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A B S T R A C T   

Evaluating the potential risks of nanomaterials on human health is fundamental to assure their safety. To do so, 
Human Health Risk Assessment (HHRA) relies mostly on animal studies to provide information about nano-
materials toxicity. The scarcity of such data, due to the shift of the nanotoxicology field away from a 
phenomenological, animal-based approach and towards a mechanistic understanding based on in vitro studies, 
represents a challenge for HHRA. Implementing in vitro data in the HHRA methodology requires an extrapolation 
strategy; combining in vitro dosimetry and lung dosimetry can be an option to estimate the toxic effects on lung 
cells caused by inhaled nanomaterials. Since the two dosimetry models have rarely been used together, we 
developed a combined dosimetry model (CoDo) that estimates the air concentrations corresponding to the in vitro 
doses, extrapolating in this way in vitro doses to human doses. Applying the model to a data set of in vitro and in 
vivo toxicity data about titanium dioxide, we demonstrated CoDo's multiple applications. First, we confirmed that 
most in vitro doses are much higher than realistic human exposures, considering the Swiss Occupational Exposure 
Limit as benchmark. The comparison of the Benchmark Doses (BMD) extrapolated from in vitro and in vivo data, 
using the surface area dose metric, showed that despite both types of data had a quite wide range, animal data 
were overall more precise. The high variability of the results may be due both to the dis-homogeneity of the 
original data (different cell lines, particle properties, etc.) and to the high level of uncertainty in the extrapolation 
procedure caused by both model assumptions and experimental conditions. Moreover, while the surface area 
BMDs from studies on rodents and rodent cells were comparable, human co-cultures showed less susceptibility 
and had higher BMDs regardless of the titanium dioxide type. Last, a Support Vector Machine classification 
model built on the in vitro data set was able to predict the BMD-derived human exposure level range for viability 
effects based on the particle properties and experimental conditions with an accuracy of 85%, while for cytokine 
release in vitro and neutrophil influx in vivo the model had a lower performance.   

1. Introduction 

The evaluation of engineered nanomaterials (ENM) potential toxicity 
to human health is a fundamental step to assure a safe integration of this 
technology in society. In this direction, Human Health Risk Assessment 
(HHRA) aims at estimating the risk posed by a substance, e.g. an ENM, to 
the human population, accounting for the potential of exposure and the 
hazard of the substance. The identification of the hazard requires 
quantitative toxicological information either from epidemiological 
studies, or, in their absence, from animal studies. Such dependency on in 
vivo studies is though a limiting factor for a timely assessment of new 

ENM, since such studies are resource-consuming and ethically con-
cerning, and their accuracy and reproducibility have shown limitations 
(Gottmann et al., 2001; Basketter et al., 2004). Instead, the nano-
toxicology field is evolving towards a combined approach involving 
mechanistic studies conducted in vitro, often generating a great amount 
of information (e.g. omics technology), and bioinformatics and in silico 
modelling to manage, mine, and integrate the experimental knowledge 
across disciplines (van Vliet, 2011; Hartung, 2009). 

Whereas most toxicity and screening studies are now conducted in 
vitro using human cells, such data cannot directly substitute animal 
studies in HHRA; instead, an in vitro to in vivo extrapolation (IVIVE) 
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strategy is needed to link cell responses to whole organism responses. In 
a previous study (Romeo et al., 2020), we identified a combination of in 
vitro dosimetry and lung dosimetry as a mature way for IVIVE of toxicity 
data about the effects of inhaled particles on the lung. The focus on this 
exposure route and target organ is of particular relevance for HHRA as 
inhalation is considered one of the most important entry routes of 
nanomaterials, especially in the workplace (Praphawatvet et al., 2020). 

In vitro dosimetry simulates the deposition of particles in submerged 
in vitro systems, providing a more accurate dose than the simple con-
centration of particles in the media (Cohen et al., 2015). The behavior of 
the particles depends on the particle properties themselves and the 
experimental conditions, which have to be accurately measured (DeLoid 
et al., 2014; Deloid et al., 2017); diffusion, sedimentation, and (if 
applicable) dissolution processes are then modeled to estimate the 
amount of particles deposited on the cells (Thomas et al., 2018; DeLoid 
et al., 2015). Using the deposited dose has been shown to improve the 
correlation between in vitro and in vivo toxicity data (Pal et al., 2015a; 
Thrall et al., 2019). Lung dosimetry simulates the deposition of particles 
in the human or animal lung, thus identifying the amount of particles 
accumulating in different sections of the respiratory system, net of 
clearance removal processes (Asgharian et al., 2016). Lung dosimetry 
has been used both to extrapolate animal deposited doses to humans 
(Jung et al., 2018) but also to estimate relevant in vitro doses based on 
human exposure levels (Khatri et al., 2013; Gangwal et al., 2011; Smith 
et al., 2021). In a few cases, both models were used together: in the 
works from Demokritou et al. (2013) and Teeguarden et al. (2014), lung 
and in vitro dosimetry are used to compare in vivo and in vitro results by 
extrapolating both data to physiologically-equivalent effective doses (i. 
e. the deposited amount of particle per surface area or cell), respectively 
for cerium oxide and iron oxide nanoparticles. Pal et al. (2015b) instead 
proposed a procedure to monitor, sample, and characterize nano-
particles released on the workplace and then apply the dosimetry models 
to estimate the deposited doses in the human lung and the corre-
sponding in vitro doses to use for toxicity testing; printer-emitted 
nanoparticles and incinerated polyurethane-carbon nanotubes com-
posites are presented as case studies. In all of these cases, the nano-
particle aerosol was well-characterized, and the same particles were 
used in vitro as either tested in vivo or measured on the workplace. 
However, only in few cases a particle is tested at the same time in vitro 
and in vivo, and most often cells are exposed to primary particles rather 
than sampled particulate, making it challenging to link the in vitro dose 
to a human-relevant exposure level. 

We believe that using realistic doses should be a priority in in vitro 
toxicity testing, even when no clear exposure scenario is available as 
benchmark (e.g. the animal test or the emission sampling data). How-
ever, despite dosimetry considerations not being new, the use of both 
dosimetry models to select relevant in vitro doses and compare in vitro 
and in vivo toxicity data is still not common practice. On a practical level, 
applying the two models “by hand” can be time consuming, making it 
difficult to apply them consistently beyond the single case study. To 
facilitate the application of these models we developed a combined 
dosimetry model (CoDo) that estimates the air concentrations for 
humans corresponding to in vitro doses. We show the potential of our 
model via a case study about titanium dioxide, verifying how many of 
the doses used in vitro are in a realistic range, estimating and comparing 
human Benchmark Doses (BMD) and BMD-derived human exposure 
levels from in vitro and in vivo data, and testing the possibility of esti-
mating BMD-derived human exposure level ranges from the particle 
characteristics and the experimental conditions. The BMD represents the 
dose level at which a certain response level is observed, for example a 
1% increase in disease incidence compared to control in epidemiological 
studies, and is derived by fitting a dose-response curve over experi-
mental data (Davis et al., 2011). We chose the BMD as basis of com-
parison of ENM toxicity as such approach is recognised by the scientific 
and regulatory communities as an advanced method to estimate safe 
exposure levels in HHRA (Haber et al., 2018; Committee et al., 2017). 

While the BMD is expressed as dose per lung surface area (mg/cm2 

lung), the BMD-derived human exposure levels indicate the exposure 
concentration (mass of particles per volume of air, mg/m3) over a 
defined exposure time corresponding to the BMD; by integrating the fate 
of the particle in the lung, such indicator allows a comparison with the 
occupational exposure levels, which are expressed in the same unit. 

2. Methods 

2.1. Combined dosimetry model 

The combined dosimetry model (CoDo) was developed using Python 
programming language (Van Rossum et al., 2009) to simulate the 
exposure concentrations corresponding to the doses used in in vitro 
studies in submerged systems. It works by integrating in vitro dosimetry 
and lung dosimetry, and assuming that the deposited dose per area in 
vitro corresponds to the deposited dose per area in the lung (Fig. 1). 

The input data include experimental parameters about the in vitro 
system and lung parameters that define the hypothetical human expo-
sure scenario; the required parameters and the parameters that, if not 
specified by the user, are calculated by the model are shown in Table S1. 

For the simulation of the deposition of particles in vitro we integrated 
the one-dimensional Distorted Grid (DG) model into CoDo; the behavior 
of the particles is simulated via subsequent rounds of sedimentation and 
diffusion repeated over small discrete time intervals, as described in 
DeLoid et al. (2015). By default, a reflective well bottom (“non-sticky”) 
is selected, meaning that the particles reaching the bottom of the well 
(by default a 10 μm interaction layer) are subjected to weak non-specific 
interactions with the cells, and can be re-suspended due to diffusion 
forces; this choice is supported by the observations of DeLoid et al. 
(2015), who suggested that a reflective boundary condition is most 
likely for metal and metal oxide particles. A “sticky” bottom, i.e. a 
condition where particles have strong affinity with the cells and can 
therefore be removed from the system, can be selected; in this case an 
adsorption dissociation constant for agglomerate binding to cells of 10− 9 

is used as default; a different value for the adsorption dissociation 
constant can be entered by the user to represent intermediate levels of 
stickiness. The in vitro dosimetry simulation reports the deposited mass, 
surface area, and number of particles per cm2 of in vitro plate. 

For the calculation of the air concentrations corresponding to the in 
vitro doses the user can choose between two different deposition sce-
narios: a conservative estimate which assumes 100% deposition of the 
particles in the lung, and the use of a lung dosimetry model to estimate 
the retained dose based on the particle characteristics and exposure 
parameters. Regardless of the choice, four different exposure scenarios 
are considered: the same exposure time as in vitro, five days of exposure 
on the workplace (eight hours a day, five days a week), one year of 
exposure on the workplace, and 35 years of exposure on the workplace 
(the average working life in the European Union as of 2019, rounded- 
down (Eurostat, 2021)). The output of the model is, for each exposure 
scenario, the air concentration corresponding to the in vitro doses. 

When 100% particle deposition is assumed, the calculation of the air 
concentration depends on the total amount of particles inhaled, which in 
turn depends on the breathing parameters and the exposure scenario: 

Air concentration =
(Deposited dose per area⋅AlveoliSA)

(Exposure time⋅BF⋅TV)

where the “Deposited dose per area” has been calculated via in vitro 
dosimetry, the “Alveoli SA” (alveoli surface area) is 792,000 cm2 for the 
average man and 559,000 cm2 for the average woman (Brown et al., 
2013), the “Exposure time” depends on the exposure scenario (e.g. 2400 
min for five days of exposure on the workplace), the “BF” (breathing 
frequency) is 12 breaths/min for the average man and 14 breaths/min 
for the average woman, and the “TV” (tidal volume) is 625 mL for the 
average man and 464 mL for the average woman (Brown et al., 2013). 
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Instead, if the lung dosimetry is used, the deposited mass of particles 
per area is divided by the fraction of particles retained in the lung per 
cm2 at the end of the exposure time. The fraction of particles retained in 
the lung per cm2 is calculated as the alveolar retention fraction divided 
by the lung surface area (792,000 cm2 for the average man and 
559,000 cm2 for the average woman (Brown et al., 2013)). The alveolar 
retained fraction is calculated by automatically interacting with the 
MPPD model (Asgharian et al., 2012), including clearance processes. It 
should be noted that for short exposure times the deposited and retained 
doses correspond, while over longer exposure times the clearance pro-
cess has a significant impact on the retained dose (Oyabu et al., 2013; 
Van Rijt et al., 2016). 

For the human exposure simulation, the user can choose, through the 
“type of particle in air” parameter, to either indicate the aerodynamic 
diameter of the agglomerate in air, or to consider the primary particle in 
air, or to consider an agglomerate which has the same size and fractal 
dimension as the agglomerate measured in vitro, but where the pores are 
empty instead of filled with media. The effective density is automatically 
recalculated from the in vitro effective density (agg_density), the primary 
particle density (pp_density) and the media density via the formula (see 
SI for a demonstration of the equation): 

Air agglomerate density =
agg_density − media density
pp_density − media density

⋅pp_density  

While this scenario is not realistic, as agglomeration in air and in cell- 
culture media is driven by different processes (Anaraki et al., 2020; 
Schneider et al., 2009), we include it to represent exactly the same 
agglomerate to which the cells are exposed. 

The effect of the “sticky bottom” parameter, the deposition scenarios, 
and the lung dosimetry type of particle in air parameter was tested with 
the titanium dioxide data set (Section 2.2), by varying the parameters 
one by one and comparing the model outputs. 

2.2. Titanium dioxide data collection 

A literature search of in vitro titanium dioxide toxicity data was 
performed on Scopus using the keywords “titanium dioxide in vitro 
toxicity” and “titanium dioxide in vitro inflammation”, considering the 
time frame 2015–2020. The 249 results were further screened to select 
those that: (a) evaluated the effects on lung cells, (b) used human cells 
and eventually also murine macrophages (RAW264.7 cell line), (c) used 
spherical nanoparticles, (d) included endpoints on viability, reactive 
oxygen species production, and/or cytokine release (IL-6, IL-1β, TNFα, 
IL-8), (e) included the parameters needed to apply CoDo (reported in 
Table S1). Five additional papers published between 2012 and 2014 
were included as well due to their completeness, resulting in 217 dose- 
response data sets extracted from 23 publications (see Supplementary 
files). 

In vivo titanium dioxide toxicity data was collected via a literature 
search on Scopus using different combinations of the keywords 

“titanium dioxide”, “in vivo”, “rat”, “mouse”, “lung inflammation”, “lung 
toxicity”, and by screening review papers for references to in vivo 
studies. The criteria for inclusion were: (a) particles delivered via pul-
monary administration route (e.g. via inhalation or intratracheal 
instillation), (b) reported particle primary size and/or aerodynamic 
diameter (for inhalation) or agglomerate diameter in media (for instil-
lation), (c) at least two doses tested in addition to the negative control, 
(d) at least one endpoint among Bronchoalveolar lavage fluid (BALF) 
cytology, Lactate dehydrogenase (LDH) in BALF, reduced glutathione 
(GSH) in BALF, cytokine levels (IL-6, IL-1 β, TNFα, IFNγ) in BALF. 368 
dose-response data sets were extracted from 28 publications (see Sup-
plementary files). 

2.3. Comparison with occupational exposure limits 

The in vitro data set consisted of 484 dose values; multiple assays 
performed in the same experimental conditions in the same study were 
not double-counted. CoDo was applied choosing as lung dosimetry pa-
rameters the average man and the primary particle in air; as comparison, 
the conservative scenario assuming 100% deposition in the lung was 
also evaluated. For the in vitro dosimetry, a non-sticky bottom was 
chosen as the most realistic condition (DeLoid et al., 2015). The calcu-
lated air concentrations for the different exposure scenarios were then 
compared with the Swiss Occupational Exposure Limit (OEL) for tita-
nium dioxide, equal to 3 mg/m3, which is among the most conservative 
limits in the European area, lacking a unique value at EU level (GESTIS - 
International Limit Values For Chemical Agents, 2021). 

2.4. Comparison of in vitro and in vivo benchmark doses and BMD- 
derived human exposure levels 

Fig. 2 shows the procedure followed to calculate the BMD values 
(mass of particle deposited per cm2 lung) and BMD-derived human 
exposure levels (corresponding air concentration) using respectively the 
deposited doses and the human-extrapolated doses from in vitro and in 
vivo data. For the in vitro data, we selected the air concentrations ob-
tained via CoDo considering a non sticky bottom, the primary particle in 
air, and five days of exposure on the workplace. For the in vivo data set, 
the deposited dose in the lung of the animals was assumed to be 100% in 
the case of instillation, while for inhalation the retained dose was 
calculated via MPPD by including clearance processes and post-exposure 
time. Each deposited/retained dose was then extrapolated to the cor-
responding air concentration needed to obtain the same deposited dose 
per lung surface in the average man over five days of exposure. The 
Benchmark Dose (BMD) was calculated for each dose-response data set 
(in vitro and in vivo) with at least two doses in addition to control, using 
the PROAST software (Slob, 2018; Varewyck and Verbeke, 2017). A 
Benchmark response (BMR) of 20% was chosen for viability endpoints, 
ROS production and cytokine release (in vitro), and neutrophil (PMN) 
influx in BALF in absolute numbers and in percentage of the total cell 
amount, LDH in BALF and cytokines in BALF (in vivo). Such change is 

Fig. 1. CoDo model integrates in vitro dosimetry and lung dosimetry to estimate the exposure concentrations corresponding to in vitro doses.  
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considered the threshold for cytotoxicity (ISO, 2009), and a sign of low 
inflammation (Noël et al., 2013; Vranic et al., 2017), and, in general, 
corresponds to the dose in which the slope of the dose-response curve 
changes the most in the low-dose region (Sand et al., 2006). The BMD in 
mg/cm2 lung can be converted to BMD-derived human exposure levels 
in mg/m3 by dividing the former value by the deposition fraction over 
five days of exposure, and vice versa. 

For the comparison of BMD values, the in vivo data set was restricted 
to at maximum one week of exposure, and, in the case of particle 
administration via instillation to at maximum 72 hours of post-exposure 
time. In this way, similar exposure times are compared in vitro and in 
vivo. The exclusion of data with long post-exposure times when only the 
deposited dose but not the retained dose of particles was available is in 
line with the work from Cosnier et al. (2021), where it was shown that 
PMN influx had a strong dependence on the post-exposure time when 
considering the deposited dose, but not when using the retained dose. 
Using the deposited dose in place of the retained dose in the case of 
instillation is an acceptable approximation since the impact of clearance 
in the first post-exposure days has been shown to be small (Oyabu et al., 
2013; Van Rijt et al., 2016). 

Surface area was used as dose metric due to its higher predictivity of 
dose-response relationships for inhaled particles (Schmid and Stoeger, 
2016). 

2.5. SVM classification of in vitro and in vivo BMD-derived human 
exposure levels 

Three Linear Support Vector Machine (SVM) classifiers (Yue et al., 
2003) were built on the in vitro and in vivo data sets, considering 
respectively the BMD-derived human exposure levels for viability, for 
cytokine release in vitro, and for PMN influx effects, as such endpoints 
represented the majority of the data (respectively 55, 59 and 72 values). 
Considered inputs for the classification were, for the in vitro data set, the 

diameter of the primary particle, the diameter of the agglomerate, the 
exposure time in vitro, the assay used, the specific surface area of the 
particle, the type of particle (anatase, rutile, or any mixture), the pres-
ence or absence of serum in media, and the cell type. For the in vivo data 
set, we considered the diameter of the primary particle, the exposure 
length, the specific surface area of the particles, the post-exposure time 
before the effects had been measured, the type of particle, the animal 
species, the administration route (simplified as either inhalation or 
instillation), and the sex of the animal. Numerical inputs were normal-
ized using min-max transformation while nominal inputs were trans-
formed into numerical dummy variables (i.e. with 0 or 1 value) via 
One-Hot encoding. 

The classifier used a one-vs-rest multi-class strategy and minimized 
the hinge loss (Hsu and Lin, 2002); the best number and combination of 
parameters was identified via a sequential feature selection algorithm by 
maximizing the leave-one-out cross-validation (LOOCV) accuracy 
(Chandrashekar and Sahin, 2014). LOOCV consists in iteratively 
training the model on all the data set except for one sample, which is 
used for validation; the accuracy of the model is calculated as the 
number of times the model correctly classified the validation sample, 
expressed as percent of the total number of classifications (Wong, 2015). 
This validation method provides an accurate estimation of the model 
performance, and is particularly appropriated to be used with small data 
sets, as it is computationally expensive (Wong, 2015). A grid search 
algorithm was used to select the best cost parameter “c” based again on 
the LOOCV accuracy. A different number of classes were considered, 
with the main goal of distinguishing BMD-derived human exposure 
levels in a realistic concentration range and higher concentrations. The 
optimal number of classes was chosen based not only on the maximi-
zation of the LOOCV overall accuracy, but also to maximize the f1-score 
of the first class (i.e. the lowest BMD-derived human exposure level 
range), with f-1 being the weighted average of the model precision (True 
positives/Total positives) and sensitivity (True positives/(True positives 

Fig. 2. The procedure followed to estimate the BMD and BMD-derived human exposure level values from in vitro and in vivo data. For in vitro data, CoDo is used to 
extrapolate the doses to human, which are then used together with the corresponding effects as dose-response data in input to the BMD calculation via PROAST, 
obtaining the BMD-derived human exposure levels. The values are then multiplied by the lung retention fractions to calculate the BMD in retained dose per lung 
surface area. For in vivo data, two different procedures are followed depending on the used exposure method. For instillation, data is included in the analysis only if 
the post-exposure is at max three days, and the deposited dose per alveoli surface is calculated by assuming 100% deposition. For inhalation, no boundary is set for 
the post-exposure time, which ranged from zero to sixteen days, since in this case the dose retained per cm2 of alveoli can be calculated using the MPPD model, 
integrating clearance processes and post-exposure times in the simulation. At this point, PROAST is used to calculate the BMD from the dose-response data. The 
human dose is then estimated via MPPD to obtain the same deposited/retained dose per area as in the animal, obtaining the BMD-derived human exposure level over 
five days of exposure. 
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+ False negatives). 

2.6. Statistical analysis 

The difference between Benchmark Doses (and BMD-derived human 
exposure levels) calculated from in vitro and in vivo data was evaluated 
via Welch's t-test with Bonferroni correction, using Python library SciPy 
(Virtanen et al., 2020). 

3. Results and discussion 

3.1. Effect of parameters on CoDo results 

Table 1 reports the effect of the sticky bottom parameter, the depo-
sition type parameter, and the type of particle in air parameter on the air 
concentrations estimated from the database of titanium dioxide in vitro 
doses. For the bottom stickiness parameter, the selection of sticky con-
ditions resulted in the majority of cases in an increased deposition of 
particles in the well bottom, which therefore meant a higher concen-
tration of particles in air was needed to obtain higher deposited amounts 
in the lung. The median of the sticky over non-sticky ratio was 6.6, i.e. 
the sticky conditions showed six times the deposition than in non-sticky 
conditions. The range is however very wide, ranging from no difference 
in deposition (ratio = 1) to 70 times more deposition (ratio = 70). Such 
differences are driven by the contribution of diffusion versus sedimen-
tation processes on the deposition of particles; in fact, the biggest dif-
ferences were observed for small particles forming relatively small 
agglomerates (generally below 250 nm), while with bigger agglomer-
ates and bigger primary particles the differences in deposition were 
more modest, or even negligible in the case of micro-sized agglomerates. 

Using the lung dosimetry model considering the primary particle in 
air results in higher corresponding air concentration than if 100% of the 
particles is assumed to deposit in the lung, as expected. The range of the 
ratio between air concentrations calculated using dosimetry or assuming 
full deposition is very wide, ranging from 3.7 times to 159.1 times, 
indicating that the particle size has a strong effect on the deposition 
fraction and that at max around a third of the particles effectively de-
posit in the lung. 

The impact of the type of particle parameter is much more contained, 
with a median of the agglomerate over primary particle air concentra-
tion of 2.3, and an interquartile range of 1.6 to 2.9. In most cases, 
considering agglomerates in air resulted in lower deposition of the 
particles in the lung, and therefore higher air concentrations were esti-
mated to obtain the same deposited dose as calculated from the in vitro 
doses. This can be explained by the difference in pulmonary deposition 
according to the particles size (Fig. S1), which sees a declining trend for 
particles bigger than 30 nm. Only with very small primary particles (e.g. 

5 nm), the deposition of the agglomerates was higher (agglomerates 
over primary particle ratio < 1). 

Another source of uncertainty in the simulation of in vitro dosimetry 
is the calculation method for the agglomerate effective density; as 
demonstrated by DeLoid et al. (2014), the experimental volumetric 
centrifugation method is a more accurate method than the estimation of 
the parameter via Sterling equation, with the latter being either in 
agreement with or overestimating the measured agglomerate effective 
density. However, this parameter is not often measured, except for those 
studies that apply a dosimetry model; this is why CoDo uses the Sterling 
equation when an agglomerate effective density is not provided. To 
avoid this source of uncertainty, we recommend to follow the protocol 
by Deloid et al. (2017) for the characterization of the particle properties 
in the in vitro system. 

3.2. Comparison of in vitro doses and occupational exposure limit 

The comparison of in vitro doses with the OEL value indicates that 
most in vitro doses are representative of long human exposures. Fig. 3 
shows the distribution of the in vitro doses based on the ratio between the 
extrapolated air concentration and the Occupational Exposure Limit 
when considering the same exposure time for humans as the in vitro 
experiment. In Fig. 3a, which shows the results when applying the lung 
dosimetry model considering the primary particle in air, 11% of the 
doses are below the OEL (i.e. have an air concentration over OEL ratio 
between zero and one), and another 20% are between one and ten times 
the OEL. Even with the conservative assumption of 100% deposition in 
the lung only 24% of the dose are below the OEL, while 50% are more 
than ten times the exposure limits (Fig. 3b). Instead, when extrapolating 
the in vitro doses to a year-long human exposure on the workplace 
(Fig. 4), three quarters of the doses are less than ten times the OEL, with 
51% below the OEL itself. The results indicate that only low lung 
deposited doses (corresponding to the lower in vitro doses) are reached 
in law-abiding workplaces after short human exposure times, while most 
in vitro doses depict deposited levels reached after a year of workplace 
exposure. It should be noted, however, that cells exposed to a single dose 
do not have the same bio-response as when exposed to repeated doses 
over a longer exposure time, even if the cumulative dose is the same 
(Annangi et al., 2016; Torres et al., 2020; Thurnherr et al., 2011; 
Mukherjee et al., 2020). 

Ten years ago, Gangwal et al. (2011) used a similar, but reversed, 
approach to suggest realistic in vitro dose ranges based on occupational 
exposure levels. Their study assumed total deposition of particles in 
vitro, which we found true only for the biggest agglomerates and/or for 
longer exposure times, indicating that their in vitro concentrations would 
in most cases be underestimated. A critique, at the time, was that esti-
mating the highest in vitro concentrations from the deposited amount of 
particles over 45 years of exposure would result in very high doses to be 
administered all at once, compared to a long-term accumulation 
(Oberdörster et al., 2012). While CoDo includes as well such long-term 
exposure scenarios (35 years), which can be useful to clearly identify 
extreme doses (as in Fig. S2a), we recommend to choose the dose range 
for acute studies based on the short-term exposure levels, considering 
that legal thresholds may be exceeded either because of concentration 
spikes (as the OEL is calculated as an average concentration over the 
exposure time), but also because of non-compliance or lack of regula-
tion. For longer repeated exposures, the one year exposure level may be 
used as upper benchmark concentration. In both cases, it is important to 
verify that the chosen doses do not conflict with experimental con-
straints, such as assay interference (Ong et al., 2014). Moreover, the 
impact of different stickiness conditions should be considered, as the 
stickier the bottom the higher the risk of exceeding realistic conditions, 
as shown by comparing Fig. S3b with Fig. S2b, which shows the distri-
bution of in vitro doses when considering one year of exposure and a 
sticky bottom. 

A last consideration should be made about the OEL used as basis for 

Table 1 
The effect of the stickiness, the deposition type, and particle type in air pa-
rameters on the estimated air concentration of particles. The showed medians 
and quartile ranges refer to the ratio between the air concentrations calculated 
considering a sticky bottom versus a non-sticky bottom for the stickiness 
parameter, lung dosimetry considering the primary particle in air versus 100% 
deposition for the deposition type, and air agglomerates versus primary particles 
in air for the particle type in air parameter.  

Parameter Compared result Median 
value 

First–third 
quartile 
range 

Min–max 
range 

Stickiness of 
bottom 

Sticky/non sticky 6.6 1.4–27.6 1.0–70.1 

Deposition 
type 

Dosimetry 
considering primary 
particle/100% 
deposition 

4.1 4.0–6.0 3.7–159.1 

Particle type 
in air 

Agglomerates/ 
primary particles 

2.3 1.6–2.9 0.1–4.0  
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comparison; depending on the country, a slightly different exposure 
limit may apply, and this would affect the classification of the in vitro 
data; this depends in part on the fraction of particles the limit applies to, 
since in certain cases a specific limit for the nano-sized fraction exists, 
while in others the limit refers to the inhalable fraction. Using for 
example the NIOSH limit for ultrafine TiO2 particles, which is 0.3 mg/ 
m3, would result in even more in vitro doses to be above the legal limit. 
This because the OEL is set to protect workers’ health and is derived 
from animal data, to which safety factors are applied to account for 
uncertainties in the extrapolation; the more stringent limit for the ul-
trafine fraction of titanium dioxide reflects the higher risk posed by the 
nanomaterial compared to its bulk counterpart (Schulte et al., 2010). 

3.3. In vitro and in vivo benchmark dose and BMD-derived human 
exposure level comparison 

The comparison of the BMDs in surface area dose extrapolated from 
in vitro and in vivo data showed for both data sets a wide range of values, 
extending over more than four orders of magnitude (Fig. 5). No clear 
trend for specific titanium dioxide types emerged, nor any difference 
based on the endpoint considered (Figs. S3 and S4). The in vitro BMD 
median value was around 0.38 cm2/cm2, with an interquartile range of 
roughly two orders of magnitude (4.1 ⋅ 10− 2–6.42 cm2/cm2), while in 
vivo BMDs were generally lower, with the median at 0.01 cm2/cm2 and 
the interquartile range between 1.99 ⋅ 10− 3 and 7.0 ⋅ 10− 2 cm2/cm2. 
Overall, in vivo data were one order of magnitude more precise than in 
vitro ones, both when considering 50% and 90% of the data centered on 
the median (assuming that the 5% lowest and highest values might be 
outliers). 

The differences between in vitro and in vivo BMDs may be attributed 
to the differences between human (cells) and animals, between in vitro 
and in vivo endpoints, but also to the different level of uncertainty of in 
vitro dosimetry and animal lung dosimetry. 

A more detailed comparison of animal and cell-based BMD values in 
surface area dose for inflammatory endpoints showed similar values for 
rat, mouse, and murine macrophages, while human cells turned out to 
be less susceptible to inflammatory effects, as shown in Fig. 6. Both in 
vitro and in vivo endpoints, respectively the release of pro-inflammatory 
cytokines and the neutrophil influx in BALF, are indicators of inflam-
mation, and have been suggested as one of the most promising endpoints 
for IVIVE (Donaldson et al., 2008). The rat BMD values were generally 
lower than the mouse ones (despite the difference not being statistically 
significant), in line with the observations of comparative studies (Ber-
mudez et al., 2004; Warheit, 2011). For anatase TiO2, the murine cell 
line showed values similar to the animal data, while human co-cultures 
of A549 epithelial cells and THP1 macrophages had a BMD range 
significantly higher than the animal one (370 times higher than the rat, 
96 times higher than the mouse). The dendritic cells showed BMD values 
similar to the mouse data, but higher than the rat and significantly lower 
than the co-culture. THP-1 monocytes had a median value similar to the 
co-culture one,and were statistically different from the rat data. 

Comparing the animal and human co-culture BMD for NM105/P25 
TiO2, a mixture of 80% anatase and 20% rutile, primary particle size 
21 nm, confirmed the significantly higher BMD for the co-culture 

Fig. 3. The distribution of the in vitro doses based on their extrapolated air concentrations over OEL ratio considering the same exposure time as in vitro, when using 
lung dosimetry and assuming the primary particle in air (a), and with the conservative assumption of 100% deposition in the lung (b). The y axis (“Number of points”) 
reports the absolute number of data points, i.e. doses, while the percentage of doses belonging to each range is indicated over each bar. The bottom of the well is 
considered non-sticky. N = 484. 

Fig. 4. The distribution of the in vitro doses based on their extrapolated air 
concentrations over OEL ratio, considering one year of exposure on the work-
place. The y axis (“Number of points”) reports the absolute number of data 
points, i.e. doses, while the percentage of doses belonging to each range is 
indicated over each bar. The bottom of the well is considered non- 
sticky. N = 484. 
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compared to the rat (362 times higher) and the mouse (138 times 
higher), even though we couldn’t ascertain the similarity of murine 
macrophages and animal BMD due to lack of data. 

When comparing the data it should be kept in mind that the calcu-
lated BMD values have a high uncertainty, as multiple experimental 
factors may affect the results; this was clear for example in the P25 data, 
which, despite using the same particle, showed a very high variability 
both in vitro and in vivo. A limitation of the analysis is the scarcity of 
comparable in vitro and in vivo studies; for example, as observable in 
Fig. 5, most animal studies tested rutile TiO2, while in vitro studies 
focused more on the anatase form. This prevented a more robust and 
comprehensive comparison of BMDs across species and cell lines. 

3.4. Testing the surface area dose metric hypothesis 

In our comparison of BMD values we did not observe any relevant 

difference when using the mass dose or the surface area dose. As surface 
area has been often reported as the most relevant metric for acute pul-
monary toxicity (Schmid and Stoeger, 2016; Monteiller et al., 2007), we 
wanted to verify whether our results depended on the use of the human 
exposure concentration estimated via CoDo, or whether they were due 
to the high variability of the data in terms of particles properties and 
experimental conditions. Therefore, we applied our model to the data set 
from Rushton et al. (2010), for which the authors observed a linear 
relationship between the in vitro and in vivo steepest slope of the 
dose-response curve of eight different particles, when considering the 
surface area dose (Fig. 7a). The linear relationship was maintained when 
using the human air concentration in surface area as dose (Fig. 7b), 
indicating that extrapolating to humans via CoDo does not “hide” the 
relationship between in vitro and in vivo effects when they are observed 
using surface area doses. We could though not test the existence of this 
relationship on our TiO2 data set due to the scarcity of corresponding in 

Fig. 5. The distribution of the human BMD values extrapolated from the in vitro data set (a), and the in vivo data set (b), for different titanium dioxide types, 
expressed in surface area dose. The red dashed line represents the median value, and the aquamarine area the interquartile range of the distribution (25–75%).(For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Comparison of the rat and mouse BMD in surface area 
for PMN influx in BALF and the BMD in surface area for 
cytokine release (IL-6, IL-1β, TNFα, IL-8) of multiple cell lines: 
the murine macrophage RAW264.7, human dendritic cell 
(DC) monoculture, human monocytes THP-1, and a coculture 
of human epithelial cells A549 and human macrophages 
differentiated from THP-1 cells. The colored boxes represent 
the interquartile range of BMD values, the single points are 
outliers, calculated as points exceeding 1.5 times the inter-
quartile range past the high or low quartile (represented by 
the whiskers). * 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** 
0.0001 < p < 0.001. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web 
version of this article.)   
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vitro and in vivo data. 

3.5. SVM classification models 

The optimal SVM model built on the in vitro viability data set used six 
features to classify the data in three BMD-derived human exposure level 
ranges, considering five days of workplace exposure. The selected fea-
tures are: the primary particle diameter, the agglomerate diameter, the 
presence or absence of serum in media, the anatase type, the dendritic 
cell (DC) cell type, and the LDH assay. Since the classifier is built on the 
provided data set, the relevance of different features is affected by how 
these features are represented in the training data. For example, while 
the exposure time is a known parameter affecting toxicity, it was not a 
good predictor in our model because the training data it was built on 
included mostly exposure times of 24 hours, i.e. the effect of the expo-
sure time on toxicity was not well-represented in the data set. The data 
was classified in the classes: BMD-derived human exposure level <
10 mg/m3, 10 mg/m3 ≤ BMD-derived human exposure level < 50 mg/ 
m3, BMD-derived human exposure level ≥ 50 mg/m3. The model has an 
overall accuracy of 85% (Table 2 and Fig. 8a), correctly classifying most 
data points belonging to the lowest and highest classes, i.e. BMD-derived 
human exposure level ≤ 10 mg/m3 and BMD-derived human exposure 
level > 50 mg/m3. The analysis of the coefficients (Figs. S5, S6, and S7) 
shows the importance in particular of the LDH assay, the primary par-
ticle diameter, the anatase type and the presence/absence of serum in 
media for the classification into the three different classes. 

For cytokine release, the optimal model classified the data in three 
classes: BMD-derived human exposure level < 10 mg/m3, 10 mg/m3 ≤

BMD-derived human exposure level < 50 mg/m3, BMD-derived human 
exposure level ≥ 50 mg/m3, and used six features: the presence or 
absence of serum in the media, the agglomerate diameter, the exposure 
time, the 65% anatase 35% rutile titanium dioxide type, and multiple 
cell types, i.e. A549+THP1 macrophages, human bronchial epithelial 
cell (16HBE)+ THP1+Human Lung Microvascular Endothelial Cells 
(Hlmvec), murine macrophages (RAW264.7), human monocyte-derived 
macrophages (hMDM), Human lung epithelial cells (BEAS-2B), and 

dendritic cells (DC). The SVM model had a worse performance than for 
viability endpoints, with a total accuracy of 66% (Fig. 8b and Table 2. 
The type of cells used and the presence or absence of serum were 
important features for the classification (Figs. S8, S9, and S10). 

For the in vivo data, the optimal classifier utilized only three features, 
i.e. the primary particle diameter, the length of exposure, and the rutile 
type, to classify the data in three classes for the neutrophil influx in BALF 
endpoint: BMD-derived human exposure level < 5 mg/m3, 5 mg/m3 ≤

BMD-derived human exposure level < 8 mg/m3, BMD-derived human 
exposure level ≥ 8 mg/m3. Fig. 9 and Table 3 report the accuracy, 
precision, sensitivity and F1-score for the different classes. The model 
correctly classifies the lowest class in 91% of the cases, while the 

Fig. 7. Correlations between in vitro luciferase-transfected human type II lung epithelial cell line (A549 Luc-1) luciferase response and in vivo inflammatory response 
(number of neutrophils). (a) Responses normalized to the instilled surface area dose (in vivo) and particle concentration in media in surface area dose (in vitro). (b) 
Responses normalized to the human-extrapolated air concentrations in surface area dose. 

Table 2 
The performance of the SVM classifiers for viability and cytokine release built on 
the in vitro data. Exp. level indicates the BMD-derived human exposure level 
considering five days of workplace exposure. Precision measures the number of 
true positives over the sum of true and false positives. Sensitivity measures the 
ratio of true positives over true positives and false negatives. F1-score is a 
weighted average of precision and sensitivity. Accuracy is the ratio of correctly 
classified data points.  

Class Precision Sensitivity F1- 
score 

Number of data 
points 

Viability 

Exp. level < 10 mg/m3 0.80 0.86 0.83 14 
10 ≤ Exp. level <

50 mg/m3 
0.80 0.57 0.67 7 

Exp. level ≥ 50 mg/m3 0.89 0.91 0.90 34 

Accuracy 0.85 55 

Cytokine release (IL-6, IL-1β, TNFα, IL-8) 

Exp. level < 10 mg/m3 0.86 0.46 0.60 13 
10 ≤ Exp. level <

50 mg/m3 
0.55 0.60 0.57 20 

Exp. level ≥ 50 mg/m3 0.70 0.81 0.75 26 

Accuracy 0.66 59  
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precision, i.e. the number of true positives over the sum of true and false 
positives, is 73%, versus 63% of the baseline (probability to randomly 
guess correctly the belonging to the first class). The misclassification of 
the data belonging to the middle class suggests that, in addition to the 
limited amount of data points, the data has a lot of noise and/or some 
data points are outliers. To strengthen the model, and in particular the 
middle class predictions, future experiments would have to focus on 
replicating the conditions of the middle class data set. The analysis of the 
coefficients in Figs. S11, S12, and S13 show that the primary particle 
diameter and the rutile type are the most important features, while the 
total length of exposure contributes marginally. 

3.6. Limitations 

Great uncertainties exist in the calculation of human exposure levels 
corresponding to in vitro doses. As presented in Section 3.1, both in vitro 
and lung dosimetry parameters affect the results. While the user may test 
the different conditions and calculate a range rather than a single value, 
there are other sources of uncertainties on which less control can be 
exerted at modeling level. For example, the model assumes that the 
agglomerate in the in vitro system are stable over time, and while a 
dispersion procedure has been published by Deloid et al. (2017), it is not 
always followed (especially in older studies). Moreover, considering 
only the median diameter is a simplification of the real size distribution 
of the particles, and depending on the method used to measure this 
property a different value may be obtained, for example DLS has been 
shown to be greatly affected by the presence of large particles compared 
to NTA (Filipe et al., 2010). Concerning lung dosimetry, the lack of in-
formation about the particle agglomeration state in the air and the 
correspondence between an airborne particle and the particle tested in 
vitro represents a challenge. The approach proposed by Pal et al. (2015b) 
solves this issue by considering the emission of particles on the work-
place as the starting point: the aerosol is collected and used in in vitro 
tests, after applying lung and in vitro dosimetry to assure correct dosing. 
In this way, the cells are exposed to the airborne particles, which though 
could still be altered by e.g. the interaction with the media. However, 

Fig. 8. Confusion matrix of the SVM classification model built on the in vitro data set for (a) viability endpoints (55 data points), and (b) cytokine release endpoints 
(59 data points). The columns indicate in which BMD-derived human exposure level range (Exp. level in the figure) each data point was classified, i.e. the predicted 
class, while the rows indicate in which class the data point really belongs. The anti-diagonal (i.e. the diagonal from top right to bottom left) indicates the number of 
data points correctly classified in each class. 

Fig. 9. Confusion matrix of the SVM classification model built on the in vivo 
data set (72 data points), for the neutrophil influx in BALF. The columns 
indicate in which BMD-derived human exposure level range (Exp. level in the 
figure) each data point was classified, i.e. the predicted class, while the rows 
indicate in which class the data point really belongs. The anti-diagonal (i.e. the 
diagonal from top right to bottom left) indicates the number of data points 
correctly classified in each class. 

Table 3 
The performance of the SVM classifier for PMN influx in BALF built on the in vivo 
data. Exp. level indicates the BMD-derived human exposure level considering 
five days of workplace exposure. Precision measures the number of true posi-
tives over the sum of true and false positives. Sensitivity measures the ratio of 
true positives over true positives and false negatives. F1-score is a weighted 
average of precision and sensitivity. Accuracy is the ratio of correctly classified 
data points.  

Class Precision Sensitivity F1- 
score 

Number of data 
points 

Exp. level < 5 mg/m3 0.73 0.91 0.81 45 
5 ≤ Exp. level <

8 mg/m3 
0.00 0.00 0.00 8 

Exp. level ≥ 8 mg/m3 0.62 0.53 0.57 19 

Accuracy 0.71 72  
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CoDo takes the opposite approach, i.e. starting from the in vitro dose and 
moving up towards an hypothetical exposure scenario, thus not 
requiring any environmental sampling or knowledge of specific expo-
sure conditions. This makes the model more accessible to the nano-
toxicology community, but also increases the uncertainty of the results. 

All these sources of uncertainty should be kept in mind also when 
calculating BMD and BMD-derived human exposure levels; additionally, 
further variability is introduced for example by differences in in vitro and 
in vivo experimental conditions that may affect the toxicity of the par-
ticles, such as the presence of serum in the media (Vranic et al., 2017). 
Last, choosing representative endpoints in vitro remains an important 
issue for the extrapolation of in vitro effects to human-relevant endpoints 
(Romeo et al., 2020). 

4. Conclusions 

Applying the theoretical framework developed in our previous 
publication (Romeo et al., 2020), we developed a combined dosimetry 
model (CoDo) that estimates the human exposure concentrations cor-
responding to the doses used in vitro. Our analysis of titanium dioxide 
data confirms that most in vitro doses are still quite high, being repre-
sentative of long exposure times. CoDo can be used retrospectively to 
assess the doses used in in vitro studies, but also prospectively to select 
realistic doses during the design of an experiment. 

The wide range covered by the human surface area BMDs extrapo-
lated from in vitro and in vivo data suggests that both data sources have a 
large inter-study variability, but in vivo data produce more consistent 
results. By comparison, in vitro values were on average thirty-eight times 
higher than in vivo ones; when looking specifically at different TiO2 
types and different cell lines, we observed comparable BMDs from ro-
dents and murine cell experiments, while human macrophages and co- 
cultures showed a lower susceptibility to inflammatory effects. How-
ever, the scarcity of comparable data across species, cell lines, and 
particle types hinders the evaluation of the effects of these factors on the 
BMD range. 

The SVM classification model built on the in vitro data set for viability 
endpoints was able to predict with good accuracy the range of the BMD- 
derived human exposure level, based on a limited number of particle 
properties and experimental parameters. 

Combined dosimetry demonstrated to be a successful strategy for 
IVIVE, and CoDo a useful tool when working with big data sets, allowing 
a meta analysis of titanium dioxide toxicity data. 

Model and data availability 

CoDo model, its supporting files, and the User Guide are openly 
available in Zenodo at https://doi.org/10.5281/zenodo.4889169. The 
data supporting the findings of this study are available within the arti-
cle's supplementary materials. 
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