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A B S T R A C T

Climate change, increasing emissions and rising global temperatures have gradually affected the way we think
about the future of our planet. Urban areas possess significant potential for reducing the energy consumption of
the overall energy system. In recent years, there is an increasing number of research initiatives related to Urban
Building Energy Modelling (UBEM) that focus on simulation processes and validation techniques. Although
input data are crucial for the modelling process as well as for the validity of the results, the availability of
input data and associated data formats were not analysed in detail. This paper closes the identified knowledge
gap by presenting a taxonomic analysis of key UBEM components including: input data formats, simulation
tools, simulation results and validation techniques. This paper concludes that over ∼ 95% of the studies analysed
were not reproducible due to the absence of information relating to key aspects of the respective methodologies
such as data sources and simulation workflows. This paper also qualifies how weak levels of interoperability,
with respect to input and output data, is present in all phases of UBEM.
1. Introduction

In 2014, the United Nations projected an increase in the number of
people living in cities from 54% in 2014 to 66% in 2050 [1,2]. Further-
more, improved living standards come at a significant economic and
environmental cost [3]. Globally, urban areas and buildings account
for more than two-thirds of the energy consumed and 70% of CO2
emissions [4]. Access to clean and sustainable energy is gradually being
prioritised in different countries, thus increasing the importance of
developing urban energy planning tools. Meaningfully predicting future
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energy balances and energy flows at a urban scale requires significant
resources. One key component of this urban energy mix is the buildings
sector, particularly with respect to the associated energy demand and
emissions.

Modelling the associated energy consumption and Greenhouse Gas
Emissions (GHG) of buildings can benefit a number of use cases and
stakeholders, for example design engineers, urban planners investigat-
ing renovation strategies and policy makers [5]. Western society has
placed a significant emphasis on large scale renovation of the existing
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Acronyms

ADE Application Domain Extension
BEM Building Energy Modelling
BEPS Building Energy Performance Simulation
BIM Building Information Modelling
BPS Building Performance Simulation
CAD Computer-aided design
CIM City Information modelling
CityGML City Geographical Markup Language
EERE Energy Efficiency and Renewable Energy
Energy ADE Energy Application Domain Extension
EU European Union
FileGDB ESRI File Geodatabase
FMI Functional Mockup Interface
gbXML Green Building XML
GHG Greenhouse Gas Emissions
GIS Geographic Information Systems
GML Geographic Markup Language
HVAC Heating, Ventilation and Air Conditioning
IDA ICE EQUA IDA Indoor Climate and Energy
IFC Industry Foundation Classes
INSEL Integrated Simulation Environment Lan-

guage
INSPIRE Infrastructure for Spatial Information in

Europe
JSON JavaScript Object Notation
KML Keyhole Markup Language
LoD Levels of Detail
NMF Neutral Model Format
NZEB Nearly Zero Energy Building
OGC Open Geospatial Consortium
OSM Open Street Map
TRNSYS Transient System Simulation Tool
UBEM Urban Building Energy Modelling
UMI Urban modelling Interface
USEM Urban-scale Energy Modelling
XML Extensible Markup Language

uilding stock. A comprehensive analysis of renovation activities and
early Zero Energy Building (NZEB) adapted in the European Union

EU) from 2012 to 2016 shows the significant impact these actions
an have on building energy demands [6]. However, a reduction in
nergy consumption and an adjustment of peak electrical loads are
nly possible when supported by appropriate policies and technologies.
ne potential approach to quantifying sustainable and energy-efficient

cenarios that integrates the perspectives of multiple stakeholder is
rban Building Energy Modelling (UBEM).

UBEM can analyse the impacts of neighbouring buildings and calcu-
ating urban-scale energy demands. Many UBEM principles are inher-
ted from Building Energy Modelling (BEM), also called Building Energy
erformance Simulation (BEPS), by using similar methodologies and
echniques but at a larger scale. According to the United States Office
f Energy Efficiency and Renewable Energy (EERE), BEM or BEPS
s a physics-based software simulation of building energy usage [7].
epending on the application, BEM requires various input data such as
uilding geometry, construction details, data models, building physics
ata (such as U-value, density, heat capacity), Heating, Ventilation
nd Air Conditioning (HVAC), occupant behaviour, and occupancy pro-
iles [8]. Using a software-based approach, thermal loads of buildings
2

Fig. 1. Publication trend in the field of UBEM between 2011-2020.

are calculated based on a numerical evaluation of a mathematically de-
scribed physical model. The software-based approach can also perform
calculations and simulations related to occupant comfort simulation
and energy costs. Generally, building models are less detailed in UBEM
when compared to a single building BEM.

UBEM has two distinct approaches: top-down or bottom-up [9].
The former tends to work at an aggregated level i.e. at the national
level and uses historical time-series energy consumption data or CO2
emission data [10]. These models express the relationship between
energy and economics at a large scale and connect variables such as
fuel prices, gross domestic product and income to the energy sector.
The issue with these models is that they often lack details relating
to current and future building technologies that could influence the
energy demand of a building [11]. On the other hand, the bottom-
up approach works in a disaggregated manner and requires extensive
details for each component in the building [12]. A bottom-up model
accounts for individual dwelling's energy consumption and results are
extrapolated to represent regional or national energy demands. This
approach is useful when evaluating the performance of different energy
efficiency measures and technologies [13]. This review paper focuses
on bottom-up UBEM approaches. The top-down UBEM approach is,
therefore, beyond the scope of this paper.

In recent years, researchers published multiple studies and review
articles in the field of UBEM. The publication trend illustrated in
Fig. 1 demonstrates the gradual increase in UBEM publications between
2011–2020. In 2018–2020, the number of published reviews articles
were most significant to the field. One notable article from Hong et al.
in 2020 [14] highlights the ten significant questions on UBEM. These
questions streamline the main challenges, opportunities and future
perspectives in the field of UBEM, the most significant of which are
now discussed.

A seminal review paper by Reinhart and Davila [15] describes
the domain of UBEM as ‘‘nascent’’ and focuses on: (1) input data
(weather data, geometrical data and non-geometrical data), (2) thermal
modelling and (3) results validation. Goy et al. [16] address the impact
of input data on BEM at an urban scale using a Morris sensitivity
analysis approach and shows that accessible data significantly impacts
the entire modelling process. The sensitivity analysis highlighted that
temperature set-point and thermal characteristics have a major impact
on urban energy simulations. Chen et al. [17] discusses some of the
key challenges of data integration for city buildings and provides an
overview of public building data in CityGML, GeoJSON and ESRI
File Geodatabase (FileGDB) for UBEM. Overall, the literature, how-
ever, omits the fact that multiple issues related to the practicalities of
acquiring non-geometrical data at an urban level persist today.

Another review from Sola et al. [19] about Urban-scale Energy
Modelling (USEM) classifies tools or engines used in the simulation
of urban-scale energy systems. USEM is further classified into UBEM
that estimates the energy demand at an urban scale endogenously and
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Table 1
Overview of key input data categories used for UBEM based on [15] and [18].
Data category Description

Location and geometry Geographic location of the building, shape and orientation of the building’s exterior
boundary surfaces, boundary conditions (e.g. air, ground, adjacent building) of these
surfaces and building’s floor area size.

Openings Location, shape and orientation of openings (doors and windows) in exterior
boundary surfaces.

Thermal Zones and Thermal Boundaries Geometric representation of internal zones (e.g. rooms) with distinct thermal
conditions, and of contact surfaces (thermal boundaries) between two zones or one
zone and the outside environment.

Building physics Energy relevant thermal and optical parameters of external and internal building
elements (interior and exterior walls, roof, internal slabs and ground plate, windows
and doors).

Building systems Information on energy relevant building systems, especially concerning the building’s
Heating, Ventilation and Air Conditioning (HVAC) systems.

Usage Information concerning the energy relevant behaviour of the building’s occupants
such as nominal heating/cooling temperatures and ventilation rates in different
thermal zones.

Internal heat gains Internal heat generation by building systems (e.g. lighting, electrical facilities, hot
water production) and occupants.
considers building stock characterisation and building energy demand
modelling respectively. The characterisation of building stocks focuses
on the archetypes and geometrical data from Geographic Information
Systems (GIS). These archetypes can be difficult to create at a national,
regional or city scale basis as the segmentation parameters and number
of archetypes can vary on a case by case basis [20]. The review from
Sola et al.[19] on thermal modelling tools also lists a number of bottom-
up physics based UBEM tools and provides an overview of relevant
characteristics of the individual tools. The review lacks validation and
verification methods.

Ferrando et al. [21] also presents a comprehensive assessment of ex-
isting UBEM tools along with an overview of research and development
potential. The review focuses on bottom-up physics-based UBEM tools
and classifies the tools according to data input, simulation outputs,
workflow of the modelling process, applicability regarding scale or type
of the project and finally the potential users. Other articles such as
Abbassabadi et al. [22], Han et al. [23], Li et al. [24], etc. also provide
an overview of the field, however, a noticeable gap emerges in terms
of inconsistencies related to input data types, simulation platforms,
enrichment techniques and generation of simulation results.

The field of UBEM has expanded over the last few years and there
is now a large variety of tools, data and approaches documented in
literature. To date, there is limited transfer of knowledge, insights
and data between studies and the reproducibility is compromised. This
paper identifies key aspects that are required to ensure reproducibility
the field of UBEM. We highlight future opportunities moving towards
standardisation of UBEM. This paper aims to provide a taxonomic
review of the input data, simulation tools and results validation as
available today in the field of UBEM. The taxonomic approach scientif-
ically identifies and categorises research in order to clearly understand
different workflows used in UBEM. None of the systematic reviews
discuss the aspect of reproducibility with respect to UBEM results;
therefore this paper complements the literature. The approach we take
in this paper distinguishes itself from other reviews as it examines the
UBEM workflow in detail rather than considering a particular element
or result with respect to the other categories. Most of the available
studies fail to discuss the process of geometrical and non-geometrical
enrichment. This paper segregates the different enrichment techniques,
for example, enrichment of building physics and occupancy data. This
paper also compliments the existing studies in the field of UBEM by
quantifying the usage of different data models and simulation tools.
Furthermore, this paper proposes a taxonomic method to review UBEM
related research studies. The proposed taxonomy based approach along
with the other available articles can be used to review and quantify the
use of data models, simulation tools and enrichment techniques along
with identification of reproducible studies.
3

o

This paper has five sections: Section 2 describes input models and an
overview of various modelling methods and simulation tools for UBEM;
Section 3 explains the taxonomic approach taken by the authors in the
review process; The Sections 4.1, 4.2, 4.3 and 4.4 include an analysis
based on the amount of information present in individual articles;
The present study discusses the output of the taxonomic approach in
Section 5 and the future opportunities in Section 6.

2. Background

This section provides an introduction to input data models (Sec-
tion 2.1), building data models and formats (Section 2.2 and Sec-
tion 2.3), and simulation tools (Section 2.4). In addition, this review
served as a basis for defining the structure of the taxonomy and
selecting appropriate keywords.

2.1. Input data models for city quarter information modelling

Physics-based UBEM simulations require detailed input data at the
individual building level. These input data facilitate modelling of build-
ings’ thermodynamic behaviour and their energy systems. Digital rep-
resentations of buildings are a key aspect of UBEM and require structur-
ing and organisation of raw input data. Moreover, spatial information
related to the building and its orientation is necessary to simulate
the building for energy related applications. Although, input data are
essential to UBEM, obtaining sufficient and accurate building data at
a large-scale is quite challenging [16]. The key input data categories
used for UBEM are taken from noted studies by Reihnart et al. [15]
and Chen et al. [18] (Table 1).

In the context of UBEM and City Information modelling (CIM),
the terms data model and data format are often used interchangeably,
however, it is important to highlight the differences between the two. A
data model is an abstract, conceptual model of data elements (classes),
their attributes and properties. Whereas, a data format is an implemen-
tation of a data model for a specific application (e.g. Extensible Markup
Language (XML) [25] and JavaScript Object Notation (JSON) [26]).
Data formats are generally derived from a data model so that the data
can be stored, retrieved and used for a specific purpose or application.
Though many data formats are standardised open formats, some are
proprietary1 formats and can only be encoded and decoded using
propriety software tools. As the energy analysis at a city quarter level
requires a broad availability of data and since most UBEM data formats
have open specifications, proprietary formats are not considered in

1 Data formats that are only supported by a specific software manufacturer
r for a specific application (e.g. idm binary file for IDA ICE [27]).
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Fig. 2. Basic structure of a building in the IFC data model.
Source: [38].
context of this paper. Data formats can also be classified based on the
application area for which a data format has been developed. Building
data formats, specially designed for energy related use cases, can be dis-
tinguished from general formats which are originally being developed
for other application domains (e.g. architecture, construction industry
or mapping).

This study focuses on data models and formats that are primar-
ily developed for energy studies and are maintained by dedicated
standardisation bodies such as OGC [28] or SiG3D [29].

2.2. General building data models and formats

Industry Foundation Classes (IFC)
IFC [30] is the only non-proprietary Building Information Modelling

(BIM) format that is an open and international standard. buildingS-
MART develop and maintain the IFC standard [31]. The data model is
based on a STEP Physical File (SPF)2 [32] and uses the modelling lan-
guage EXPRESS [33]. From this abstract data model, a number of data
formats are derived, such as IFC SPF (based of STEP part 21 [34]) and
the XML-based representation IFC-XML (based on STEP part 28 [35])
are considered for energy applications. As IFC models were origi-
nally developed for application areas in Architecture, Engineering and
Construction, it primarily supports a volumetric representation of the
building elements. Moreover, IFC models use hierarchically structured
local coordinate systems, for which the root can be located in a global
(geographic or geodetic) coordinate reference system. Structurally (see
Fig. 2), IFC supports the partition of a building (IfcBuilding) into storeys
(IfcBuildingStorey), physical building elements (IfcBuildingElement)
with openings, as well as rooms (IfcSpace) with space boundaries [36].
Using the property set concept, a number of physical properties can
also be related with the building elements. Furthermore, IFC entities,
relations and property sets also exist for representing the HVAC com-
ponents of a building. These sets principally allow for the estimation of
internal heat gains in buildings by software requiring such data [37].

2 IFC-SPF can be read as text and is based on the ISO standard for text
representation of EXPRESS data models.
4

City Geographic Markup Language (CityGML)
CityGML of the OGC [28] is an XML-based open data format for stor-

age and exchange of virtual 3D city models [39]. The current version
CityGML 2.0 is an application schema of OGC’s Geographic Markup
Language (GML) version 3.1.1 [40]. GML models generally use absolute
coordinates in a well-defined coordinate reference system. Moreover,
CityGML is subdivided into a number of independent thematic modules.
These modules are all based on the CityGML Coremodule. In the context
of this paper, only the Building Module is considered as it contains
the classes to represent a single building (Building), its exterior and
interior structure (see Fig. 3). In contrast to IFC, CityGML uses a surface
geometry representation to model the different building elements.

An important feature of CityGML is the concept of Levels of Detail
(LoD). The LoD definition supports the representation of real world
objects with different geometric and semantic detailing [41]. Depend-
ing upon the information present in the model, CityGML models are
defined in five LoDs. The most crude of which is LoD 0, a two and
a half dimensional Digital Terrain Model over which an aerial image
or a map may be draped and buildings are represented only by their
footprints. In LoD 1, the building’s exterior shell is approximated by
a prismatic volume and is represented as a single geometry. LoD 2
supports a generalised geometrical representation of the exterior shell
and its subdivision into different boundary surfaces. This subdivision is
made for representing the exterior parts of the walls, roofs and ground
plates. In most cases, energy simulation software can directly process
the generalised geometry. Moreover, in some countries, CityGML LoD
2 data sets are most commonly available as open source [42]. LoD 3
and LoD 4 models represent the exterior shell with more geometrical
details (e.g. roof overhang), however, they mostly require geometrical
pre-processing before being used for energy simulation software [43].
In LoD 3, it is additionally possible to represent the openings (doors and
windows) within the boundary surfaces. LoD 4 supports the additional
representations of the building’s interior structure with rooms which
are bounded by interior boundary surfaces (see Fig. 3).

Using CityGML data for energy simulations does also have a number
of challenges. Except for a purely geometric representation, building
system components cannot be represented in CityGML. A means to
characterise ‘‘shared walls’’ between adjacent buildings is also missing.
The topological structure of a room model in LoD 4 is also not explicitly
represented. This hinders the derivation of the energy-relevant space
boundaries. The most significant drawback of using CityGML is that
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Fig. 3. Basic structure of a building in the CityGML data format.
Source: [38].
it lacks attributive information as there are no concepts to represent
material or usage parameters. For assessing the physical behaviour
of a building, only the year of construction is (sometimes) available.
Furthermore, data concerning the occupant’s behaviour or internal
energy gains must be derived from the specified building function. To
overcome the lack of information in pure CityGML models, the Energy
Application Domain Extension (Energy ADE) [44] can be used, which
will be explained in detail in Section 2.3.

INSPIRE Building
Infrastructure for Spatial Information in Europe (INSPIRE) is an

initiative of the European Parliament and Council to establish a Eu-
ropean Spatial Data Infrastructure [45]. In the context of INSPIRE,
GML-based data models are developed for different technical aspects
such as the representation of individual buildings. Until 2020, the
public agencies in all member states, if they are related with one of
the INSPIRE technical areas, need to deliver their spatially related
data in the corresponding INSPIRE data format. For buildings, INSPIRE
provides two formats [46]: (i) The base model INSPIRE Building enables
the geometrical representation of a building’s exterior shell in four
different CityGML LoD. The non-geometrical properties of the INSPIRE
Building class also follow the CityGML standard. (ii) The extended
model INSPIRE Building Extended largely corresponds to CityGML. For
the Building class, the INSPIRE models provide a number of additional,
energy relevant properties such as information about the building’s
connection with utility networks, its energy performance class, floor
area and heating system. Concerning the ability to support energy
related simulations, the model INSPIRE Building is comparable with
CityGML LoD 1. Though, in the same LoD as CityGML, the INSPIRE
Building Extended could have slight advantages compared to CityGML.
However, the INSPIRE directive only declares the base model as manda-
tory. Furthermore, the extended model has, to the best knowledge of
the authors, has yet to be applied by researchers and only a draft of the
corresponding data format is available.

Open Street Map (OSM)
Open Street Map (OSM) is a world-wide collaboration project, aim-

ing to develop a free, editable digital map [47]. A large number of
local contributors collect 2D position and contour of real-world objects
(e.g. buildings) and generate a semantic classification and attribution
in form of key–value pairs. For this, the OSM organisation proposes
an ontology, however, the contributors are not forced to use it. For
5

buildings, this ontology enables to specify the type and function of a
building and provide parameters to describe its 3D structure (including
height, number of storeys and roof type). Due to its availability and
relative ease-of-use, OSM is frequently used for projects on city quarter
or city level [48,49].

KML/Collada
The Keyhole Markup Language (KML) is an XML-based data format

for visualisation and annotation of 3D geographic information. These
are also referred as COLLADA models [50]. Originally developed by
Google Inc. to support the GoogleEarth [51] application, the KML
format (from version 2.2) is an official OGC standard [52]. In contrast
to the formats mentioned previously, KML is not a semantic data
format. This implies that the geometry contained in a KML data set has
no well-defined meaning and except of the two text attributes, name
and description, no attributive information can be related with KML
objects. Furthermore, for the application context of this paper and also
in the reviewed articles, KML/Collada is not considered.

2D cadastre models
In many countries, the surveying and cadastre agencies provide

their data in standardised, semantic data formats such as ALKIS/NAS
[53] in Germany. This standard geometrically describes a building by
its footprint and several parameters for the 3D-structure. Besides im-
portant parameters such as the year of construction, building function,
number of storeys, type of roof and floor area, no energy relevant
building properties are recorded. The direct use of cadastre data for
building energy simulations is therefore limited to spatial modelling.

2.3. Building data models specially designed for energy related applications

CityGML Energy ADE
The Energy ADE is an extension of the CityGML standard and is

developed by an international working group [54] to support the appli-
cation area of ‘‘energy’’. It uses the general CityGML ADE concept [55]
supporting two different extension approaches: (i) by defining new
classes, and (ii) by extension of existing CityGML classes with new
attributes and relations. By using the two approaches, the actual version
1.0 of the Energy ADE [43,44] principally supports all the information
mentioned in Table 1. The Energy ADE data model contains four func-
tional modules that are derived from the Energy ADE Core module. A
couple of supporting classes for modelling time series, usage schedules
and weather data are also available. The Core module, in particular,

extends the CityGML Building class with energy relevant properties and
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Fig. 4. Basic structure of a building in the gbXML data format.
Source: [38].

relations along with the abstract base classes of the functional modules.
The Building Physics module enables to subdivide a building into one or
more thermal zones. These zones exchange energy among each other
or with the outer environment via thermal boundaries and thermal
openings. Moreover, the thermal and optical properties of these objects
are modelled by the classes of the Materials and Constructions module.
The module Occupants Behaviour supports the definition of usage zones
that are related within a thermal zone. Here, the usage is primarily
defined by specifying time-variant profiles for ventilation rates and
heating/cooling set-point temperatures. Furthermore, specific concepts
are available to model internal heat gains due to occupants, lighting,
electrical appliances and domestic hot water production. Finally, the
Energy Systems module contains several classes to represent the energy
relevant building systems (energy conversion, distribution and storage
systems) and its corresponding energy flows.

Green building XML (gbXML)
gbXML [56] is an open, XML based data format supporting the

data exchange between 3D BIM systems and engineering analysis tools
and is supported by leading manufacturers of CAD software such as
Autodesk, Bentley and Graphisoft. Some converters, such as Open
Studio Core [57], also exist to extend its application to building energy
simulations. Furthermore, gbXML also contains all the information
listed in Table 1.

Fig. 4 depicts the basic structure of a gbXML model. The root
element (Campus) may refer to one or more building objects (Building)
that are subdivided into storeys (BuildingStorey) and rooms (Space).
Internal and external thermal boundaries are modelled in parallel
(Surface) and include material and opening information. Each Surface
may be related with one or two Space objects. The Space class supports
the representation of usage profiles, internal heat gains and building
systems.

2.4. Simulation tools

In the context of this paper, we introduce two different categories
for simulation and modelling tools: (i) Simulation tools and (ii) Auxil-
iary tools. Simulation tools are self-contained simulation applications,
which are used to generate building energy demands without the need
for external tools. Auxiliary tools are separate applications to work
with the simulation tools to extend features and improve usability.
Hong et al. [14] and Ferrando et al. [21] provide a discussion of
6

modelling approaches (physics-based, reduced-order, and data-driven
approaches).

Recent literature highlights the importance of co-simulation in
UBEM [14,58]. Co-simulation involves exporting the simulation model
into a neutral format and using multiple simulation tools to sim-
ulate different parts of the model [59]. A main advantage of us-
ing co-simulation within UBEM is the ability to build multi-domain
models [19]. Co-simulation can be used to couple different tools for
modelling buildings, HVAC systems, district heating systems, or power
distribution networks. A recent study on promising standards and tools
for co-simulation shows that the Functional Mockup Interface (FMI)
is the most promising standard for co-simulation [60]. The Functional
Mockup Interface is a tool independent standard for co-simulation and
the exchange of dynamic models which is currently supported by more
than 140 tools [61].

2.4.1. Simulation tools commonly used for UBEM
CitySim is a free urban performance simulation engine that com-

prises a solver and a graphical user interface. Calculation functionalities
include building thermal, urban radiation, occupant behaviour, plant
and equipment models. CitySim has recently been further developed as
CitySim+ with additional features for enhanced scalability, distributed
simulation and incorporation of a data layer based on CityGML/Energy
ADE [62]. City Energy Analyst is an open source tool for analysing
and optimising energy systems at a district level. The tool enables
users to investigate financial, energy and carbon benefits of different
design scenarios in conjunction with schemes of distributed generation.
EnergyPlus [63] is a whole-building simulation software to model the
different energy demands of buildings. EnergyPlus is, by far, the most
commonly reported tool in the reviewed literature for this paper. There
are also a number of tools developed to interface with EnergyPlus as
a simulation engine. The tools dependent on EnergyPlus are detailed
in Section 2.4.2. EQUA IDA Indoor Climate and Energy (IDA ICE) is a
commercial building simulation tool with libraries written in either
Modelica or Neutral Model Format (NMF) [27] and can be used to
model the performance of buildings including energy consumption,
lighting or HVAC systems. IDA ICE can import various formats in-
cluding Sketchup and IFC. Integrated Simulation Environment Language
(INSEL) [64] is a block diagram simulation system which can be used
for the simulation of photo-voltaic systems, solar thermal systems and
dynamic building simulations. Ready models are available in INSEL,
however, extensions to the existing models and the creation of new
models is also possible [65]. The SimStadt tool developed using INSEL
is briefly explained in 2.4.2. Modelica is an object oriented modelling
language that is supported by various open source and commercial
tools [66]. There are multiple open source Modelica libraries for build-
ings, HVAC systems, district heating systems, and energy systems [67].
The commonly used Modelica libraries in the domain of BPS are also
detailed in Section 2.4.2. Simulink is a graphical modelling language,
built on top of the programming language Matlab and is also one of the
most common simulation environments [67]. TRNSYS is a simulation
tool mainly used in the field of thermal engineering, such as buildings
and HVAC systems [68].

2.4.2. Auxiliary tools
Table 2 gives an overview of Simulation Tools and the correspond-

ing Auxiliary Tools.

EnergyPlus. The tool Combined Energy Simulation And Retrofitting (CE-
SAR) is used for modelling the energy performance of buildings, dis-
tricts and cities in Switzerland. CESAR compiles and simulates Energy-
Plus models based on statistical data of the Swiss Building Stock [69].
An open-source, Python implementation, called CESAR-P, was released
in April 2021 [75].

CityBES [72] is a web-based tool for modelling and analysing the
thermal performance of a city's building stock. CityBES uses OpenStu-
dio [71] and EnergyPlus to simulate building energy performance and

CityGML to represent and exchange 3D city models.
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Table 2
The auxiliary tools based on the previously defined Section 2.4.1.
Auxiliary tools Simulation tool Summary Interface Availability

CESAR [69]

EnergyPlus [63]

Archetypical generation of EnergyPlus models CMD Closed
UMI [70] Urban modelling plugin for Rhino 3D GUI Freeware
OpenStudio [71] Various tools to support EnergyPlus GUI Open-Source
CityBES [72] Web-based information exchange of urban building modelling GUI Freeware

TEASER [73] Modelica [66] Archetypical generation of Modelica models GUI/CMD Open-Source

SimStadt [74] INSEL [64] UBEM simulation platform GUI Closed
Urban modelling Interface (UMI) is an urban scale energy simulation
lugin for the Rhinoceros 3D [76] CAD software that includes opera-
ional energy, embodied energy and mobility. EnergyPlus is used for its
uilding energy performance simulations, Daysim [77] for its daylight
imulations and a Python module for its walkability evaluations.

odelica. Several frameworks such as BIM2Modelica [78] and
EASER [73] automatically derive Modelica models based on IFC and
ityGML respectively. The BIM2Modelica toolchain generates Modelica
uilding models from BIM models based on the IFC format and uses a
UI with the software infrastructure of CoTeTo [79] for simplifying

he code generation process for BPS. The ‘‘Tool for Energy Analysis
nd Simulation for Efficient Retrofit’’ (TEASER) on the other hand is an
pen framework for urban energy modelling of building stocks. TEASER
rovides an interface for CityGML data as input, data enrichment and
he export of ready-to-simulate Modelica simulation models of a single
uilding or at urban scale. AixLib [80], Buildings [81], BuildingSys-
ems [82] and IDEAS [83] are the Modelica libraries that are used in
EASER for BPS at an urban scale and were brought to a common base

n the IEA EBC Annex 60 Project [84].

ntegrated Simulation Environment Language (INSEL). SimStadt is a sim-
lation platform that can be used for workflows related to Solar and
V potential analysis, energy demand and CO2 emission calculations,
nd refurbishment scenarios generation and simulation [74]. INSEL is
he simulation engine used [65].

.5. Single building to an urban scale

The data models (Section 2.1) that represent a single building (e.g. a
IM) or city models (e.g. a GIS instance) serve very different application
equirements, purposes and stakeholders. Although, both data-model
ypes have the ability to store object geometries, surface materials,
ppearances, building physical characteristics and surroundings, their
nderlying model architectures differ considerably. This arises due to
he adaptation to specific requirements of their respective originating
omains [85]. Furthermore, the granularity of geometrical information
tored in a BIM is typically unsuitable for transformation into the inputs
equired by UBEM [86], this arises due to different users, applications,
evelopmental stages, spatial scales, coordinate systems, semantic and
eometric representations along with different information storage and
ccess methods [87]. In the context of scaling an energy model of a
ingle building to an urban context, the availability of input data is a
ersistent challenge. Detailed data at the building level are only par-
ially available in most countries [42]. Data sources include buildings’
onstruction plans, BIM models and documentation related to physical
n-site visits. For building stocks, however, accumulating the required
ata for BEM is much more complex. In a practical implementation of
BEM, this leads to a use of multiple available data sources, which
re combined and enriched to provide all of the necessary information.
herefore, three general data sources are used: Open access, closed and
ommercial [42]. In an urban context, the cluster of information is
rovided either in form of publications (or standards) or as structured
nd standardised data formats (e.g. gbXML and CityGML Energy ADE).

The energy simulation tools (Section 2.4) used for modelling a
ingle building (in BEM) or an urban area/city (in UBEM) service very
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ifferent application purposes. Urban scale building energy analysis
integrates the concepts of building energy use with the related HVAC
systems and environmental interactions [88]. Furthermore, control
strategies are being developed to computationally reduce the overall
energy demands of urban areas [89]. In an urban context, simulating
each building separately without considering the interaction between
them can lead to inaccuracies, especially for those cities characterised
by a high density or average height of buildings [90]. Building-to-
building influences such as mutual shading affect the overall energy
demand calculations of buildings [91]. The influence of mutual shading
is also important when aiming to understand the thermal effects of the
individual construction materials within buildings. Urban areas also
create individual climatic conditions called the urban micro-climate
[92]. GIS-based urban micro-climate models contribute to the urban
energy analysis as micro-climate affects building energy consumption
[93]. Different aspects of the local climate, including air temperature
and wind patterns, can be modified according to geographical areas to
efficiently compute the energy demands of the buildings [94]. Micro-
climate and inter-building shading are highly dependent on the specific
geographical context and must be meaningfully captured within ap-
propriate UBEM tools. Defining all of the inputs and features for such
simulations has been comprehensively captured by Quan & Li [95],
Sanaieian et al.[96], Ko, Y. [97], Anderson et al.[98], Yang & Jiang
[99]. The article by Quan & Li [95] is complementary to our work, and,
therefore the inclusion of a separate classification for urban influences
is currently deemed outside the scope of this paper.

The modelling approaches used in BEM and UBEM differ fun-
damentally [100,101], their respective simulation and validation re-
quirements also differ [102,103]. The definition and development of
validation procedures and validation data sets for a single building,
e.g. (BESTEST [104] or ASHRAE standard 140 [105]), is less com-
plicated than validation procedures and data sets for UBEM (such as
DESTEST [106]) due to the unavailability of open data sets, the lack of
standardised input formats and significantly increased computational
requirements for UBEM simulations [107].

The presentation of simulation results can affect a modeller’s inter-
pretation of model behaviour. This is an important aspect of simulation
documentation and therefore must be included. Another noteworthy
challenge for the BEM and UBEM communities is the reproducibility of
studies. Reproducible studies must include a detailed description of the
input data along with its availability and granularity, the simulation
tool with its settings and access restrictions, and documentation of
the simulation results [108]. This is important in order to compare
and standardise different approaches used within different simulation
workflows.

3. Method

A taxonomic review synthesises existing literature; in the context of
this paper it allows (i) identification of commonly used applications for
UBEM, data models, and simulation tools as well as (ii) evaluation of
the reproducibility of the reviewed papers. We developed a taxonomy
based on categories, sub-categories and keywords — referred to as the
structure of the taxonomy in the following (see Fig. 6). We defined the
structure of the taxonomy based on a two stage process. In the first
stage, we developed the basic structure based on existing review pa-

pers [11,15,109] and the energy simulation workflow defined in [110].
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Table 3
Keywords used for UBEM paper classification and generation of the co-citation network diagram (Fig. 5).

Category Keywords

Type of construction dwelling, apartmenta, buildinga, housea, national, retrofitting, neighboura, residential,
non-residential, commercial, officea, school, institutiona, educationa, university,
industry

Scale urban, city, districta, regiona, largea, city quarter, 3D city modela, neighbourhood,
building stock

Input U-value, HVAC, Spatial, Occupancy, Building archetypes, Building typology
Data models CityGML, gbXML, IFC, Energy ADE
Data formats Shape File, GeoJson, CAD, GML, IDF
Simulation tools TRNSYS, EnergyPlus, INSEL, CitySim, CityBEM, BuildSysPro/Dymola, Modelica
Enrichment TEASER, Uncertainty
Output energy modela, energy simulationa, energy performance, energy demand, energy

consumption, time series

aused to search singular, plural and similar forms of keywords.
Fig. 5. Occurrence of frequently used keywords in Urban Building Energy Modelling.
In the second stage, experts from the international IBPSA Project 1
(work package ‘‘City District Information Modeling’’ [111]) further
developed the taxonomy in a workshop setting. The final taxonomy
consists of the following four main categories: input data, simulation
tools, simulation results, validation and verification.

The input data are further subdivided into multiple sub-categories.
These include data format, building specific information regarding LoD
and building physics, availability of the input data, occupancy profiles,
and geometrical data analysis. Simulation tools is also subdivided into
multiple sub-categories and keywords. These include individual tools,
availability of the tools, external support of data formats, support for
co-simulation, and computational details such as multiprocessing and
system configuration. Simulation results, validation and verification
include the sub-categories results (e.g. timestamps, 3D maps), valida-
tion, and verification. Reproducibility is of major importance for studies
related to UBEM (see Section 2.5). The previously mentioned categories
(input data, simulation tools and simulation results, validation and ver-
ification techniques) form the basis for evaluating the reproducibility of
the reviewed research. As reproducibility is a feature that is dependent
on the other categories, it is evaluated as a sub-category under each of
the afore mentioned categories within the taxonomy. This is due to the
importance of unambiguous and consistent interpretation of literature
in the field of UBEM.

The identification of relevant publications is crucial for the proposed
method. Since the underlying research field is broad and diverse, not all
relevant publication could be identified with a literature search using
a limited number of keywords. In a first step, we identified an initial
list of potentially relevant publications using a combinations of the
8

keywords listed in Table 3 in Scopus [112] and Google Scholar [113]
databases. The relevant keywords were defined in the expert workshop
within IBPSA Project 1. We included journal and conference articles
published after 2014. In a second step, we removed those publications
that were beyond the scope of this review. We acknowledge the impor-
tance of urban influences, such as mutual shading and micro-climate,
in UBEM related review processes, however, their inclusion within the
keywords, taxonomy and the review is foreseen as a future work.

The identified keywords, in Table 3, are supported by a network
diagram that illustrates their occurrence in research articles from 2014
to 2020 inclusive. The diagram (shown in Fig. 5) is generated using
the VOSviewer tool [114]. The VOSviewer categorises the keywords
into five clusters based on closely related research themes in the field
of UBEM. Within the network diagram, the size of each node defines
the frequency of occurrence of specific keyword in research articles
and the link with other keywords defines the co-occurrence of related
keywords.

In total 72 papers [12,20,48,62,69,70,72,74,103,115–177] are iden-
tified and reviewed using the taxonomy and the keywords network
map.

3.1. Research boundaries

The taxonomy based approach in this paper is descriptive, extensive
and hypothesis-driven. The keywords restrict the scope of the literature
search; we defined appropriate keywords in an iterative way in work-
shops with experts. Although we endeavoured to keep the keyword
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Fig. 6. Overview of the taxonomy implemented for UBEM paper classification and review.
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Table 4
Comparison of different data models based on the amount of information present. A detailed description of the information levels (‘+++’, ‘++’,
‘+’) is given in Table 5. The information level ‘-’ indicates that specific information is not present in the individual data model.

Geo-
referencing

Openings Thermal
Zones
Boundaries

Building
Physics

Energy
systems

Usage Internal heat
gains

IFC [178,179] +++ +++ +++ +++ +++ +++ +++
CityGML LoD1
[62,178,180]

+++ – – – – + –

CityGML LoD2
[62,178,180]

+++ – + + – + –

CityGML LoD3
[62,178,180]

+++ +++ + + – + –

CityGML LoD4
[62,178,180]

+++ +++ ++ + – ++ –

INSPIRE Building
[45,181]

+++ – – + – + –

INSPIRE Building
Extended [45,181]

+++ +++ ++ ++ + ++ –

OSM [182,183] ++ – – – – + –
KML/Collada
[184,185]

++ – – – – – –

National cadastre
formats [42]

++ – – + – + +

CityGML Energy
ADE (LoD2)
[62,178,180]

+++ +++ +++ +++ +++ +++ +++

gbXML
[178,186,187]

++ +++ +++ +++ +++ +++ +++
Table 5
Comparison of different data models - Description of information levels (‘+++’,‘++’,‘+’) assigned in Table 4.

+++ ++ +

Georeferencing All coordinate systems limited number of coordinate
systems

No coordinate system, but
corresponding coordinates are
possible

Openings Openings supported
Thermal Zones/Boundaries Thermal zones and thermal

boundaries
Thermal boundaries for buildings
and spaces

Thermal boundaries for buildings

Building physics Full support partial support Weak support
Energy systems Full support partial support Weak support
Usage Usage for buildings and rooms

and extended usage properties
Usage for buildings and rooms Usage for buildings

Internal heat gains Full support partial support Weak support
selection process as open and objective as possible, we acknowledge
that certain studies may have been unintentionally omitted.

4. Results

In this section, we present the key findings from the taxonomy based
analysis; this includes an analysis of data models (Section 4.1), simu-
lation tools (Section 4.2), simulation results and validation techniques
(Section 4.3), and reproducibility (Section 4.4).

4.1. Input data models for city quarter information modelling

Most data models are georeferenced and contain the information
related to the geographical location of the building. However, some
such as CityGML LoD 1-2, INSPIRE Building and OSM lack the infor-
mation about thermal openings, building physics and energy systems.
A comparison of different data models highlights the strengths and
weaknesses of these formats (Table 4) while a comparison of the data
storage capabilities of each model is also worth noting (Table 5).

The taxonomy based approach shows that 27% of the investigated
studies use the CityGML data model for the location and geometry of
the building. All studies using explicitly georeference CityGML, yet,
36% of the studies fail to provide information relating to the data model
used and 18% of studies contain insufficient detail with respect to
georeferenced geometry. Fig. 7 gives a distribution of the data models
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that are used in the reviewed studies.
Out of the studies that use CityGML, only 27% provide information
about the LoD used for simulations. Strikingly, only 20% of the data
models are made available to be used in other research and 7% of
the studies fail to mention the availability of the data models. For the
geometric and spatial data used to create the digital representation of
the physical aspects of the buildings, 77% of the papers provide details
for the geometrical aspects used in their studies. 42% of studies men-
tion some form of pre-processing of the geometry before simulations.
This pre-processing includes approaches such as extrusion of building
heights using footprints, 3D geometry transformation from one format
to another, etc. For studies that consider CityGML data, 3% mention
the transformation from 2D to 3D geometry while only 1% of the
total articles convert LoD 2 models into LoD 3 models. Moreover, with
respect to a horizontal and vertical subdivision of buildings, 72% of the
total papers fail to provide any information on this topic.

Furthermore, as occupant behaviour is acknowledged as a key
source of uncertainty between predicted and actual building energy
demands, many researchers attempt to model occupants presence and
adaptive actions more realistically [188]. In the reviewed articles, 49%
of the studies use standard occupancy profiles while 15% use individual
profiles and 3% use synthetic and random profiles. For the remaining
33% of the studies, no information regarding occupancy is available.

For UBEM related simulations, ‘‘enrichment’’ is the process of cre-
ating attributes using inference and statistics to create a fully parame-
terised model of each building. Enrichment is necessary as urban scale

data are often incomplete with respect to the requirements of UBEM.



Building and Environment 208 (2022) 108552A. Malhotra et al.
Fig. 7. Distribution of data models used in the reviewed articles. Sums of percentages ≠ 100% are due to rounding errors in the annotations. Here combination of two models
implies that two data models were used with respect to different simulation environments to compare the results.
Fig. 8. (Left) An overview of the usage of enrichment in the reviewed articles. Sums of percentages ≠ 100% are due to rounding errors in the annotations (Right) An overview
of the data enrichment types considered in different studies.
Of the 72 articles considered, this review found that 67% of the stud-
ies use data enrichment; 58% performed occupancy enrichment, 56%
performed enrichment of the building physics; and 21% carried out
HVAC enrichment. Furthermore, 67% of the studies use an archetype
based enrichment approach for urban-scale simulations. This reliance
on archetypal enrichment highlights an opportunity for data generators
to produce more complete data sets with attributes suitable for UBEM
alongside the geometric data. It is acknowledged that this would be a
challenging undertaking but if additional attributes, such as building
materials, age, could be attached to some of the most commonly used
spatial and geometric data formats, such as CityGML with Energy ADE,
the UBEM modelling process could be reproducible, automatable and
transparent and, thus, lead to increased confidence in the final results.
Fig. 8 highlights the use of enrichment and its types in different studies.

In the previous sections, the various data formats and models used
in UBEM are discussed. However, when analysing the literature, the
authors often found it difficult to determine which data model is being
used in a given study. In many papers the data model is not explicitly
stated. This can distort the results in Fig. 7. For example, a community
that is actively involved in the further development of a particular data
model may be more likely to state the data model used (e.g. IBPSA
Project 1 and CityGML). It was also found that a majority of studies
(63%) are not reproducible as the data are not shared alongside the
publication. Although data security and privacy issues prevent authors
from openly sharing data, these observations highlight an issue with
the communication of the data used in such studies across scientific
literature. Scientific transparency and continued improvement of the
UBEM process relies on clear explanations about the data used so
those interested can replicate and verify the work. As a result, the
field of UBEM reported in scientific literature is fragmented and non-
reproducible. In future, it is vital that authors provide readers with the
necessary details to understand and replicate the study with their own
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data. The next section details an evaluation of simulations tools and
their usage in urban energy simulations.

4.2. Simulation tools

The scientific community has developed multiple simulation tools
and workflows for UBEM in recent years. Table 6 provides an overview
of simulation tools regarding: (i) availability (commercial, open source,
freeware), (ii) externally supported UBEM data formats, and (iii) com-
patibility with FMI co-simulation.

The taxonomic approach focuses on the individual elements of the
published studies and enables a consistent assessment of the reported
studies in order to establish opportunities in both the data generation
and the development of simulation tools for UBEM. In total, 25 different
simulation approaches are identified (see Fig. 9). These range from sim-
plified steady-state models to dynamic models. This diversity highlights
the difficulty of cross-comparing the results generated by UBEM studies.
No information is provided on the simulation approach used in 11% of
the studies. By far, the most common simulation tool is EnergyPlus and
its extensions that are used in 38% of the reviewed studies. The second
most common is INSEL which is specified in 11% of the reviewed
papers whereas Modelica is used in 6% and Matlab is used in 5%
of the studies. The authors often found it challenging to consistently
assign simulation kernels to the respective study. Several cases made
reference to their own quasi-static energy balance calculations based
on standards such as ISO 52016-1 [190]. Please note that several of
the studies that mention their own tools incorporate similarly self-
developed algorithms and these may make up a larger percentage of the
total than the authors have recorded. It is interesting to note, that while
EnergyPlus makes up the largest portion of simulation, it is not possible
to directly simulate the most common geometry data input - CityGML
files. Active research is being done to extend the data models, using
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Table 6
The tools for UBEM demand modelling identified in the taxonomic review.

Simulation tools Externally supported UBEM
data formats

Availability Support FMI for
Co-Simulation

CitySIM Pro [62] CityGML Energy ADE,
common CAD files

Available by request No

City Energy Analyst [135] Internal configa Open source No
EnergyPlus [63] Noneb Open source Yes
IDA ICE [27] IFC, common CAD files Commercial No
INSEL [64] Noneb Freeware Unknown
Matlab/Simulink [189] Noneb Commercial Yes
Modelica Libraries [80–82] Noneb Open Source/Commercial Yes
TRNSYS [68] Noneb Commercial Yes

aInternal configuration files that are defined entirely in the software but uses Open Street Map data.
bNo known inbuilt support for data formats/models identified in the input data section.
Fig. 9. Simulation tools used in the reviewed papers. 100% is the total number of simulation cases in all papers (e.g. if a paper compares SimStadt and EnergyPlus, it is treated
as two separate cases, one using SimStadt and one using EnergyPlus). Category ‘Other’ combines all tools that are used in only one of the reviewed papers, including: City Energy
Analyst, Energy Carbon and Cost Assessment for Building Stocks (ECCABS), CitySim+, DeST, SwissRes, GIS/ArcView.
application domain extensions (Energy ADE). This is done to provide
sufficient additional attributes to enable building energy performance
simulation [191]; however challenges with geometry processing still
need to be overcome and this highlights an area for future research
efforts. The importance of both self-contained simulation environments
and their auxiliary applications are important for UBEM studies.

4.3. Simulations results and validation

Research in the domain of urban building energy modelling and
simulation has been developing at a fast pace in recent years. This is
mostly due to urgent demand for energy efficient solutions in the build-
ing sector, as explained in Section 1. The surge of new computational
methods applied in UBEM requires coherent analysis, presentation and
validation to give confidence in the results.

In the studies reviewed, 54% focus on the simulation of heating
energy demands as their main objective. The other 46% provide addi-
tional or different results, such as electric energy demand or predictions
of CO2 emissions. Time resolutions of demand simulations range in-
clude yearly (26%), monthly (27%), daily (1%), hourly (36%) and
subhourly (5%). The taxonomy recorded the finest time resolution
reported in each study (Fig. 10).

Some data models also allow for the storage of simulation results.
This offers the possibility to link demand data – obtained either from
simulations or measurements – directly with the building data model.
It also serves as an important step for demand based analysis. Further-
more, the storage of simulation results facilitates the sharing of data
and expedites the creation of comprehensible visualisations of energy
demand predictions at an urban scale. This is especially important
as the UBEM based research results are not only relevant for the
scientific community, but also for practitioners, decision-makers and
local stakeholders. In total, only 16% of all reviewed papers store the
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results in the original data model. From the 27% of works that use
CityGML (see Fig. 7), 40% use this functionality.

The results presented in 95% of the scientific papers considered in
this review are not reproducible (see Section 4.4). In addition, approx-
imately 30% of all papers do not validate the presented results based
on measured data or other methods whereas 7% provide only partial
validations (Fig. 10). In the context of this paper, partial validation is
labelled if, in an article, either the data models or the simulation results
are validated. Contrary to this, in 44% of the studies, comparisons of
simulation results against measured data are performed. Articles such
as Meha et al. [147], which use bottom-up and top-down heat demand
mapping methods for small municipalities, compare the simulation
results of the two approaches with measured data. Other studies such as
Österbring et al. [155], Mastrucci et al. [156], Nageler et al. [115], Li
et al. [132] also compare their simulation results to measured values.
Although the number of articles that compare their results to measured
data is high, however, due to a consistent lack in availability of open
measured data [16,192,193] it is often difficult for simulation scientists
and research communities to compare their models and calculation
in the field of UBEM. Once openly available, the measured data can
be used to validate different approaches, workflows and simulation
environments. Within the 44% of the (previously mentioned) studies,
none openly allows the usage of their individual measured data to the
simulation community and thereby making the approach/simulation
irreproducible. Furthermore, 10% of the studies (such as Streicher
et al. [136], Turcsanyi, P. [150], Eikermeier et al. [151]), perform the
comparison against results from other scientific contributions, energy
performance certificates and national standards. Zirak et al. [122],
Monien et al. [142], Murshed et al. [165] also verify their simulations
with other environments and platforms.

Another important aspect is the way in which authors chose to
visualise the results of the energy modelling. For the taxonomy, three
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Fig. 10. Relative distribution of validation methods (left) and smallest time resolution units (right) in the reviewed literature. Sums of percentages ≠ 100% are due to rounding
errors in the annotations.
Fig. 11. Types of result visualisation methods in reviewed proceedings and their relative distribution. Sums of percentages ≠ 100% are due to rounding errors in the annotations.
main visualisation categories are defined: time series plots, illustration
of results with 2D maps, and visualisations using 3D spatial models.
Other plots such as error plots or flow charts, etc. are not considered
in this paper. It was found that 62% of all papers use one of the three
aforementioned visualisation methods, with the relative distribution
depicted in Fig. 11. Used in almost equal measure are time series plots,
with 34% of the papers and 2D maps with 36%. Less common, but
nevertheless present in every fifth paper (22%), is the use of 3D spatial
models. An important observation is that, in total, 44% of all papers
use either one of spatial illustrations methods, indicating that either
the energy modelling results are somehow stored in the data model or
the studies use an additional file for visualisation purposes and overlay
the files with the simulation results.

4.4. Reproducibility

We categorise studies as reproducible if the simulation results can
be reproduced by others. An overwhelming majority of reviewed pub-
lications (∼95%) cannot be reproduced. This is either due to the un-
availability of input data and/or the impossibility to reproduce the
simulation workflow. In terms of input data, we identified three com-
mon reasons why studies cannot be replicated: (i) the spatial and/or
energy thematic models used are not available as open-source and/or
open-data; (ii) data sources are not mentioned; (iii) pre-processing steps
are not described in detail. For the simulation workflow, either the
software tool is not available and/or the simulation method used or
developed in the paper is not described thoroughly.

5. Discussion

The taxonomy based approach in this paper highly depends on the
(i) selection of keywords (ii) classification of categories, and (iii) se-
lection of appropriate articles. Although the keyword selection process
is transparent, the authors are aware that this is a threat to validity;
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nevertheless, to the authors’ knowledge, this is the most transparent
selection process. This review selects articles that use bottom-up UBEM
approaches. Although the classification and review is based on the
selected keywords, however, in future, we would like to widen the
domain of our approach, extend the keyword list and review papers
focusing on urban influences and other simulation tools.

This taxonomic review identified CityGML to be the most commonly
used input data format for UBEM. Although CityGML provides the
geometrical and geographical information of a building, the format
omits energy relevant features and properties. CityGML can be ex-
tended (e.g. resulting in the Energy ADE) with energy-specific semantic
information by subsequent enrichment processes. The results show that
data models such as gbXML and CityGML Energy ADE, which can rep-
resent energy relevant information, are seldom used. Harmonising the
two models with comparable capabilities would combine the advantage
of CityGML’s availability with gbXML’s implementations. Currently,
IFC, an extensive standardised and open building information model,
plays no role in UBEM. Even though several data models exist and are
used for UBEM-based approaches, we presume that their acceptance is
restricted due to limited availability. As not many detailed data sets
are available in standardised formats, broader usage of such formats
is further limited. Therefore, we argue that research should focus on
generation of representative data sets (e.g. standard archetypes) that
can be combined with georeferenced data. This would also require
geodata to contain the correct allocation variables such as building age,
use and refurbishment status.

We found that EnergyPlus is the most frequently used simulation
kernel for UBEM; a significant number of simulation kernels are also
self-developed. Different kernels depend on different input data, sim-
ulation settings, predefined parameters, and model assumptions. In
general, not all simulation settings are transparent to the community.
Many of the identified simulation tools are complex (e.g. EnergyPlus)
and require a large number of input variables to compute the energy
demand. This conflicts with the scarcity of available building stock
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data, leading to the necessity of data enrichment and, consequently,
propagates high input variable uncertainties into the simulations.

The most common output of the simulation process is yearly heating
energy demand in an hourly time resolution. Usually, these time series
are stored without any meta data. This hinders data interoperability
and collaboration between researchers further. For validation, a sub-
stantial share of 44% of the reviewed articles validate the results based
on measured data, whereas, 30% do no validation at all. The authors
consider several possible reasons, e.g. that there is no access to the
required data or the required data may not be available. Furthermore,
we observe that the challenge of validation is primarily a problem of
data availability rather than a methodological problem. Therefore, it
would be beneficial for UBEM validation if there were open standard-
ised validation data sets that provide complete input data along with
measured energy consumption for a representative building stock.

Reproducibility is a key part of any scientific process. However, the
results show that for the majority of papers analysed in this review, it
is not possible to reproduce the results. Although, lower reproducibility
is a problem across peer-reviewed literature in general [194,195],
wherever possible, open data sets should be used as this helps the sci-
entific community to efficiently develop, validate and maintain energy
simulation tools and workflows.

6. Conclusion and future work

This paper analyses different aspects of UBEM through a taxonomic
approach. This includes various data types, simulation environments,
results and visualisation, and the reproducibility of research studies.
27% of the authors use CityGML input data for UBEM approaches.
As CityGML data sets are often openly available, future developments
should focus on the enrichment of open data sets and on storing the
information as common data formats such as gbXML and CityGML
Energy ADE. There is a mismatch between the most commonly utilised
input data format (CityGML) and the most prominently used simulation
environment (EnergyPlus (22%)). Since EnergyPlus does not support
the input of CityGML format, further research addressing the direct
use of this format is an important step towards standardising UBEM
approaches. Further research should define metrics that allow for a
transparent comparison of different simulation kernels. 44% of the
studies validate the outputs using measured data. As validation is one of
the key aspects of research studies, development of a UBEM-benchmark
validation data set should be an objective of future research. Future re-
search should also address the validity and uncertainties of enrichment
variables (e.g. U-Values) and the generation of standard enrichment
data sets. A large number of the articles (34%) focus on outputs as
time series. Future work should provide sufficient meta data to describe
the simulation results. Since only a limited number of the identified
studies are reproducible, future work should thoroughly describe the
granularity and quality of input data, the data models, the simulation
parameters and settings, and details of the validation procedure. In
addition, sample data sets should be published alongside the results in
order to compare different approaches. In the future, articles detailing
top-down UBEM approaches should be systematically reviewed as this
will complement the results presented in this paper. Quantification of
environmental and inter-building influences such as micro-climate and
mutual shading should be included in the future research using dif-
ferent case studies and implementations. An integration of the present
taxonomy with the classifications, related to urban context influences,
made in previous studies is planned in the future. A main task for the
future will be a committed support of open data, software and processes
in the field of UBEM.
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