric measurements on the solutions were performed using a high-resolution ALPHA analyzer (Novocontrol, Montabaur, Germany) using a liquid parallel plate sample cell BDS 1308 to avoid errors related to solvent evaporation during measurement. The dielectric permittivity ε^{\prime} was recorded at a frequency of $10^{5} \mathrm{~Hz}$ at ambient temperature. The liquid cell BDS 1308 was calibrated using chloroform.

The dipole moments of NBE-X were experimentally estimated according to the HedestrandGuggenheim - Smith equation (Eq 1) and the modified Onsager equation according to Böttcher (Eq 2):

$$
\begin{align*}
\mu_{2}^{2}= & \frac{27 \cdot M_{2} \cdot k_{B} \cdot T}{4 \pi \cdot \rho_{1} \cdot\left(\varepsilon_{1}+2\right)^{2} \cdot N_{A}} \cdot\left(\frac{\partial \varepsilon_{12}}{\partial x_{2}}-\left(n_{2}^{2}-n_{1}^{2}\right)\right) \tag{Eq1}\\
\varepsilon_{12}= & 1+\frac{4 \pi}{3} \frac{\varepsilon_{12}\left(2 \varepsilon_{12}+1\right)\left(n_{1}^{2}+2\right)^{2}}{3\left(2 \varepsilon_{12}+n_{1}^{2}\right)^{2}} \frac{\mu_{1}^{2}}{k_{B} T} N_{1}+\frac{4 \pi}{3} \frac{\varepsilon_{12}\left(2 \varepsilon_{12}+1\right)\left(n_{2}^{2}+2\right)^{2}}{3\left(2 \varepsilon_{12}+n_{2}^{2}\right)^{2}} \frac{\mu_{2}^{2}}{k_{B} T} N_{2} \\
& +3 \frac{N_{1}}{N_{A}} R_{1} \frac{\varepsilon_{12}\left(n_{1}^{2}+2\right)}{2 \varepsilon_{12}+n_{1}^{2}}+3 \frac{N_{2}}{N_{A}} R_{2} \frac{\varepsilon_{12}\left(n_{2}^{2}+2\right)}{2 \varepsilon_{12}+n_{2}^{2}} \tag{Eq2}
\end{align*}
$$

In the above equations,

μ_{1}	dipole moment of the solvent
μ_{2}	dipole moment of NBE-X monomer
M_{2}	molar mass of NBE-X monomer
N_{A}	Avogadro's constant
k_{B}	Boltzmann's constant
T	Temperature
ρ_{1}	density of the solvent ε_{1}
dielectric permittivity of the solvent	
ε_{12}	dielectric permittivity of the solution x_{2}
n_{1}	molar fraction of NBE-X monomer n_{2}
N_{i}	refractive index of the solvent
number density of dipoles expressed as $N_{i}=\frac{\rho_{i}}{M_{i}} N_{A}$	
R_{i}	molecular refraction in the limit of infinite wavelength expressed as $R_{i}=\frac{M_{i}}{\rho_{i}} \frac{\left(n_{i}^{2}-1\right)}{\left(n_{i}^{2}+2\right)}$

Appendices

Sample Weight: 17.526 mg

Sample Weight: 17.766 mg

Sample Weight: 16.168 mg

Sample Weight: 9.736 mg

 2) Cool from $150.00^{\circ} \mathrm{C}$ to $0.00^{\circ} \mathrm{C}$ at $20.00^{\circ} \mathrm{C} / \mathrm{min}$
3) Hold for $3.0 \min$ at $0.00^{\circ} \mathrm{C}$. $20.00^{\circ} \mathrm{C} / \mathrm{min}$

Sample Weight: 13.672 mg

Sample Weight: 8.328 mg


```
Operator ID: 
Sample Weight: 12.060 mg
```


Sample Weight: 8.786 mg

Sample Weight: 8.220 mg


```
Sample ID: PNBE-5 200
Sample Weight: 8.594 mg
```



```
Sample ID: PNBE-5 400
Sample Weight: 11.710 mg
```



```
Sample ID: PNBE-6 400
Sample Weight: 10.556 mg
```



```
Sample ID: PNBE-6 800
Sample Weight: 9.226 mg
```


