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Natural aggregates such as gravel are used in many construction applications for which porous structures are
needed, for example to allowwater drainage. However, the range of attainable porosities is limited due to the ir-
regular shapes of natural aggregates. Here we investigate artificial aggregates of engineered shapes, which allow
structures with porosities exceeding 0.7. In this study packings of a variety of artificial aggregate shapes are ex-
aminedby both numerical and experimental techniques.We can establish a correlation between the porosity of a
packing and the sphericity of the aggregates. Furthermore, we confirm that the Carman-Kozeny correlation can
be used to predict accurately the permeability of a packing for a wide range of porosities (0.33–0.78). Establish-
ment of this basic relationship between the porosity and permeability of a packing is critical for the design of ar-
tificial aggregates for novel applications such as energy harvesting from pavements.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Aggregates in the form of sand, gravel or crushed rock are the basis
of many construction and building materials such as concrete and as-
phalt in which the aggregates are compounded with a binder. Other
construction applications, such as subsurface drainage systems employ
unbound aggregates which are poured or mechanically compacted to
form rigid structures [1], so-called aggregate packings [2,3]. One specific
application of a bound permeable material is porous asphalt concrete.
However, due to the relatively low open porosity ε of 0.15 < ε < 0.25
and the relatively small size of its pores, porous asphalt for road pave-
ments is prone to clogging [4–6]. Increasing the porosity of asphalt con-
crete would not only reduce the clogging problem but also enable
applications such as energy harvesting from roads. To harvest energy
from pavements, one approach proposes to embed air filled tubes into
the pavement [7]. With increasing pavement temperature, the air ex-
pands and drives a turbine to generate electricity. A positive side effect
of this technology is the alleviation of urban heat islands in modern cit-
ies, through cooling of the pavement [8–10]. However, introducing
tubes into the asphalt pavement complicates the recycling of the
pavement material. A pavement material that is highly porous and
. This is an open access article under
permeable to air and water but does not contain foreign objects such
as tubes could enable energy harvestingwhile retaining its recyclability.
Another drawback of porous asphalt with conventional aggregates is
that the pavement durability decreases with increasing porosity [11].
The durability could potentially be improved by engineered interlocking
aggregates that form a rigid yet porous packing.

An associated challenge is the accurate determination of the
water permeability of construction materials that are composed of
packings of aggregates. Studies correlating the packing porosity
and permeability are thus far limited by the narrow range of poros-
ities that can be achieved with conventional aggregates. The earliest
method to determine the permeability of an aggregate packing was
proposed by Darcy [12] in 1856 by relating the water flux q through

a packing with its permeability k and the pressure gradient dp
dx over

the packing, viz.:

q ¼ −
k

νwρw

dp
dx

ð1Þ

where νw and ρw are the kinematic viscosity and density of water.
However, measuring simultaneously the flux and pressure drop can
be challenging. For Reynolds numbers (Re) < 1, an empirical
correlation to determine the permeability of a packing based on ε and
the aggregate sphericity Ψ and diameter dp, was proposed by Kozeny
in 1927 [13], and later refined by Carman [14,15]:
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k ¼ Ψ2dp
2ε3

150 1−εð Þ2
ð2Þ

The original equation of Kozeny incorporates tortuosity τ, a parame-
ter that gives the mean path length of a fluid particle when percolating
through the packing. In the revised version of Carman, tortuosity is in-
corporated in the scaling constant (150) using experimental data. To
this day, the validity of the Carman-Kozeny correlation (Eq. (2)) has
been confirmed by a vast number of studies [16–19]. However, the
physical packings studied in these works usually covered only a small
range of ε, e.g. for pervious concrete [19] and fiber mats [17] porosities
in the range of, respectively, 0.1 < ε < 0.35 and 0.5 < ε < 0.8 were typ-
ically encountered. Other studies have investigated wider ranges of ε,
but considered non-physical packings such as randomly placed obsta-
cles [16,20], or fractal geometries [18]. A critical evaluation of the valid-
ity of the Carman-Kozeny correlation over a wide range of ε for physical
packings is missing thus far.

Abovewe have outlined two current challenges: (i) the requirement
of aggregate packings to accommodate a large porosity to enable novel
applications such as energy harvesting from pavements, without reduc-
ing their durability, and (ii) the open validation of the Carman-Kozeny
correlation for physical packings covering a wide range of ε. Both chal-
lenges persist because current methods for aggregate production yield
irregularly shaped aggregates, which in the case of crushed rock and
gravel are approximately cubical [61]. The use of irregularly, cubically,
shaped aggregates, however, limits the range of attainable packing po-
rosities, as cubes form relatively dense packings compared to other
shapes [22–24]. Despite the practical importance of aggregates as con-
struction materials, they are commonly used in their “natural state”
and their shape is not specifically designed to optimize the aggregate
packing for certain properties. Yet, recently a new type of artificial ag-
gregate with engineered shapes, such as stars, tetrapods, and dolosse
has been proposed [24–26]. Indeed such shapes have been also used
in marine engineering to construct breakwaters, since shapes such as
tetrapods and dolosse have been shown to form porous yet stable pack-
ings [27]. Advances in 3D printing have unlocked themanufacturing ca-
pabilities of such artificial aggregates using polymers [25], or even
ceramics [28]. Additionally, aggregate shapes can be designed to be geo-
metrically interlocking, enabling freestanding loadbearing structures of
unbound aggregates [26,29–31]. This loadbearing property makes the
construction of unbound building facades possible, for example in
urban canyons, allowing the porosity to be optimized for noise absorp-
tion in addition to themitigation of heat islands as discussed above [32].
Simultaneously, however, the interlocking property reduces the
compactibility and workability of the material, as evidenced by an in-
crease of the shear strength with decreasing aggregate sphericity [33].

Here we investigate artificial aggregates of different shapes and
quantify their packing properties such as porosity, tortuosity, and
water permeability, and in doing so assess the validity of the Carman-
Kozeny correlation for physical packings covering a wide range of po-
rosities for Re = 0.56. Packings are constructed both experimentally
from model polymer aggregates in an unbound configuration and nu-
merically using the discrete element method (DEM). Subsequently,
the permeability is computed numerically using the lattice Boltzmann
method (LBM) and validated experimentally using the falling pressure
head method.

2. Materials and methods

Fig. 1 gives an overview of thematerials andmethods employed in
this work which are divided into a numerical and experimental part.
In the numerical part, the DEM is used to create packings composed of
three different types of non-spherical aggregate shapes, viz. tetra-
pods, dolosse and tetrahedra (see Fig. 2). Since the full 3D geometri-
cal information is known for the packings generated with the DEM,
2

the porosity of these packings can be determined with high accuracy.
Computing the tortuosity requires an intermediate step in which
the 3D geometric information is converted into binary data sets,
that distinguish between aggregate matter and voids and are stored
as images that slice the packing horizontally. To compute the per-
meability of water in a given numerical packing, the geometrical
information is converted into a stereolithographic (STL) file which re-
quires triangular tessellation of the aggregate surfaces. Subsequently,
the STL file is used to construct the geometry to compute the perme-
ability via LBM simulations.

In the experimental part of thiswork, aggregates of two different tet-
rapod shapes are constructed from acrylonitrile butadiene styrene
(ABS) polymer via injection molding. These aggregates are poured
into a container to construct packings, which are then used to deter-
mine the packing porosity from the weight of water filling the voids.
The packings are further used to determine their water permeability
via the falling pressure head method. One of the constructed packings,
i.e. using tetrapods with sphericity Ψ = 0.53, is imaged using X-ray
computed tomography (CT) to obtain identical, full 3D geometry infor-
mation as from the DEM simulations. This experimentally obtained 3D
geometry of the packing is used to compute the porosity, tortuosity
and permeability of the packing utilizing the same numerical methods
as for the DEM packings.

2.1. Numerical materials and methods

2.1.1. Aggregate shapes
The aggregate shapes studied here are constructed by intersecting

identical spherocylinders, i.e. cylinders with hemispherically capped
ends. In doing so, three different types of artificial aggregate shapes
are constructed, viz. tetrapods, dolosse and tetrahedra. The aggregate
shapes are visualized in Fig. 2.

A tetrapod is constructed from four spherocylinders, which extend
from the center of gravity of a regular tetrahedron to the four vertices
of the tetrahedron. The hemispherical endcaps of the spherocylinders
in the center of gravity are congruent with a sphere around the center
of gravity of the tetrahedron.

Dolosse are constructed by combining three spherocylinders such
that they form a H. The base point of each hemispherical endcap of
the central spherocylinder lies exactly at the center of the central axis
of an outer spherocylinder. To complete a dolos, one of the outer
spherocylinders is then rotated by 90° to be perpendicular to the
other two spherocylinders.

Tetrahedra are constructed from six spherocylinders each lying on
one of the six edges of a tetrahedron. The hemispherical endcaps of
the spherocylinders are congruent in the four vertices of the tetrahe-
dron.

For each type of aggregate, a variety of aggregates of varying spheric-
ity (Ψ) are constructed by changing the length and diameter of the con-
stituent spherocylinders. Here the sphericity is defined as the surface
area of a sphere with the same volume as the non-spherical aggregate
divided by the surface area of the non-spherical aggregate. The reader
is referred to the supplemental material (Section A and Fig. S2) for a
visualization of the sphericity calculation and additional information.
All aggregates considered in this study have the same volume of
733 mm3. The diameters and aspect ratios of all of the simulated aggre-
gate shapes can be found in the supplemental material (Section A). An
infinite number of aggregate shapes could be constructed by varying
the diameters and aspect ratios of the intersecting spherocylinders,
which would lead to arbitrarily complex packings. The reason for
using identical spherocylinders to construct an aggregate is to reduce
complexity. For the same reason, packings are created by using only ag-
gregates of identical type and sphericity.

In addition to sphericity (Ψ), the shape of the aggregates is also de-
scribed quantitatively by their convexity (Ω). The convexity is defined
as the volume of the aggregate divided by the volume of the convex



Fig. 1. Overview of the materials and methods applied in the numerical and experimental parts.
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hull enveloping the aggregate. A description of the convex hull is given
in the supplemental material (Section B and Fig. S3).

2.1.2. Discrete element method (DEM)
The DEM was originally developed by Cundall & Strack [34] for

spherical particles, and has been extended to model non-spherical par-
ticles [35–38]. In this work, an in-house DEM framework is used which
models non-convex aggregates by combining multiple intersecting
spherocylinders to form the aggregates shown in Fig. 2.

The DEM treats each aggregate as a discrete element moving freely
in space. In the DEM time is advanced by performing the following op-
erations in a timestep: (i) based on the knownposition of the particles, x
(t), determine whether contacts exist, (ii) calculate the contact forces,
(iii) determine the acceleration acting on the individual aggregates via
Newton's second law of motion and (iv) update the new position of
the aggregated, x(t + Δt) through Eqs. (3) and (4).

The velocity vi of an aggregate i at timestep t is calculated through a
third-order Adams-Bashforth scheme:

vi tð Þ ¼ vi t−Δtð Þ þ Δt
12

23ai t−Δtð Þ−16ai t−2Δtð Þ þ 5ai t−3Δtð Þ½ � ð3Þ
3

where ai(t) is the acceleration of aggregate i. The new position xi of the
aggregate is then obtained via:

xi tð Þ ¼ xi t−Δtð Þ þ Δt
12

23vi t−Δtð Þ−16vi t−2Δtð Þ þ 5vi t−3Δtð Þ½ � ð4Þ

Modelling non-spherical aggregates requires information on the ag-
gregate orientation, angular velocity ω(t), and angular momentum J(t).
The angular momentum of aggregate i is found by integrating the net
torqueM acting on the aggregate:

J i tð Þ ¼ J i t−Δtð Þ þ Δt
12

23Mi t−Δtð Þ−16Mi t−2Δtð Þ þ 5Mi t−3Δtð Þ½ � ð5Þ

To obtain the angular velocity ωi the angular momentum is divided
by the moment of inertia matrix I of the aggregate:

ωi tð Þ ¼ Ji tð Þ
Ii

¼ J i tð ÞIi−1 ð6Þ



Fig. 2. The different artificial aggregate types and aggregate sphericities that are
investigated in this work.

Table 1
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The orientation of the aggregate can be described by a rotation ma-
trix based on Euler angles. However, this rotation matrix has the disad-
vantage of having singularities. To circumvent this limitation, the DEM
commonly employs quaternions [35]. The rotation matrix which de-
scribes the aggregate orientation can be calculated from the quaternion
q, while the quaternion is calculated for each timestep by integration:

qi tð Þ ¼ qi t−Δtð Þ þ Δt
12

23q
:

i t−Δtð Þ−16q
:

i t−2Δtð Þ þ 5q
:

i t−3Δtð Þ� � ð7Þ

with

q
:

i,1 tð Þ
q
:

i,2 tð Þ
q
:

i,3 tð Þ
q
:

i,4 tð Þ

2
66664

3
77775 ¼ 1

2

qi,1 tð Þ −qi,2 tð Þ −qi,3 tð Þ −qi,4 tð Þ
qi,2 tð Þ qi,1 tð Þ −qi,4 tð Þ qi,3 tð Þ
qi,3 tð Þ qi,4 tð Þ qi,1 tð Þ −qi,2 tð Þ
qi,4 tð Þ −qi,3 tð Þ qi,2 tð Þ qi,1 tð Þ

2
6664

3
7775

0
ωi,x tð Þ
ωi,y tð Þ
ωi,z tð Þ

2
6664

3
7775 ð8Þ

Once the new positions, orientations, and (angular) velocities of all
aggregates have been updated a new contact search starts.

Detecting contacts between spherocylinders requires the calcu-
lation of the distance between the central axes of neighboring
spherocylinder (shown in red in Fig. 3). If the distance between
the central axes of two spherocylinders is smaller than two times
the spherocylinder radius r the aggregates are in contact. In the
present DEM framework, finding the distance between two line seg-
ments (i.e. central axes) is solved using the algorithm proposed by
Lumelsky [39]. The contact point between two spherocylinders is
the middle point of the shortest line between the central axes of
two contacting spherocylinders (see green line in Fig. 3a). The
Fig. 3. Sketch depicting two contacting spherocylinders. (a) Oblique contact. (b) Parallel
contact.

4

contact forces (blue arrows in Fig. 3) act at the contact point be-
tween two spherocylinders. If the central axes of two contacting
spherocylinders share a parallel segment, as seen in Fig. 3b, there
is no single shortest line between the two central axes. In this case
the contact point is the middle point of the line which is in the cen-
ter of the parallel segment.

The contact force acting at the contact point can be decomposed into
a normal contact force Fn and, assuming a non-zero friction coefficient, a
tangential contact force Ft. Both contact forces are modelled by a linear
spring dashpot which yields a constant coefficient of restitution. The
contact force in the normal direction between aggregate i and j is
given as:

Fn ¼ max 0,
sn
2
δn−ηn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mijsn

q
vn

� �
ð9Þ

where sn is the normal stiffness of the aggregate, δn is the overlap
between the contacting spherocylinders, ηn is the normal damping
factor, vn is the normal component of the relative velocity between
the aggregates at the contact point and mij is the effective inertial
mass of aggregates i and j which is given by:

mij ¼
mimj

mi þmj
ð10Þ

In the tangential direction the contact force is modelled following
Coulomb's law of friction:

Ft ¼ min μ
sn
2
δn,

st
2
δt−ηt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mijst

q
vt

� �
ð11Þ

where μ is the coefficient of friction, ηt is the tangential damping factor,
st is the tangential stiffness and vt is the tangential component of the
relative velocity between the aggregates at the point of contact. The
accumulated tangential displacement at the contact point is calculated
as δt = ∫ vt dt.

Once all contact forces acting on a given aggregate i have been calcu-
lated they are summed up and the resulting force Fsum,i allows to
calculate the acceleration acting on aggregate i:

ai t þ Δtð Þ ¼ Fsum,i

mi
ð12Þ

For non-spherical aggregates contact forces also induce a torqueMi:

Mi t þ Δtð Þ ¼ ∑crc � Fn,c þ Ft,cð Þ ð13Þ

where the index c loops over all contacts of aggregate i and rc is the
vector pointing from the center of gravity of the aggregate to the
contact point.

The values of the parameters used in the DEM simulations were
chosen to model the properties of ABS aggregates [40]. The param-
eters are listed in Table 1. It is worth noting that the DEM values
chosen to describe the stiffness of the aggregates are commonly
much lower than the physical values to allow for larger time steps
Parameters used for DEM simulations.

Parameter Symbol Value

Density ρ 1000 kg/m3

Normal stiffness sn 10′000 N/m
Tangential stiffness st 5′000 N/m
Coefficient of restitution e 0.3
Normal damping factor ηn 0.35
Tangential damping factor ηt 0.3
Coefficient of friction μ 0.35
Wall friction coefficient μw 0.1
Time step Δt 10−5 s



Fig. 4. (a) Horizontal slice through a packing of tetrapods withΨ = 0.53. (b) Horizontal
slice that is located 0.2 mm below the slice shown in (a). (c) Illustration of the
construction of a tortuous path through the packing.
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as the time step size is typically ~20 times the collision time tcol
which is given by [41]:

tcol ¼
πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sn
mij

1−ηn
2� �r ð14Þ

In the present work, as it has been shown that the magnitude of the
stiffness has negligible effects on the packing properties, a value of
10,000 N/m was chosen for the normal stiffness, which allows for a Δt
of 10−5 s, [42]. The value for the tangential stiffness was chosen as
half the normal stiffness in accordancewith previous studies [31,36,43].

All aggregate packings are modelled in a cylindrical simulation do-
main with a diameter of 100 mm and a height of 700 mm, which
matches the acrylic cylinder used for the physical experiments. The
DEM domain is filled by creating aggregates at a height of 600 mm in
batches of 3 by 3 aggregates. Between each aggregate, there is a gap of
the same size as the diameter of the constituent spherocylinders of
the aggregate. Additionally, each aggregate is given a random orienta-
tion and a random initial velocity in both horizontal directions of vini
(−0.5 m/s < vini < 0.5 m/s). Immediately upon their creation, the
aggregates fall to the bottom of the cylinder domain and after 0.11 s a
new 3 by 3 batch of aggregates is created. This step is repeated until a
sufficient number of aggregates has been created to yield a packing
height of at least 350 mm. The number of aggregates used to model
each packing is given in the supplemental material (Section A). Once
all aggregates are created, the packing obtains its equilibrium position
within 1 s and the simulation is stopped.

The DEM data is exported as a stack of black and white (binary) im-
ages that represent horizontal slices through the packing. These slices
are rendered using the ray tracing software POV-Ray [44]. An extended
description of the rendering of the slices is given in the supplemental
material (Section C). The porosity ε of the DEM packings is determined
by:

ε ¼ 1−Vagg

Vdomain
ð15Þ

where Vagg is the total volume of all aggregates and Vdomain is the
volume of the cylindrical domain, i.e. from the bottom to the highest
point of the aggregate packing. For each type of aggregate, a fourth-
order polynomial was fitted to the ε versus Ψ data points to yield an
ε-Ψ relationship which can be used to evaluate the Carman-Kozeny
equation. To construct the fluid domain for the LBM simulations, the
geometrical information of the DEM packings is converted into STL files.
An explanation of this conversion process is given in the supplemental
material (Section D).

2.1.3. Computing the tortuosity of a packing
The tortuosity is defined as the length of the shortest path through

the pore space of a packing divided by the length of a straight line
through the packing. In the presentwork the goal is to compute the tor-
tuosity solely based on geometric information of the packing, i.e. the so-
called geometric tortuosity [45]. Alternative methods to calculate the
tortuosity, e.g. the hydraulic tortuosity which can be computed e.g.
through the method proposed by Duda et al. [46], require also informa-
tion on thefluid velocity in the porousmedium. A separate investigation
described in section E of the supplemental material shows that the
method by Duda et al. [46] is a less suitable measure of the tortuosity
of pavements constructed of artificial aggregates compared to the geo-
metric tortuosity. Hence, a method to calculate the geometric tortuosity
of packings was developed in this work. This method relies on the bi-
nary horizontal slices through the packing. Neighboring slices have a
vertical separation of 0.2 mm. For all DEM packings investigated, the
top and bottom 30 mm are ignored for the tortuosity analysis due to
wall and free-surface effects.
5

The tortuosity calculation starts with the top slice of the central sec-
tion of the packing. A grid of dots spaced 5mm is drawn on this slice, see
black dots in Fig. 4. These black dots are drawn in the same positions on
all slices. If a black dot lies inside an aggregate, the closest point not lying
inside the aggregate is found (blue dots in Fig. 4). For eachblue dot a line
is drawn connecting the blue dot and the associated black dot. The fol-
lowing restriction for finding the blue dots is applied: If the angle be-
tween the two lines connecting the black dot with its associated blue
dots on two subsequent slices is larger than 45° the blue dot on the sec-
ond slice is rejected. Instead, a new blue dot is found which is closest to
the center of the line connecting the black dot and the blue dot on the
first of the two neighboring slices. This scheme is illustrated in Fig. 4a
where one of the black dots has been highlighted in yellow. The closest
surface point to the yellow dot in the first slice, Fig. 4a, is the red dot. In
the following slice, Fig. 4b, the closest surface point to the yellow dot is
the green dot. The red dot from slice 4a is superimposed on the slice in
Fig. 4b for demonstration. Since the angle between the line connecting
the red and yellow dots and the line connecting the green and yellow
dots is larger than 45°, the green dot will be rejected. Instead, a new
closest surface point (purple dot) is found for the center of the line
connecting the red and yellow dots. In the aggregate packings investi-
gated here less than 0.01% of the dots were rejected. Furthermore, vary-
ing the rejection angle between 0° and 90° has no measurable effect on
the calculated tortuosity values. However, changing the vertical resolu-
tion, i.e. the distance between slices could affect the determined tortu-
osity values.

Once all slices have been processed, a tortuous path through the
packing is obtained by connecting each black dot with the correspond-
ing black dot on the subsequent slice or with the corresponding closest
blue dot if the black dot lies inside an aggregate. Such a tortuous path is
sketched in Fig. 4c. The tortuosity of one path is calculated by dividing
the length of the path by the length of a straight line connecting the
start and end of the path. To calculate the tortuosity of an entire packing
the tortuosity of all paths for the given packing is averaged. Typically,
208 paths per packing are calculated. When varying the number of
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paths from 80 to 3500 the computed tortuosity values fluctuate by only
±2%.

2.1.4. Lattice Boltzmann method (LBM)
Owing to its high versatility for complex boundary systems, the LBM

method is used to calculate the flow field in the aggregate packings.
Here we use the open source LBM framework Palabos [45]. To this end
the STL files are imported and the surface of the aggregates is modelled
by bounce-back walls. At the inlet a Poiseuille flow profile is prescribed
with an average velocity u = 0.05 mm/s. This ensures a low Reynolds
number laminar flow. Unfortunately, high Reynolds number flows, as
encountered in the falling head experiments, cannot be modelled due
to stability limitations of the LBM approach. Nonetheless, it is possible
to compare the results of the falling head experiments and the
simulations, provided that the experiments are evaluated with the
Darcy-Forchheimer equation that is appropriate for turbulent flows
(Eq. (18)), while the simulations are evaluated with the Darcy equation
for laminar flows (Eq. (17)). An additional investigation, detailed in sec-
tion F of the supplemental material, revealed that the permeability
values obtained through LBM simulations do not varywith the Reynolds
number.

The outlet is modelled with a Neumann boundary condition, i.e. a
zero-velocity gradient and a constant pressure equal to the ambient
pressure. The modelled fluid is water with a density (ρw) of 1000 kg/
m3 and a kinematic viscosity (νw) of 10−6 m2/s. The LBM solver uses
the incompressible Bhatnagar-Gross-Krook (BGK) model [46]. The
non-dimensional lattice viscosity νlat is varied between 0.01 and 0.05
to yield optimal convergence. The time step size dt and the lattice
viscosity are related through:

dt ¼ νlat

νwdx
2 ð16Þ

where dx is the lattice spacing. The fluid space is discretized using a
D3Q19 lattice with equally spaced nodes in all three directions, i.e.
dx= dy= dz= 133.33 μm, yielding up to 540million nodes per simu-
lation, with computations running on 420 CPU cores for approximately
12 h.

Once the LBM simulations have reached a steady state, the perme-
ability k is determined by applying Darcy's law:

k ¼ Lνwρwu
ΔP

ð17Þ

where L is the height of the packing and ΔP is the pressure drop be-
tween the inlet and outlet.
Fig. 5. Physical tetrapods of different sphericities packed into an acrylic pipewith 100mm
diameter, the sphericities of the tetrapods are: (a) Ψ = 0.87 and (b) Ψ = 0.53.
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2.2. Experimental materials and methods

2.2.1. Polymer aggregates
To verify the numerical results experimentally, physical tetrapods of

two different sphericities (Ψ = 0.87 and Ψ = 0.53) are used. These
physical aggregates are manufactured from an ABS polymer via injec-
tion molding with identical geometries as the numerical aggregates.
Images of the physical aggregates can be found in Fig. 5. These two tet-
rapod shapes are chosen to cover thewide range of tetrapod sphericities
that were investigated numerically (0.99 ≤Ψ ≤ 0.47). Since initial com-
parisons of the experimentally and numerically determined porosity
showed good agreement it was deemed unnecessary to manufacture
additional shapes for validation.

2.2.2. Volumetric porosity determination
To create the packings, the injection molded aggregates are poured

into an acrylic cylinder of inner diameter 100 mm and a height of
140 mm. While pouring, it is ensured that the resulting packing is ran-
dom, for example by not vibrating the packing, which could reduce ran-
domness by aligning aggregates and potentially increasing the packings
load-bearing capacity. Ensuring randomness can lead to large voids in
packings of low sphericity (e.g. tetrapodswithΨ=0.53), due to arching
of the aggregates. Such large voids are tolerated and are considered part
of the statistical variations in the packings. The porosity of these pack-
ings ismeasured by filling the interstitial void space between the aggre-
gates with water such that the aggregates are fully submerged. The
porosity is given by the weight of the water divided by the density of
water and the volume of the pipe containing the aggregates. Since the
aggregates are buoyant in water the packing is weighed down by a
wire mesh placed on top.

2.2.3. Permeability using the falling head method
The permeability of the packings is determined using the so-called

falling head method, a schematic of the experimental setup is shown
in Fig. 6. An acrylic cylinder with 100 mm inner diameter and a height
of 1.8 m is covered at the bottom with a wire mesh with a mesh size
of 8mm. Aggregates are poured onto this wire mesh to create a packing
with a height of 120 mm. For aggregates that are small enough to fall
Fig. 6. Schematic of the setup for the falling head experiments.



Fig. 7. Convexity of the aggregates studied here as function of the sphericity.
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through this wiremesh a second layer of wiremesh is added, rotated by
45°. The packing is kept in place against buoyance by a weighted wire
mesh placed on top, which also prevents a rearrangement of the aggre-
gates due to turbulences during an experiment. For a typical experiment
a plate is pushed against the bottom of the cylinder to seal it, and the
cylinder is filled with water to a height of 1.6 m above the sample.
While filling the cylinder it was ensured that the water jet does not im-
pinge on the packing, to prevent any disturbance of the packing. If a re-
arrangement of the aggregates is observed while filling the cylinder
with water or during an experiment, the experiment is repeated with
a freshly prepared packing. An experiment is started by removing the
sealing-plate abruptly. The water level is recorded using a Canon EOS
77D camera at 50 frames per second. For the evaluation of the perme-
ability thewater level decrease from1.6m to 1.3m is disregarded to en-
sure the water column is not subject to inertial effects. The recording is
stopped once the water level drops to 0.1 m above the packing sample.
Hence, the water level from 1.3 m to 0.1 m above the sample is used to
determine the permeability of the packing.

A second order polynomial is fitted to the water level, h(t), versus
timedata, resulting in a smooth curve for h(t)which aids in determining
the permeability of the packing via the Darcy-Forchheimer equation for
turbulent flows through porous media, viz.

−
dp
dx

¼ −
ρwg h tð Þ þ Lð Þ

L
¼ νwρw

k
dh
dt

þ ρw

kin

dh
dt

				
				 dhdt ð18Þ

Here, ∂p∂x is the pressure drop across the height of the sample Lwhich
is equal to the hydrostatic pressure of the water column, ρw is the
density of water, νw is the kinematic viscosity of water and g is the
acceleration due to gravity. As the experiments are perfomed at room
temperature the values at 20 °C are used for ρw and νw, varying these
values between 5 °C and 40 °C has negligible effects on the results.
Using the Darcy-Forchheimer equation (Eq. (18) for turbulent flow in-
stead of the Darcy equation (Eq. (17)) for laminar flow (Re < 1) is nec-
essary since high flow velocities with Re > 9000 are observed in the
experiments. The two unknowns to be determined in Eq. (18) are k,
i.e. the permeability of the aggregate packing, and the so-called inertial
permeability kin. The inertial permeability captures the pressure loss
due to turbulence in the flow through the packing. To determine k and
kin, Eq. (18) is evaluated at two different times allowing to solve the
following system of linear equations
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yielding in turn k and kin that, however, vary to some extent with h(t).
Since k and kin are constants describing the aggregate packing and
hence ought to be independent of h(t) the following procedure was
applied. First an average value of kin is calculated using the initially
obtained values, yielding an almost constant value of k when
reevaluating Eq. (19) with a fixed kin. In a second step, the values of
k are averaged over time. Additional information on the fitting
procedure used to calculate the final values of k is found in section G
of the supplemental material. In total six different aggregate packings
were investigated, i.e. three packings using tetrapods of Ψ = 0.87 and
three packings of tetrapods of Ψ = 0.53. For each of these packings
three h(t)-curves were recorded.

2.2.4. X-ray computed tomography
The full, 3D structure of the physical packings of tetrapods withΨ=

0.53 (see Fig. 2 and Fig. 5b) is recorded using X-ray computed tomogra-
phy (CT). Due to the effort required to prepare a CT it was decided not
to image also the second experimental tetrapod type (Ψ = 0.87).
7

A packing of height 400 mm was poured into an acrylic cylinder
(100mm inner diameter), ensuring randomness andmaking this pack-
ing equal to the experimental packings used for theporosity and perme-
ability investigations. The different height of the packingused for CT and
other experimental packings does not affect the packing structure,
which was confirmed by numerical simulations. From the packing of
400 mm height a central section of 150 mm height (120mm diameter)
was recorded. The height of this central section is limited by the field of
view of the X-ray setup. The X-ray CT setup consisted of an X-ray source
(Viscom XT9160) operated at 70 kV and 140 μA, a digital detector with
2048 × 2048 pixels (XRD 1621 CN3 ES, Perkin Elmer) and a CsI(Tl) scin-
tillator yielding a high spatial resolution of 66.41 × 66.41 × 66.41 μm3

per voxel.
The CT data is post-processed in multiple steps using the software

Avizo v9.7 (Thermo Fisher Scientific). In the first step the grayscale
data is thresholded to separate voxels that contain polymer aggregates
from the voxels containing air. The thresholding value was found to
have a negligible influence on the total aggregate volume in the CT
data due to the large difference in the X-ray absorption between the
ABS polymer and air, consequently a thresholding value of 0.2 was cho-
sen (on a range from 0 to 1). The injection molding process produces
holes within the aggregates that arisewhen ABS shrinks during cooling.
In a post-processing step these holes are filled digitally such that they do
not contribute to the porosity of the packings. Subsequently, a water-
shedding algorithm is used to identify the individual aggregates in the
CT data. At the top and bottom of the recorded 150 mm high section
some aggregates are incomplete as they are not fully inside the imaged
section. Digital sieving is used to remove incomplete aggregates such
that only complete aggregates are used for further analysis.

To be able to use the CT data for LBM simulations the post-processed
data is exported as a stereolithography (STL) file using Avizo. The STL
file describes the surface of the aggregates through triangular facets.
The CT data is also exported as a stack of binary images that represent
horizontal slices (thickness 0.2 mm) through the packing. These binary
images allow to distinguish pixels that are aggregate matter or void. An
example of such a binary slice is shown in the supplemental material (-
Section C, Fig. S4b).

3. Results and discussion

3.1. Convexity

Fig. 7 plots the convexity (Ω) as a function of sphericity. For all three
aggregate shapes studied here,Ω decreasesmonotonically with decreas-
ing Ψ. For tetrapods and dolosse the slope of the Ω-Ψ-curves increases



Fig. 8. Packing porosity ε as a function of the sphericity of the packing-forming aggregates
Ψ. Each packing was constructed of aggregates of a single shape.
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forΨ < 0.85. The reason for this change in slope is that forΨ > 0.85 the
cylindrical section of one (or more) of the constituent spherocylinders is
completely or partially concealed. This can be seen for example in Fig. 2
for dolossewithΨ=0.85. Here the central spherocylinder is completely
concealed by the two outer spherocylinders. If the sphericity is
decreased, e.g. dolosse with Ψ = 0.73 (Fig. 2), the third (central)
spherocylinder becomes exposed, leading to an increasing reduction in
Ω with decreasing Ψ. For tetrahedra there is a change in the slope of
the Ω-Ψ-curve for Ψ < 0.7. The reason is similar as discussed for the
other two shapes, i.e. for tetrahedra withΨ> 0.7 parts of the cylindrical
surface of the constituent spherocylinders are concealed in the core of
the aggregate. For Ψ < 0.7 the core of the aggregate is exposed fully to
the outside and the previously concealed cylindrical surface sections
contribute to the surface area of the aggregate, hence decreasing Ω.

3.2. Porosity

Combining Darcy's law, Eq. (1), with the Carman-Kozeny equa-
tion, Eq. (2), predicts that the permeability of a packing increases
with increasing aggregate sphericity Ψ and increasing packing po-
rosity ε.

Fig. 8 plots the porosity of a packing as a function of the sphericity of
the packing-forming aggregates. The data in Fig. 8 contains both poros-
ity data from DEM simulations and porosity data obtained experimen-
tally by either volumetric methods or the analysis of X-ray CT data.
Comparing the numerical DEM data of tetrapods (blue crosses) with
the results of the experimental packing of tetrapods (green and red
crosses) shows excellent agreement, confirming that DEM is a viable
numerical approach to investigate packings of complex-shaped aggre-
gates. The excellent agreement also shows, that despite differences in
the experimental and numerical pouring protocol, similar packings are
created, because both pouring protocols ensure a high degree of
randomness. The experimental tetrapod (Ψ = 0.53) packing with an
X-ray CT determined porosity (red plus) of ε = 0.685 is lower than
the porosity derived by DEM (ε = 0.7). This is due to the fact that the
CT shows a denser-packed central section of the sample, while the
DEM packing also includes aggregates in the porosity determination
that are located at the bottom of the packing where the porosity is
higher due to wall effects. Further evidence for the predictive nature
of the DEM simulations is provided by the porosities determined for
packings of almost spherical aggregates (Ψ = 0.99) which lie in the
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range 0.368 < ε < 0.399. These porosity values are close to the estab-
lished value for a random packing of spheres of ε = 0.366 [47].

It is worthwhile tomention that for all three aggregate types there is
a minimum in the packing porosity for Ψ ≈ 0.92. Such a minimum in
the porosity of packings that are composed of slightly non-spherical
shapes, i.e. 0.99>Ψ>0.9, iswell established and has also been reported
for other particle types such as ellipsoids or spherocylinders [48–51].
Generally, for Ψ < 0.92, the porosity of a packing increases with de-
creasing sphericity. While the behavior of tetrapods and dolosse over-
laps, the porosity of packings of tetrahedra increases to a lesser extend
with decreasing sphericity. This finding shows that for non-spherical
particles, the sphericity of an aggregate is not the only parameter affect-
ing the porosity of a packing [52]. This observation is re-affirmed by
Fig. 7 which shows that the convexity of tetrahedra can differ from the
convexity of tetrapods by up to 0.47 for an equal sphericity. Neverthe-
less for Ψ < 0.92 the monotonic increase of packing porosity with de-
creasing sphericity holds for all aggregate shapes and shows that it is
possible to construct packings of very high porosity when using aggre-
gates of low sphericity, e.g. tetrapods with Ψ = 0.47 have ε = 0.78.
Packings with such high porosities have the potential to enable novel
applications such as energy harvesting from recyclable pavements.
However, with regards to novel applications it has to be considered
that variations in the sphericity of the aggregates also affects the struc-
tural properties of the aggregate packing such as stress distribution [31].
To be able to withstand the high inter-particle stresses found in pack-
ings of low sphericity aggregates requires material with sufficient
mechanical strength. Due to their convex shape, tetrahedra can with-
stand higher compressive loads compared to non-convex shapes such
as tetrapods. However, one needs to consider that tetrahedra with
Ψ < 0.5 become very slender such that their corners can penetrate
into the core of other contacting tetrahedra which would lead to inter-
locking and hence reduce theworkability of the packing. Conversely, if a
packing is required that can interlock, e.g. for freestanding structures,
shapes such as tetrapods or dolosse that have a lower convexity com-
pared to tetrahedra are beneficial, as it has been shown that packings
of aggregates with lower convexity sustain higher shear stresses [53].

In the following we will utilize the observation that by varying ag-
gregate sphericity, packings with a wide range of porosities can be con-
structed to assess the validity of the Carman-Kozeny correlation for
differently shaped aggregates and a wide range of packing porosities.

3.3. Tortuosity

Fig. 8 has demonstrated that the packing porosity depends on the
aggregate sphericity Ψ, as well as the aggregate convexity, and that ag-
gregates of different shapes but similar sphericity do not necessarily
form packings with the same porosity. However, there is a second ques-
tion to be addressed: Do packings of aggregates of different shapes but
similar sphericity form pore spaces of similar morphology? Answering
this question requires a descriptor for the morphology of the pore
space. In the following we will use the tortuosity τ as a descriptor for
morphology of the pore space. Fig. 9a plots the variation of τwith aggre-
gate sphericity Ψ for the three different aggregate shapes studied, we
observe a convex-shaped trend of τ with Ψ with a maximum in τ at
Ψ ≈ 0.92 for tetrapods and dolosse. The overall behavior of tetrahedra
is similar with a maximum in τ located atΨ = 0.81.

For tetrapods and dolosse the relationship between τ andΨ (Fig. 9a)
shows a similar trend as the relationship between ε andΨ (Fig. 8), albeit
mirrored along theΨ axis. Both ε and τ have an extremum atΨ≈ 0.92.
The tortuosity of the tetrapod packing (Ψ = 0.53) as determined by
X-ray CT is τ = 1.61, agrees well with the DEM derived tortuosity of
the same packing which is τ= 1.58. The fact that for packings of tetra-
pods and dolosse of lowΨweobtain high values of ε and low values of τ
would suggest that these packings would feature a high permeability.

Packings of tetrahedra show some differences to the tortuosity of
packings of tetrapods and dolosse, viz. the tortuosity of packings of



Fig. 9. (a) Tortuosity of a packing as a function of the sphericity of an aggregate Ψ.
(b) Tortuosity of a packing as a function of the packing porosity ε.
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tetrahedra increases for Ψ > 0.81 with increasing Ψ, but drops sharply
to τ = 2.4 at Ψ = 0.74. The reason for this drop is that at Ψ = 0.81
the inside space of the tetrahedron is closed and inaccessible from the
outside, similar to the example shown for Ψ = 0.97 in Fig. 2. The
shortest path through a packing is a curve around the (outer) surface
of the entire tetrahedron, leading to a long path length. Additionally,
closed tetrahedra tend to align face to face leaving no void space be-
tween the aggregates, increasing the path length further. However, for
Ψ ≤ 0.74 tetrahedra have an open structure, e.g. as shown for Ψ =
0.43 in Fig. 2. For such an open tetrahedron the inside of the aggregate
becomes accessible, offering a shortcut through the aggregate resulting
in turn in a shorter path through a packing. For Ψ < 0.74, τ decreases
with decreasing sphericity in a similar fashion as for tetrapods and
dolosse, yet for a given sphericity, the value of τ for packings of tetrahe-
dra is higher than for tetrapods and dolosse. The results above show that
aggregates of different shapes but similar sphericity do not necessarily
form packings of similar pore space morphology. However, for all parti-
cle shapes we find overall similar trends between τ andΨ and between
ε and Ψ which hint towards a correlation between τ and ε.

Fig. 9b shows that there is a linear correlation between τ and ε for
ε > 0.35 that can be approximated by:
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τ ¼ −2:4 ε þ 3:27 ð20Þ

If this linear correlation is extended to higher values of ε, it gives
τ→ 1 for ε→ 1. Indeed, a value of τ=1 at ε=1 is expected since a tor-
tuous path through a volumewithout any aggregates is a simple straight
path. However, for ε < 0.35 we observe a non-linear increase of τ with
decreasing porosity for packings of tetrahedra. Packings with such
high tortuosity values (i.e. τ > 2.5) correspond to the previously dis-
cussed packings of closed tetrahedra which align face to face.

In the past, a large number of correlations relating τ to ε have been
proposed [54–56]. However, similar to the Carman-Kozeny correlation,
these functions have typically not been tested for porous structures cov-
ering a wide range of values for ε, but rather packings of very specific
particle shapes such as spherical packings ranging from the random-
close to random-loose packing limit (ε = 0.366–0.46) [57] or random
packings of fibres (ε = 0.9–0.96) [58]. In other works the τ-ε correla-
tions have been tested over awider range of values for ε, but for artificial
structures such as fractals or randomly placed obstacles [59,60]. Thus, in
the following, the packings of aggregates model by DEM, which cover a
wide range of porosity values and that have been validated by physical
experiments, are used to establish a τ-ε relationship, viz.:

τ ¼ 1−p ln εð Þ with p ¼ 1:5 ð21Þ

Eq. (21) has been suggested in the literature (e.g. [60]) and the coef-
ficient p = 1.5 has been found to give the best fit to the data shown in
Fig. 9b. However, it is worth noting that Eq. (21) cannot capture the
non-linear behavior of tetrahedra for τ > 2.5. The reason is that
Eq. (21), as most other τ-ε correlations, is developed for random isotro-
pic porous structures. As tetrahedra tend to align face to face (and with
thewalls) for 0.97 ≤Ψ ≤ 0.81 (ε<0.35) such packings cannot be consid-
ered fully random.

The linear correlation between τ and ε (when excluding particular
aggregate structures), indicates that tortuosity might not be required
as an additional parameter to determine the permeability of a packing,
instead tortuosity can be capture by porosity through a scaling factor.

3.4. Permeability

Fig. 8 has shown that the packing porosity increases with decreasing
particle sphericity (for Ψ < 0.92); similarly, also the packing tortuosity
decreases with decreasing permeability (Fig. 9), except for tetrahedra
for ε < 0.35. Both findings suggest that the packing permeability in-
creases with decreasing particle sphericity. To test this hypothesis and
to test the validity of the Carman-Kozeny correlation for packings of
complex-shaped aggregates, the permeability of packings was investi-
gated numerically via LBM simulations and experimentally using the
falling head method. Fig. 10a plots numerically and experimentally de-
termined permeabilities k as a function of the particle sphericity Ψ.

The k-Ψ data plotted in Fig. 10a show a similar trend as the ε-Ψ data
given in Fig. 8, i.e. also the permeability has a minimum atΨ≈ 0.9 and
forΨ<0.9 thepermeability increasesmonotonicallywith decreasingΨ.
Note that the k-Ψ data is plotted, as it is typically done, on a semiloga-
rithmic scale. The strong similarity of the k-Ψ and ε-Ψ trends suggest
a direct correlation between k and ε (see below). When comparing
the numerically determined permeabilities with the predictions of the
Carman-Kozeny correlation (Eq. (2)) a good agreement is obtained.
Since the Carman-Kozeny correlation only depends on Ψ, ε and the
(equivalent) aggregate diameter, this indicates that the tortuosity is
not required to predict accurately the permeability of a packing. For tet-
rapods with Ψ = 0.87 and Ψ = 0.53, the permeability was also deter-
mined experimentally using the falling head method (green and red
crosses in Fig. 10a with the error bars providing the standard deviation
based on nine measurements). The experimental results deviate from
the LBM results by a factor of 2.3 and 2.8 for Ψ = 0.87 and Ψ = 0.53,



Fig. 10. (a) Permeability of aggregate packings as function of the aggregate sphericity.
(b) Permeability as a function of the packing porosity.
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respectively. An explanation for this deviation lies presumably in the
particularities of the experimental setup, e.g. the wire mesh that is re-
quired to keep the packing in position introduces an additional pressure
drop. Nevertheless, also the experimental results follow the trend of the
k-Ψ behavior of tetrapods as predicted by the Carman-Kozeny correla-
tion and the LBM results. The values of the permeability computed by
LBM for a packing of tetrapods with Ψ = 0.53 using the packing struc-
ture determined either by X-ray CT or DEM differs only by 9%. This ex-
cellent agreement indicates that the differences in the permeability
obtained from the falling head method and LBM simulations are due
to the falling head method instead of differences between the experi-
mental and numerically generated packing structures. Especially for tet-
rapods with Ψ = 0.53 it could be observed during the experiements
that the aggregates fall into the mesh with their “arms” sticking out,
leading to a local alignment of the aggregates which could increase
the packing fraction and therefore increase the pressure drop and in
turn decrease the permeability. One way to reduce the differences be-
tween the LBM simulations and the permeability experiments could
be to including the wire mesh in the numerical simulations to model
the additional pressure drop of the mesh itself as well as the influence
10
of the mesh on the packing structure. Modelling the mesh was omitted
in this work as it would be associated with great complexity.

Furthermore, Fig. 10b plots k as a function of ε to investigate the cor-
relation between k and ε as suggested by the similarity of the k-Ψ and ε-
Ψ curves. We find that the k-ε data can be correlated well (R2 = 0.968)
by the function:

k ¼ 5:3−9 exp 7:3εð Þ ð22Þ

Eq. (22) covers a wide range of porosities, shapes and sphericities
and is believed to be useful to determine the permeability of packings
of aggregates of a known porosity, for aggregates with equivalent diam-
eters similar to the ones studied here. Importantly, Eq. (22) covers both
concave and convex particle shapes.

4. Conclusions

Thiswork investigates packings of aggregates spanning awide range
of porosities, i.e. porosities 0.33 < ε < 0.78. Three types of aggregates
structures that is tetrapods, dolosse and tetrahedra are investigated nu-
merically and validated experimentally using two types of tetrapods.
The porosity of the packings was determined experimentally and by
DEM revealing excellent agreement and providing further evidence
for the predictive capabilities of DEM simulations. Importantly, our re-
sults show that the packing porosity cannot be predicted directly from
the sphericity of the aggregates only, but it also depends on the convex-
ity of the aggregates. The convexity of an aggregate was found to de-
crease monotonically with decreasing aggregate sphericity for all of
the aggregate shapes investigated here. However, the rate of this mono-
tonic decrease depends on the specific aggregate shape.

To investigate whether the aggregate shape affects the morphology
of the pore structure, the tortuosity of the packing was determined.
We observe that packings of aggregates of different shapes but similar
sphericity do not form packings with a similar pore space morphology,
as evidenced by a lack of a correlation between the aggregate sphericity
and the tortuosity of the packings. Instead, for ε > 0.35 a linear correla-
tion was found between the packing porosity and the tortuosity. For
ε< 0.35 packings of tetrahedrawere found to have very high tortuosity,
when compared to tetrapods and dolosse. This was attributed to a face-
to-face alignment of the closed tetrahedra aggregates. The linear corre-
lation between the tortuosity and the porosity, however, indicates that
it is not required to introduce the tortuosity as an additional parameter
to determine the permeability of a packing.

Finally, the permeability of the packing was investigated using the
LBM and via falling pressure head experiments. The permeability values
obtained agreewell with the predictions of the Carman-Kozeny correla-
tion, confirming its validity for a wide range of porosities. Since the
Carman-Kozeny correlation only depends on the aggregate sphericity
Ψ, ε and the aggregate diameter, information of a packing's tortuosity
is not required to predict its permeability. Furthermore, we propose a
correlation that relates the permeability of a packing directly to its
porosity. This exponential correlation can be used to determine the
permeability of packings of aggregates that are of similar equivalent
diameter to the aggregates investigated here. It is hoped that the new
insight into the packing of aggregates obtained through this work will
pave theway for the development of noise absorbing facades, high per-
meability pavements for energy harvesting or the mitigation of local
heat islands. Regarding the use of artificial aggregates for pavements,
future work should consider also the compressive strength as well as
the compactibility and workability of aggregate shapes.
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