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Model predictive control (MPC) strategies can be applied to the coordination of energy hubs to reduce
their energy consumption. Despite the effectiveness of these techniques, their potential for energy sav-
ings are potentially underutilized due to the fact that energy demands are often assumed to be fixed
quantities rather than controlled dynamic variables. The joint optimization of energy hubs and buildings’
energy management systems can result in higher energy savings. This paper investigates how different
MPC strategies perform on energy management systems in buildings and energy hubs. We first discuss
two MPC approaches; centralized and decentralized. While the centralized control strategy offers optimal
performance, its implementation is computationally prohibitive and raises privacy concerns. On the other
hand, the decentralized control approach, which offers ease of implementation, displays significantly
lower performance. We propose a third strategy, distributed control based on dual decomposition, which
has the advantages of both approaches. Numerical case studies and comparisons demonstrate that the
performance of distributed control is close to the performance of the centralized case, while maintaining
a significantly lower computational burden, especially in large-scale scenarios with many agents. Finally,
we validate and verify the reliability of the proposed method through an experiment on a full-scale
energy hub system in the NEST demonstrator in Dübendorf, Switzerland.
� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recent developments have considerably diversified and
expanded the technologies used to harvest and manage energy.
The utilization of all these technologies to operate multiple build-
ings effectively and cooperatively has led to the concept of energy
hubs [1–4]. An energy hub comprises different energy production,
conversion, and storage capabilities, whose objective is to effi-
ciently manage energy resources to handle time-varying produc-
tion/consumption mismatches [5]. With the arrival of renewable
energy sources and the proliferation of prosumers, energy-
producing environments will use an increasing number of energy
technologies. The concept of the energy hub is therefore promising
for the efficient management of such environments.
Despite their interconnected nature, energy hubs have no
impact on the effective consumption of energy by their connected
consumers, such as buildings. According to [6], the Swiss Federal
Office of Energy (SFOE) states that in 2021, Swiss buildings will
consume approximately 100 TWh. This corresponds to 45% of the
total energy demand nationwide. On a global scale, buildings con-
sume 32% of the world’s total energy demand [7]. The SFOE
declared that the Energy Strategy 2050 (Switzerland’s new energy
policy) aims to reduce the energy consumption of Swiss buildings
to 55 TWh by 2050. To achieve this objective, buildings need to be
considered as active participants with energy management sys-
tems – working hand in hand with energy hubs to accommodate
and manage new energy technologies to reduce the world’s energy
consumption.

Energy hubs can benefit from advanced control methods, such
as model predictive control (MPC, [8]), to provide stable and accu-
rate energy management strategies that are in accordance with the
(as of now, uncoordinated) exterior energy supply/demand of
buildings. Two contrasting control strategies are commonly pre-
sent: decentralized and centralized. The principle of the decentral-
ized approach is that control is local and that there is no
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Nomenclature

Dbsi kð Þ Heat balance in tank i at instant k. [kW]
Li Set containing the indexes of all controlled buildings

connected to tank i. [–]
dci kð Þ Vector of solar irradiance and ambient temperature in

controlled building i at instant k. [kW]
dsi kð Þ Heat demand by the buildings at instant k connected to

tank i. [kW]
NC Number of controlled buildings. [–]
uc
i kð Þ Vector containing heat supplied in rooms of controlled

building i at instant k. [kW]
us
i kð Þ Heat supplied to tank i by heat pump and electric boiler

at instant k. [kW]
ucnet
i kð Þ Stacked vector containing the heat taken from each con-

nected tank to controlled building i. [kW]

usnet
i kð Þ Stacked vector containing the heat demand of con-

nected controlled buildings to tank i. [kW]
xci kð Þ Vector containing room temperatures in controlled

building i at instant k. [�C]
xsi kð Þ Average temperature of tank i at instant k. [�C]
zci kð Þ Binary number determining if uc

i kð Þ is switched on or
off. [–]

zsi kð Þ Binary number determining if us
i kð Þ is switched on or

off. [-]
NHP;NHB;NS;NNC Number of heat pumps, electric boilers, tanks,

uncontrolled buildings. In this case NS PNHP;NHB;NNC.
[–]
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communication between the energy hub and the different local
controllers of the buildings. For example, [9] proposes a decentral-
ized MPC approach for the management of energy hubs. In the cen-
tralized approach, a single master controller is designed to
compute the control actions of all the controllers of the energy
hub and the buildings, accounting explicitly for interactions
between the energy hub and the buildings. In [10], a centralized
MPC to control multi-energy systems is demonstrated in
simulation.

The same advanced control techniques are also particularly
suitable for building control, since by employing a predictive
approach, the evolution of building behavior, weather fluctuations,
variation in energy prices, and so forth, can all be taken into
account to optimally adapt the heating/cooling control policy to
reduce energy consumption while maintaining thermal comfort
constraints. As MPC approaches are often limited by the need for
fast computing power, it is particularly adaptable to building
automation, since the slow timescales of the thermodynamic pro-
cesses facilitate implementation in real-time. The idea of using
MPC for building automation is not new, as there have already
been many attempts both in simulation [11–14] and on real sys-
tems [15–17]. Historically, building models for MPC have been
expensive to obtain due to each building being modelled individu-
ally, although toolboxes for grey-box modelling have simplified
this task [18,19]. More recently, Machine learning and data-
driven identification methods have been successful in automating
the process of modelling buildings in a manner suitable for MPC
[20,21]. A comprehensive survey on MPC for building automation
is provided by [22].

The approaches in the literature have not yet considered build-
ings as controllable entities in combination with energy hubs, even
though the thermal mass of buildings can effectively act as energy
storage [23]. With data-driven models of building dynamics
becoming increasingly available [24–28,20], building models can
be included in the energy hub control problem with moderate
effort. Furthermore, in this configuration, the building controllers
provide the computation, communications and control framework.
Therefore, instead of deploying MPC strategies for energy hubs that
treat buildings simply as energy demands, one can envision simul-
taneously controlling both energy hubs and buildings, leading to
more significant energy savings.

Therefore, this work aims to consider energy hubs and buildings
as cooperatively controlled entities with local constraints. These
considerations raise questions and concerns regarding the privacy
of the building unit occupants and the computational feasibility of
such an approach. We address this issue by using a distributed
2

control system, where the controllers of the units perform calcula-
tions separately from each other and communicate by only sharing
virtual prices. The introduced scheme is compared to a centralized
and a decentralized predictive control approach through extensive
numerical experiments modeling a physical system. Finally, the
proposed method is tested on an experimental configuration
equipped with an energy hub and a building in Dübendorf, Zürich.

The paper is structured as follows. The modeling environments
of the energy hubs and the buildings are defined in Section 2. The
centralized, decentralized, and distributed control structures are
described in Section 3. All three controllers are compared via
numerical simulations in Section 4. Experimental results are pre-
sented in Section 5, and the paper is concluded in Section 6.
2. Problem statement

We first define the architecture of the environment in which the
energy hubs and the buildings interact. The environment is made
of infrastructures and technologies that were readily available for
performing experiments. To demonstrate the potential benefits of
distributed control, we focus only on serving a heating demand
of buildings served by systems made of tanks, heat pumps, and
boilers that receive electricity from the grid. The methods could
extend to more general settings, as the technologies that constitute
an energy hub can be very diverse [29], but would obscure our
main point, which is the relative benefits between decentralized,
centralized, and distributed control. Accordingly, in this study,
energy hubs consist of storage units, like water tanks for thermal
energy storage, conversion units such as heat pumps and electric
boilers, and the network units like heat distribution networks.
These are connected to external energy supply and demand, e.g.,
the electrical grid and the heating demands of buildings. Fig. 1
illustrates the architecture scheme of the energy hub and the exte-
rior streams. The hub, supply streams, and demand streams are
shown by dashed rectangles respectively in blue, red, and green
color. The connection arrows depict the energy flows between
the several structures. Starting from the top, the supply stream
consists of the local electrical grid supplier. For ease of discussion,
it is assumed that the supply stream is constant. Accordingly, we
unify all the different potential energy sources, such as hydro-
power and solar power, as one single source, shown here by the
electrical grid supplier. In the middle, the energy hub comprises
two levels. On the first level, conversion components consist of
NHP heat pumps and NHB electric boilers, which are connected to
the electrical grid. The next level consists of NS water storage tanks.



Fig. 1. The configuration of the energy hub and buildings.
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Every tank is supplied by a maximum of one heat pump and one
electric boiler, and so NHP P NHB;NS. At the bottom of Fig. 1, one
can see that the tanks are serving the heating demand streams
via a heat distribution network. This network defines the existing
links between each building and each storage tank. We assume
that NC of the buildings are controlled, i.e., they coordinate the con-
trol inputs with the energy hub. Meanwhile, the rest of the build-
ings, NNC, are uncontrolled, i.e., they do not coordinate with the
energy hub, and their demand is rather seen as a disturbance.
Lastly, we assume that all uncontrolled buildings connected to
one tank can be lumped into a single demand, so the number of
uncontrolled buildings is less than to the number of water tanks,
i.e., NS P NNC.

Next, we introduce the models for each of the components. For
water tanks, we consider a discrete-time linear equation to
describe the dynamics. The equation that captures the dynamical
behavior of the ith water tank in the energy hub at time k is given
by

xsi kþ 1ð Þ ¼ As
i x

s
i kð Þ þ Bs

iDb
s
i kð Þ þ Es

i d
s
i kð Þ; ð1Þ

where xsi kð Þ denotes the state variable which is the average temper-
ature of the tank, ds

i kð Þ is the disturbance and defined as the heating
demand by the uncontrolled buildings, and Dbs

i kð Þ denotes the input
balance which is specified with more details later in this section.
Note that the superscript ‘‘s” on each variable stands for ‘‘supplier”.
The state and input variables are limited by polytopic operational
constraints as follows
3

Hs
i x

s
i kð Þ 6 hs

i þ �si kð Þ; ð2Þ
Gs

i u
s
i kð Þ 6 gs

i 1� zsi kð Þ� �þ ~gs
i z

s
i kð Þ; ð3Þ

where hs
i is the vector denoting state constraints, gs

i and ~gs
i are vec-

tors for input constraints, and Hs
i ;G

s
i are matrices of appropriate

dimensions. Note that zsi kð Þ 2 0;1f g is a binary variable that deter-
mines whether the input is switched on or off. We emphasize that
the variable zsi kð Þ is necessary only when the input us

i kð Þ is con-
strained by a non-zero lower bound. Hence, we enforce that gs

i

and ~gs
i are complementary vectors, i.e., if an input command needs

to be switched off, zsi kð Þ can switched between 0 and 1 and ~gs
i is non-

zero, otherwise zsi kð Þ is defined as null and gs
i is non-zero. Further-

more, similar to [30], the slack variable �si kð Þ is introduced to relax
the state constraints and guarantee feasibility at each time-step.
Since the states with bound constraints are the temperatures, it is
preferred to penalize possible constraint violation rather than the
algorithm terminates due to infeasibility.

The heat supplied to the water tanks is provided by heat pumps
and electric boilers. It is assumed that the coefficient of perfor-
mance of the heat pumps is higher than that of the boilers. Their
operating range has a non-zero lower capacity limit
(uHP 2 ulow; uhigh

� �
, with ulow;uhigh > 0). The electric boiler has a lar-

ger range of operation and thus acts as a backup if the heat pump is
not able to satisfy the energy demand under these constraints.

The dynamics of the controlled buildings are also described by a
discrete-time linear time-invariant system, as has been proven
suitable for MPC in buildings before [31–33]. More precisely, for
the jth building connected to the hub, at instant k, we have

xcj kþ 1ð Þ ¼ Ac
j x

c
j kð Þ þ Bc

j u
c
j kð Þ þ Ec

j d
c
j kð Þ; ð4Þ

where xcj kð Þ is the vector of state variables which are the tempera-
tures of the zones in the building, uc

j kð Þ denotes the vector of heat-

ing powers in the zones, and dc
j kð Þ is the vector of disturbances

including solar radiation and ambient temperature. Note that the
superscript ‘‘c” over each variable stands for ‘‘consumer”. For the
states and inputs, we have the following polytopic operational
constraints

Hc
j x

c
j kð Þ 6 hc

j þ �cj kð Þ; ð5Þ
Gc

j u
c
j kð Þ 6 gc

j 1� zcj kð Þ
� �

þ ~gc
j z

c
j kð Þ; ð6Þ

where hc
j is the vector for state constraints, gc

j and ~gc
j are the vectors

for input constraints, and Hc
j ;G

c
j are matrices of appropriate dimen-

sions. The variable zcj kð Þ 2 0;1f g is binary, and determines whether
the input is switched on or off. The slack variable �cj kð Þ is used here
to soften the state constraints.

In contrast to controlled buildings, the energy consumption in
uncontrolled buildings is determined by local users or unknown
control systems. From the perspective of the suppliers, the demand
of such buildings is represented as a disturbance in Eq. (1). The
model of the uncontrolled buildings is therefore reduced to a heat-
ing demand forecast that can be obtained using historical data and
available techniques in machine learning [34]. We rely on a feed-
forward ANN (Artificial Neural Network) [35] to provide day-
ahead forecasts based on ambient conditions and time features.
Additionally, the predictions are improved with two correction
methods, one based on the forecasting error auto-correlation, and
one based on online learning. The methodology is described in
[36] and validated in [37] where an experiment is performed
employing this forecast technique and robust MPC for the purpose
of frequency regulation.
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The heat balance between energy suppliers and consumers
must be satisfied at each time-step k in accordance with the
assumed distribution network. We model this requirement
through the following equality constraints

Dbs
i kð Þ ¼ Cs

i u
s
i kð Þ þ Bsnet

i usnet
i kð Þ; i ¼ 1; . . . ;NS; ð7Þuc

j kð Þ
¼ Bcnet

j ucnet
j kð Þ; i ¼ 1; . . . ;NC; ð8ÞCsnet

i usnet
i kð Þ

¼
X
j2Li

Ccnet
ij ucnet

j kð Þ; i ¼ 1; . . . ;NS; ð9Þ

where Eq. (7) describes the input–output energy balance for each
storage tank. More precisely, for storage tank i, the term us

i kð Þ refers
to the stream incoming to the storage which includes the heat
power supplied by the heat pump and the electric boiler, and, the
second term usnet

i kð Þ is a vector containing the heat demand of the
connected controlled buildings. Moreover, Eq. (8) defines that the
input vector uc

j kð Þ of each controlled building must be equal to a

vector ucnet
j kð Þ containing the amount of heat taken from each con-

nected tank. Finally, Eq. (9) ensures the balance between the heat
quantity taken from each tank and the heat consumed by each con-
nected controlled building. For tank i, the set Li contains the indices
of all controlled buildings connected to that tank.

The building models assumed in our present work use radiant
heating systems and do not have air-handling units (AHUs) in
order to be congruent with the experimental results in §5 (and
many residential buildings in Europe). In general, AHUs induce a
bilinearity in the building dynamics, and thus a linearization
scheme may be used to incorporate an AHU model in the MPC for-
mulation used in this paper [1].

For ease of discussion, the thermal losses in the storage systems
and pipes are not considered in their mathematical models, which
is according to their sufficient insulation in the experimental setup
employed in Sections 4 and 5. Similarly, we have employed the
same settings in the mathematical models of the buildings and
energy hubs. It is worth noting that the presented method readily
extends to linear models for temperature loss, such as heat con-
duction losses for the storage and pipes.
3. Control methodologies

In this section, we use the previously defined dynamics and
constraints to derive a suitable control strategy for determining
the control action of the energy hub. To this end, we present differ-
ent forms of MPC control structures for the energy hub environ-
ment. More precisely, centralized, decentralized and distributed
approaches are respectively presented in Section 3.1, Section 3.2
and Section 3.3, respectively. In Section 3.4, an algorithm for the
deployment of the distributed control structure is proposed.
2 We choose a quadratic cost function as it provides a balance between minimizing
total costs and peaks.
3.1. Centralized MPC

Given the models, the constraints, the current measurements,
and the disturbance forecasts, the centralised MPC controller com-
putes an optimal control input by solving an open-loop optimiza-
tion problem formulated over a prediction horizon of length N.
Then, the first timestep of the computed control sequence is
applied to the plant [38]. Repeating this procedure and shifting
the horizon produces a closed-loop controller as new measure-
ments are integrated into the optimisation problem at each step.

We have described two classes of agents, namely suppliers s
and consumers c. A supplier agent corresponds to a water storage
supplied by a heat pump and an electric boiler, which is disturbed
4

by a building heating demand. A consumer agent is a controlled
building. The cost function2 of the ith agent is defined as

f ai v
a
i

� � ¼ va>i Sai v
a
i ; ð10Þ

where a 2 s; cf g depending on whether i is a supplier or a consumer,
and where we define the decision variable and cost matrix respec-
tively as

vai ¼

uai
�ai
xai
zai
uaneti

26666664

37777775; Sai ¼

Qa
i 0 0 0 0
0 Rai 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

26666664

37777775; ð11Þ

where Qa
i and Rai are user-defined weighting matrices, and uai , �

a
i , x

a
i ,

zai and uaneti are vectors of stacked quantities respectively for input,
slack, state, binary and network variables, as follows

uai ¼
uai 0ð Þ

..

.

uai N � 1ð Þ

264
375; �ai ¼

�ai 1ð Þ
..
.

�ai Nð Þ

264
375; xai ¼

xai 1ð Þ
..
.

xai Nð Þ

264
375; zai

¼
zai 0ð Þ
..
.

zai N � 1ð Þ

264
375; uaneti ¼

uaneti 1ð Þ
..
.

uaneti Nð Þ

264
375:

In this notation, the inequality constraints in Eqs. (2) and (3) as
well as (5) and (6) can be written as

eGa
i 0 0 gai � ~gai 0

0 �eI eHa
i 0 0

0 �eI 0 0 0

2664
3775

uai
�i
xai
zai
uaneti

26666664

37777775 6
gai
hai
0

264
375; ð12Þ

where eGa
i ¼ IN � Ga

i ; ~g
a
i ¼ IN � gai ; eHa

i ¼ IN � Ha
i ;
eI ¼ IN � I and �

denotes the Kronecker product. The inequality (12) can be written
in the standard form

Gai vai
� �

6 0: ð13Þ
where Gai vai

� �
is an affine function of vai .

We can write the equality constraints in Eqs. (1), (4), (7), (8) and
(9) respectively as

I � eAs
i

� �
xsi � eBs

i u
s
i � eBsnet

i usnet
i ¼ eEs

i d
s
i þ cs;x0i ; ð14Þ

I � eAc
j

� �
xcj � eBc

j u
c
j ¼ eEc

j d
c
j þ cc;x0j ; ð15Þ

uc
j � eBcnet

j ucnet
j ¼ 0; ð16ÞeCsnet

i usnet
i �

X
j2Li

eCcnet
ij ucnet

j ¼ 0; ð17Þ

where the matrices eAa
i and vectors ca;x0i are defined as

eAa
i ¼

0 0 � � � 0
Aai 0 � � � 0
0 Aai 0

..

. . .
. ..

.

0 � � � Aai 0

266666664

377777775
; ca;x0i ¼

Aai x
a
i 0ð Þ
0
..
.

0

266664
377775;
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and where eBa
i ¼ IN � Bai C

a
i ;
eBanet
i ¼ IN � Bai B

snet
i ; eEai ¼ IN � Eai andeCanet

ij ¼ IN � Canet
ij . In a similar way, the equality constraints can be

written in standard form

F s
i v s

i ; ucnet
j

� �
j2Li

� 	
¼ 0; ð18Þ

F c
j vc

j

� �
¼ 0; ð19Þ

where F s
i v s

i ; ucnet
j

� �
j2Li

� 	
and F c

j vc
j

� �
are affine functions of vs

i ; vc
j

and ucnet
j

� �
j2Li

Þ. The resulting centralized optimization problem is

as follows:

min
v s

1; . . . ;v s
NS

vc
1; . . . ;vc

NC

XNS

i¼1

f si v s
i

� �þXNC

j¼1

f cj vc
j

� �

s:t: F s
i v s

i ; ucnet
j

� �
j2Li

� 	
¼ 0; i ¼ 1; . . . ;NS;

Gs
i v s

i

� �
6 0; i ¼ 1; . . . ;NS;

F c
j vc

j

� �
¼ 0; j ¼ 1; . . . ;NC;

Gc
j vc

j

� �
6 0; j ¼ 1; . . . ;NC:

ðP1Þ

Here, the supplier’s equality constraint F s
i (in particular, the heat

balance equations in (9)) depends on the consumer’s control input

ucnet
j

� �
j2Li

, which couples their dynamics. The resulting problem is

a Mixed Integer Quadratic Program (MIQP, [39]), due to the binary
variables in the constraints.
3.2. Decentralized MPC

The decentralized MPC approach is simply a partitioning of the
centralized approach [40]. The control problem is divided into
NS þ NC local problems of smaller size. In this context, agents
define their own optimization problems and make control deci-
sions independently from each other. These decisions rely exclu-
sively on local information (such as measurements, forecasts or
control decisions) and there is no negotiation between agents dur-
ing the optimization process. More precisely, for each i, the ith
agent decides on its decision variable vai such that its own cost
function f ai vai

� �
is minimized while its proper constraints F a

i and
Gai are satisfied. From the point of view of the agent i, other decision
variables vaj with j– i are ignored, i.e. the energy balance con-
straints coupling them together are applied in the physical system,
but not taken into account in the local decision problem.
3.3. Distributed MPC

In the distributed MPC approach [40], agents pass information
to one another to facilitate solving a coupled, global optimization
problem. In such a setting it is often desired to limit the communi-
cation between agents, due to, for example, to computational com-
plexity, and privacy concerns.

In the MPC setting considered here, one approach to designing
distributed controllers is based on the dual-decomposition method
5

[41]. First, the centralized problem is decomposed into agent-
based sub-problems. The sub-problems are then driven towards
the global optimal solution of the centralized problem the dual
problem that acts as a coordinator between the sub-problems
through a shared dual variable. Our approach to this problem is
inspired by [42]. We start by introducing variables

r ið Þ
j ; i ¼ 1; . . . ;NS with j 2 Li. These introduced variables contain

local versions of the coupled variable ucnet
j . So problem (P1) can

be written as

min
vs
1; . . . ; vs

NS

vc
1; . . . ; vc

NC

min
XNS

i¼1

f si v s
i

� �þXNC

i¼1

f ci vc
i

� �

s:t: F s
i vs

i ; ri
� � ¼ 0; i ¼ 1; . . . ;NS;

Gs
i vs

i

� �
6 0; i ¼ 1; . . . ;NS;

F c
j vc

j

� �
¼ 0; j ¼ 1; . . . ;NC;

Gc
j vc

j

� �
6 0; j ¼ 1; . . . ;NC;

ucnet
j

� �
j2Li

� ri ¼ 0; i ¼ 1; . . . ;NS;

ðP2Þ

where ri is defined as ri ¼ r ið Þ
j

� �
j2Li

, for each i ¼ 1; . . . ;NS. The bot-

tom equality constraint ensures that the introduced local variables

ri are equal to the shared, coupled variable ucnet
j

� �
j2Li

. The Lagran-

gian for problem (P2) then becomes
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where, for each i ¼ 1; . . . ;NS, we have ucnet
i ¼ ucnet

j

� �
j2Li

. The vectors

�vs; �ks; �ls;�r; �vc; �kc; �lc and �p are respectively defined as

�vs ¼
v s

1

..

.

v s
NS

264
375; �ks ¼

ks1
..
.

ksNS

264
375; �ls ¼

ls
1

..

.

ls
NS

264
375; �r ¼

r1
..
.

rNS

264
375; �vc

¼
vc
1

..

.

vc
NC

264
375; �kc ¼ kc1

..

.

kcNC

264
375; �lc ¼

lc
1

..

.

lc
NC

264
375; �p ¼

p1

..

.

pNC

264
375:

For i ¼ 1; . . . ;NS; k
s
i and ls

i are the local Lagrange multipliers associ-
ated to the supplier i; for j ¼ 1; . . . ;NC; k

c
j and lc

j are the local
Lagrange multipliers associated to the consumer j; and for

i ¼ 1; . . . ;NS, the vectors pi ¼ p ið Þ
j

� �
j2Li

are the global dual variables

shared between the suppliers and the consumers. Note that the



Fig. 2. Distributed MPC communication architecture (solid arrows indicate the
actions/measurements applied at each time-step while dashed arrows indicate the
information shared iteratively between each time-step).
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problem is now separable and so we can write the following dual
decomposition:

max
�ks ; �ls ; �kc ; �lc ; �p

min
�vs ; �vc ; �r

L �v s; �vc; �ks; �ls; �kc; �lc; �p;�r
� �

¼ max
�p

max
�ks ; �ls ; �kc ; �lc

min
�vs ; �vc ; �r
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where vector p jð Þ is defined as

p jð Þ ¼
X
ijj2Lif g

p jð Þ
i ; j ¼ 1; . . . ;NC;

and we have used the fact that

XNS

i¼1

p>
i u

cnet
i ¼

XNC

j¼1

p jð Þ>ucnet
j : ð22Þ

We assume that the Slater’s condition hold for problem (P2), which
is further discussed later. Subsequently, the strong duality holds
[41]. Accordingly, from the dual decomposition in Eq. (21), one
can distribute the problem across the agents with one problem
per agent based on the dual ascent method [41].

More precisely, we introduce the following iterative scheme:
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i
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� �
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where j is the step size, the superscript ‘‘+” denotes the iteration

update, and Rij r ið Þ
j

� �
:¼ qijkr ið Þ

j k2 is a regularization term. Given real

positive scalars qij, for i ¼ 1; . . . ;NS and j 2 Li, these regularization
terms are employed to improve the convergence of the proposed
scheme. Towards the same goal of regularizing the problem, we
may replace Sai , introduced in (11) with Sai þ dI, where I is the iden-
tity matrix and d is a small positive weight.

The distribution among the agents means that the original cen-
tralized problem (P1) splits into NS þ NC separate optimization
problems that can be solved iteratively in parallel as described in
problem (P3). Following this, for i ¼ 1; . . . ;NS the price vectors pi
6

are updated based on the last equation in problem (P3). Using
the introduced scheme, the decision variables converge to an opti-
mal point and the dual variables converge to an optimal dual point
[41].
3.4. Implementation of the distributed MPC problem

The procedure to find the solution to the distributed problem
(P3) can be formulated as follows. Given an initial dual variable

p jð Þ
i for each link between a consumer j and a supplier i, the mini-

mization problems in (P3) are solved by their respective agents.
Agents i and j then share the optimal values found for ri and ucnet

j

with an external unit through a shared communication network.
Then, the external unit computes the update of the prices in (P3)
using the sub-gradient method (see [41] for details), and broad-
casts them to the corresponding agents. Alternately, one of the
agents can also compute the price update and broadcast it across
the network to the corresponding agent. The agents recalculate
their optimal values and the process is repeated until a conver-
gence criterion is achieved. Fig. 2 represents the architecture of
the communication occurring between the agents.
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It should be noted that when solving problem (P2) with the sub-
gradient method, the convergence towards the solution can be
slow as the local cost functions are quadratic and the dual cost is
linear. Accordingly, we improve the convergence rate by including
a small quadratic regularization term in the cost function of each

supplier. This term is Rij r ið Þ
j

� �
, as shown in problem (P3).

Due to Slater’s condition and strong duality, solving problem
(P3) is equivalent to solving the regularized version of problem
(P1). However, in this paper the variables zai belong to a discrete
set and thus compromise the convexity of both problems. As a
result, a duality gap can appear between the dual problem (P3)
and the primal (P1). In order to resolve this duality gap, we relax
the problem [43], i.e. replace some of the binary variables zai (the
choice of which is discussed below) with continuous variables in
the interval 0;1½ �.

The solution of the relaxed problem R(P3) then matches that of
the corresponding relaxed centralized problem R(P1). However,
the solution will be sub-optimal when projected back to the orig-
inal problem with binary variables. In order to address this issue,
we propose a two-step method [44]:

1. Solve the relaxed problem R(P3) until convergence, i.e., we
reach threshold �tol;r in the variation of cost function.

2. Fix the binary variables zai (based on the solution of the relaxed
problem, i.e., when it is above a defined threshold value zbound, it
is set to 1, and otherwise, it is set to 0), and then, solve problem
(P3) until convergence �tol is achieved, i.e., the variation of cost
function is less than a given threshold �tol.

A known MPC practice is move-blocking ([45]), where decision
variables at the end of the prediction horizon are constrained to be
Fig. 3. Execution of Algorithm1 during a time-step of the experiment presented in
Section 5. (a) The difference between the solution of the centralized MPC and the
solution of the distributed MPC. (b) The cost function of the centralized MPC is in
dotted black and the cost function of the distributed MPC is in solid purple. In both
figures, the two stages of the algorithm are differentiated: the semi-relaxed MIQP in
the green region and the QP in the red region. The stopping criteria was achieved in
3.38s on a personal computer, an MSI GP62MVR 7RFX Leopard Pro with a 2.5 Ghz
Intel i5 7th Core CPU with 8 GB of RAM.
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equal, as these have a small effect on the optimality of the imple-
mented control input at the current time step. With the same rea-
soning, we only relax the variables after a certain horizon Nrelax

[46] and keep the first Nrelax ones as binaries. This way we can
improve the estimation of the first Nrelax binary variables [47],
while lowering the complexity of the problem compared to the
non-relaxed MIQP. If Nrelax P 2, we refer to this problem as the
semi-relaxed MIQP.

Algorithm 1 summarizes the distributed control policy. Fig. 3(a)
shows the evolution of the difference between the solution of the
centralized MPC and the solution of the distributed MPC at a
time-step of the experiment presented in Section 5. Fig. 3(b) shows
the evolution of the cost function of the distributed MPC compared
to the cost function of the centralized MPC when Algorithm 1 is
employed during the same time-step. Fig. 3 also displays the two
stages of the algorithm where a semi-relaxed MIQP is solved ini-
tially to find binary variables heuristically, and subsequently a
QP is solved to obtain the optimal solution. During step 1, the cost
function of the semi-relaxed MIQP converges to a sub-optimal cost
with tolerance �tol;r ¼ 5 � 10�3 at iteration 300. Given the sub-
optimal solution, the semi-relaxed MIQP becomes a QP by fixing
the binary variables to 1 if their relaxed counterpart exceeds the
threshold zbound ¼ 0:5, and to 0 otherwise. If this estimation proce-
dure produces the correct value of the binary variables, the cost
function and the solution of the QP respectively converges to the
optimal cost and optimal solution with �tol ¼ 5 � 10�4, which is
demonstrated in Fig. 3. Note that at the beginning of each stage,
the agents start from a feasible solution for their local constraints
which is not necessarily feasible for the global optimization prob-
lem. Then, as they proceed iteratively, they pay for this infeasibility
(via the dual variable), and ultimately reach the optimal global
(and therefore feasible) solution.

Algorithm 1.: Distributed MPC
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4. Numerical study

Numerical simulations of the proposed control approach
detailed in Section 3 are presented here. These simulations are per-
formed using a model derived from historical data of the building
presented in Section 4.1. A simulation of a multi-agent environ-
ment comparable to a city district is performed in Section 4.2. A
large-scale environment simulation to analyse the computational
complexity of the control structures is discussed in Section 4.3.
4.1. Case Study: NEST

The NEST (Next Evolution of Sustainable Building Technology)
building [48] is an energy hub demonstrator at Empa in Dübendorf,
Switzerland. The aim of the demonstrator is to test new technolo-
gies, materials, and systems in terms of their impact on energy
management in buildings. A picture of the facility is shown in
Fig. 4 (a). The building hosts a wide variety of technologies that
convert and store energy. It also comprises various units with dif-
ferent use cases (residential, offices, meeting rooms) that can be
temporarily installed in the NEST core structure. All units have
individual heating and cooling system and an individual control
system. Thus, in our paradigm, NEST can be viewed as a simulator
of the interaction between buildings and energy hubs.

In the context of this study, we employ three agents from the
demonstrator: the Urban Mining and Recycling (UMAR) unit and
the Digital Fabrication unit (DFAB) as two consumers, and the
medium temperature grid with a water buffer storage supplied
by a heat pump as one supplier.

The UMAR and DFAB units are both apartments in the NEST
building. UMAR is shown in Fig. 4(a) (also in caption) and DFAB
is shown in Fig. 4(b). The original purpose of UMAR is to demon-
strate the uses of fully reusable, recyclable, or compostable
resources in construction [49]. The DFAB unit is distinctive in that
it was not only digitally designed and planned but also built using
predominantly digital processes, both on-site and off-site [50].
Both units comprise seven rooms each. The units are equipped
with heating systems that take their energy from the medium-
temperature grid (with a supply temperature between 28 �C and
38 �C) of the NEST building via heat exchangers. The heat is then
sent to the rooms through pipes and distributed by ceiling heating
panels in UMAR and a floor heating system in DFAB. The heat
transferred to each room can be estimated by combining the sup-
ply valve position for each room and the total energy consumption
of the unit. Note that in this study, control is only available for
three rooms in UMAR: 272, 273, and 274, which are the bedrooms
and the living room of the unit. The heat supply in rooms 272 and
274 is constrained to 0.6 kW while room 273 is constrained to
Fig. 4. Different units making up the NEST building (a) Exterior view of NEST. The UMA
Zooey Braun (b) Exterior view of DFAB at night. Copyright: Roman Keller, Tom Mundy an
Bünning.
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1.8 kW. For DFAB, the heat supply in rooms 371, 472, 474, 476
571, 573, and 574 are respectively constrained to 0.83, 0.55, 1.36,
1.39, 1.14, 1.35 and 0.75 kW. Each room is equipped with a tem-
perature sensor. Forecasts for the disturbances, which are ambient
temperature and solar irradiation, are available from MeteoSwiss
[51]. The mathematical models of the units were obtained with a
data-driven approach using historical data captured from sensors
in the units [21].

The supplier agent of the medium temperature heating system
comprises a ground-source heat pump and a water storage tank.
The devices are shown in Fig. 4(c) and (d). The heat pump draws
cold water from the bottom of the storage, warms it up by transfer-
ring heat from the refrigerant to the water inside the condenser,
and feeds it back into the top of the storage tank. The heat demand
of the units is met with individual pumps drawing warm water
from the top of the storage tank and passing it through heat
exchangers, where the heat is transferred to the units’ heating sys-
tems. The average conversion efficiency between electrical energy
and high-temperature thermal energy in the heat pump is
described by the coefficient of performance aCOP ¼ 3:53. The elec-
trical capacity of the heat pump is between 8.2 kW and 12.8 kW.
The mathematical representation of the storage and the heat pump
is based on first-principles models established with simple thermal
heat transfer equations, which have been validated via experiment
[37]. As storage tanks are industrial products, we assume that the
parameters can be obtained from the manufacturer or easily be
determined with high accuracy. Furthermore, to take into account
the thermal losses of the heat pumps, an experimentally-
determined coefficient of performance is employed.
4.2. Multi-agent simulation

In this section, we present the results of numerical experiments
in order to evaluate the performance of the different control
schemes presented in Sections 3.1–3.3. The objective is to simulate
an environment comparable to a small city or a district, i.e., control
of multiple hubs and dwellings over a long duration. Using histor-
ical data and identified models of units of the NEST building, the
simulation was conducted using disturbance data from January
1–28, 2021.

The simulation environment comprises eight agents. There are
three suppliers (three tanks with heat pumps and boilers, repre-
sentative of that used in NEST), i.e. NS ¼ NHP ¼ NHB ¼ 3. Each tank
is connected with an uncontrolled building, i.e. NNC ¼ 3. There
are five consumers (two UMAR-like apartments and three DFAB-
like apartments), i.e. NC ¼ 8. The first supplier is connected to the
first and second consumers, the second supplier is connected to
the second, third, and fourth consumers, and the third supplier is
R unit is the apartment located on the second floor. Copyright: Wojzech Zawarski,
d Andrei Jipa (c) the Heat pump and (d) the water storage of NEST. Copyright: Felix
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Fig. 5. Performance of centralized, decentralized and distributed control schemes.
(a) the cumulative heat entering in the apartments. (b) the cumulative temperature
constraint violation in the tanks. (c) the cumulative heat entering the tanks. (d) the
cumulative temperature constraint violation in the rooms.
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connected to the fourth and fifth consumers. The characteristics of
the agents (states, inputs, constraints) were kept the same as
described in Section 4.1, while dynamic matrices of the agents
were perturbed to make them non–homogeneous. For the three
suppliers, the coefficient of performance aCOP occurring in the input
matrices Bs

i were modified from the original value and respectively
set to 3.7095, 3.6728, and 3.5367. Additionally, as a backup, an
electric boiler with a coefficient of performance of 1 and an electri-
cal capacity of 0 kW to 20 kW was connected to each tank. For the
five consumers, the dynamic matrices were obtained for different
indexes i by taking the original matrix components equal to their
nominal values plus a random term normally distributed with a
mean of zero and a standard deviation of ri. The term ri was
defined as the standard deviation of the set containing the compo-
nents of matrix As

i . The initial condition of the simulation, i.e., the
starting temperatures of the tanks and the rooms of the apart-
ments, were randomly chosen outside the corresponding opera-
tional constraints within a margin of 2�C. The external
disturbances (heating demand of uncontrolled buildings, ambient
temperature, and solar irradiance) were obtained from actual mea-
surements from the NEST building during the specified simulation
period.

The following simulation parameters were used in our evalua-
tion of centralized MPC, decentralized MPC, and distributed MPC.
The time-step between two adjacent control steps was set to
30 min. The prediction horizon was set to N ¼ 24, which corre-
sponds to 12 h. The upper and lower comfort constraints of all
rooms are 23 �C and 25 �C respectively. To simulate varying elec-
tricity prices, the coefficient of the suppliers’ weighting matrix Qs

i

in the cost function were defined based on the local scheduled
electricity tariff, i.e. 17.07 cents/kW h for off-peak between 10 p.
m. and 6 a.m., and 28.06 cents/kW h for on-peak during the rest
of the day. The input weighting matrices of the consumers Qc

i were
set to identity. The weighting matrices Rs

i and Rc
i were set to R =

200 � IN � I.
In the case of distributed MPC, the following additional param-

eters were used. The convergence tolerances were set to
�tol;r ¼ 5 � 10�3 and �tol ¼ 5 � 10�4. The minimum number of itera-
tions was set to 150, and the maximum number of iterations for
the relaxed-MIQP was set to lmax;r ¼ 300, while for the QP it was
set to lmax ¼ 850. This limitation is only used here to simulate pos-
sible operating delays. The relaxation horizon Nrelax was set to 12,
the decision boundary zbound was set to 0.5, and the dual variable
step size was set to j ¼ 0:15. Finally, the weighing factor qij was
tuned experimentally and set to 0:08 for each pair of connected
suppliers i and consumers j.

Table 1 presents a comparison of the results of each of the
tested MPC controllers. It shows the cumulative heat consumption
and constraint violation at the end of the simulation for both the
suppliers and the consumers. As the centralized controller has
complete information about all agents, the solution is considered
as the true optimum and serves as a reference for the other con-
trollers. It can be seen that the decentralized strategy shows poor
results in terms of constraint violations. Compared to the central-
ized strategy, the suppliers have violated the tank temperature
constraints by a factor of over 70. Moreover, the overall system
consumes more energy as the consumers requested a heat surplus
Table 1
Comparison table between centralized, decentralized and distributed control approach.

Room heating in [kWh] Room comfort zone violation in [�Ch] Tank heat s

Centralized-MPC 6920.6 3
Decentralized-MPC 7672.2 3
Distributed-MPC 6949.5 3
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of 10.1% compared to the centralized controller. The distributed
strategy delivers improved performance. The consumers only need
a heat surplus of 0.42% compared to the central solution while vio-
lating the constraints 0.54% less. The results show that the dis-
tributed MPC scheme has a comparable performance to the
centralized MPC, while both methods significantly outperform
the decentralized MPC.

Fig. 5 shows the cumulative costs for the heating suppliers, the
integrated temperature constraint violation in the tanks, the
cumulative heat entering the apartments, and the integrated tem-
perature constraint violation in the rooms. We can observe that the
centralized and distributed MPC have very similar performance in
terms of heat consumption and constraint violations. The decen-
upply in [kWh] Tank temperature constraint violation in [�Ch]

32.2 21285 (5917.1 CHF) 10.4
84.1 21824 (6408.5 CHF) 746.8
30.4 21314 (5937.6 CHF) 16.7



Fig. 6. Numerical experiment results. (a) Average temperature of the rooms of each apartment, black dotted lines indicate temperature constraints (b) Average room heat
supply in each apartment (c) Ambient temperature outside the NEST building (d) Average tank temperatures, black dotted lines indicate temperature constraints (e) Heat
supply of each heat pump, black dotted lines indicate input constraints (f) Heating demand of the uncontrolled buildings and the apartments.
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tralized MPC shifts gradually from the optimal performance over
time. This is due to the fact that the coupling between the agents
is not considered by the individual optimization problems. For
instance, without knowing the consumers’ heat demand, the sup-
pliers do not predictively adapt their heat supply from the tanks.
As the capacity of the heat pumps is limited, this results in a viola-
tion of the tanks’ state constraints, as can be seen in Fig. 5(b). Sim-
ilarly, without knowledge of the suppliers’ maximum capacity, the
consumers consume too much heat compared to the minimum
required, as pictured in Fig. 5(c). Note that the high violations of
consumers comfort constraints visible in Fig. 5(d) is a result of ini-
tial conditions outside of the operational constraints at the begin-
10
ning and an undersized heating system present in the real UMAR
and DFAB units.

Fig. 6 shows detailed trajectories of the distributed controller
for a single day of the numerical experiment. The historical data
used for the disturbances is from January 25, 2021. Fig. 6(a) shows
the average temperature of the rooms of each apartment in colored
bold lines along with the temperature constraints in dotted black
lines. It can be seen that all temperatures remained in the comfort
zone during the day. The average temperatures are shown for bet-
ter visibility; meanwhile, we note that the individual temperatures
also stayed within constraints. It can be seen that most of the tem-
peratures stay closer to the lower bound during the whole experi-



Fig. 7. Computational analysis. Total computational time necessary to calculate the
control action for the centralized and distributed control schemes with respect to
the number of agents for different ratios between the number of suppliers and
consumers. The simulation was performed using the Euler cluster at ETH [52].
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ment. During times of high ambient temperatures (see (c)),
between 12:00 and 15:00, some of the temperatures are close to
the constraint, as the heat pump can be expected to have enough
capacity reserves during these times. The optimization-based
strategy determines that it is an unnecessary use of energy to have
temperatures too high above the lower limit.

Fig. 6(b) shows the average heat input to the rooms of each
apartment, while Fig. 6(c) depicts the measured ambient tempera-
ture outside of NEST. We can see that the energy supply to the
rooms coincides well with the evolution of the outside tempera-
ture. Indeed, in every apartment, the heat input is reduced approx-
imately 50% from beginning to end of the day when the outside
temperature doubled in the same period.

Fig. 6(d) shows the average storage temperature of each tank in
solid colored lines and the temperature constraints in dotted black
lines. Fig. 6(e) shows the heat generated by each heat pump in
solid colored lines and the corresponding operational constraints
in dotted black. Fig. 6(f) depicts the (uncontrolled) actual heating
demand of the NEST building in solid red and the (controlled) heat-
ing demand of the apartments in solid colored lines. In Fig. 6(d), we
can see that the temperatures stayed within the constraints from
the beginning to the end of the experiment. In Fig. 6(e), we can
see that the inputs of the suppliers are, to a large extent, deter-
mined by the NEST heat demand. Nevertheless, the apartments’
heat consumption also affects the input of the suppliers, as the
heat pumps inject more heat in the tanks at the beginning of the
day than at the end.

4.3. Numerical analysis for large-scale scenarios

According to Section 4.2, the centralized and distributed con-
trollers have comparable performance in terms of energy con-
sumption and constraint violations. In contrast, the decentralized
controller has poor performance, and thus, it is not suitable to be
implemented in practice. However, the decentralized approach is
less computationally demanding than the other two, because the
optimization calculation is partitioned between the agents and
executed simultaneously. The distributed controller has the same
calculation configuration, but requires iterating between the
agents to reach a consensus on the shared optimal variables. For
implementation on real systems, where the optimization time is
constrained, it is necessary to investigate the computational
demand of the centralized and distributed controllers. In order to
address this question, large-scale simulations, i.e., involving a large
number of agents, are performed in the sequel.

Starting from an environment with two agents (one supplier
and one consumer) up to an environment with n agents, we calcu-
lated the computational time necessary for each controller to find
its solution for a single time-step. In each environment, the suppli-
11
ers correspond to the one described in Section 4.1, i.e. a water stor-
age supplied by a heat pump and an electric boiler supplying an
uncontrolled building heating demand. The consumers are
UMAR-like apartments and were generated using the same pertur-
bation method as described in 4.2. The electrical capacity of the
suppliers’ heat pumps was scaled according to the number of con-
nected consumers. The rest of the characteristics specific to the
simulation are the same as those defined in Section 4.2. The con-
trollers are configured precisely as in Section 4.2.

For a single time-step to find optimal control inputs, the com-
putational time taken by each controller type was calculated as fol-
lows. For the centralized controller, the computation time per
time-step was considered as the time required for one MPC to
solve for the control action of all agents. For the distributed con-
troller, we compiled a list containing all individual computational
times required by each local MPC to solve for the control action
of its agent. The computational time per time-step was then
defined to be the maximum time in this list. A summation of the
computational time of each iteration was performed until conver-
gence is reached to obtain the total time of one time-step of control
actions.

In order to simulate a realistic environment, we defined scenar-
ios in which the diversity of agents followed specific rules. The
quantity of suppliers with respect to consumers was defined by a
ratio and the ratio was always less than 1, i.e., there are more con-
sumers than suppliers. In addition, consumers were evenly dis-
tributed among suppliers, where one consumer is always shared
between two suppliers to have a coupling between the networks.
In this fashion, we carried out a series of scenarios in which the
ratio between the number of suppliers and consumers varied for
a fixed number of agents. For each scenario, starting from two
agents, consumers and suppliers were added to the environment
up to a maximum of n ¼ 200 agents.

Fig. 7 shows the computational demand of the centralized and
distributed controllers for different scenarios. For the distributed
controller, the computational time always ends up becoming con-
stant for systems with many agents, while it consistently increases
for the centralized controller. The intersection point for the num-
ber of agents where the distributed controller becomes less com-
putational demanding than the centralized controller increases
with the ratio, i.e., 22 agents for 1:1, 32 agents for 1:5, and 37
agents for 1:10. Indeed, in the case where the number of con-
sumers managed by a single supplier increases significantly, the
computational demand of the supplier agent increases as the sub-
stitute variable �r increases in dimension. In the case of the central-
ized controller, this variable �r increases in size as the number of
agents, whereas in the case of the distributed controller, for a fixed
ratio of consumers for a single supplier, the local vectors ri do not
increase in size, which explains the stabilization of the computa-
tion time.

The results indicate that implementing a centralized control
law for large-scale environments is difficult in practice because
of high computational requirements. Another disadvantage of a
central solution is its lack of resilience: damage to the central con-
troller will cause the failure of the entire energy management sys-
tem. This is not the case for a distributed control system. Note that
the communication time between agents in decentralized and dis-
tributed control is not modeled here, although we can reasonably
expect it to be small compared to the optimization solving time.

Note also that the centralized controller uses the Gurobi solver
while the solver for the distributed controller uses a mixture of
Gurobi and a custom solver: the MPC of each individual agent
solves its local optimization problem using Gurobi, but the exter-
nal unit solves the dual problem using a simple heuristic sub-
gradient method. The comparison of the absolute calculation time
between the two controllers is therefore irrelevant. In the case



Fig. 8. Experimental results. (a) Temperature in each room of DFAB unit, black dotted lines feature temperature constraints (b) Heat supply in each room of DFBA unit (c)
Ambient temperature outside NEST building (d) Average tank temperature, black dotted lines feature temperature constraints (e) Heat input delivered by the heat pump,
black dotted lines feature input constraints (f) Heating demand of NEST building and DFAB unit.
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where the dual problem is also solved with a potentially faster
commercial solver, the computation time of the distributed con-
troller should be even lower than what is presented in this study.

5. Experimental validation

To evaluate the performance of the proposed approach in a rep-
resentative application, the distributed controller was tested dur-
ing an experiment involving two agents in the NEST building:
one supplier (the NEST medium-temperature heat pump and a
water buffer storage) and one consumer (the DFAB unit). The
experiment was conducted over the period of 24 h starting at
00:00 on December 15, 2020.
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Most of the controller parameters remain as in Section 4.2,
however some modifications were made to the specific configura-
tion due to the presence of occupants. The comfort constraints
were set to 22 �C and 24 �C for the rooms of the DFAB apartment.
Moreover, the coefficients of the supplier’s input weighting matrix
Qs

1 were set to identity. Finally, no electric boiler was used during
the experiment, as the backup system installed in NEST is operated
by a standard controller, in case that an experiment causes the heat
pump to fail.

The controller and the related optimization schemes were
implemented in MATLAB and solved with Gurobi. In each time-
step, the calculation of the MPC control inputs was started three
minutes before they were applied to the agents. This time period
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is sufficiently long to carry out the optimization, i.e. for the agents
to converge to a solution. The system states were estimated by
extrapolating measured states of the previous time-step and the
measured states at the beginning of the optimization. The commu-
nication between the agents was implemented in Python 3. A
Python OPC-UA client was used for the communication with sen-
sors and actuators of the agents. Additional Python 3 scripts were
used for the forecast of the heating demand of NEST. These are out
of the scope of this study, but are discussed in detail in [36].

The results of the one-day experiment are shown in Fig. 8. Fig. 8
(a) shows the temperature of the rooms in DFAB in colored bold
lines, along with the temperature constraints in dotted black lines.
It can be seen that all temperatures remained within the comfort
constraints, except for the temperature in room 476 at the start
of the experiment and the temperature in room 472 at the end of
the experiment. For room 476, this is simply due to the given initial
condition. After 6 a.m. the temperature reaches the lower comfort
constraint and stays above until the end. In the case of room 472,
the temperature violates the upper comfort constraint for two
hours at the end of the experiment. This is likely an effect of the
coarse granularity of the temperature sensor (0.5 �C) and could
be mitigated with the help of a state estimator. At the end of the
experiment, the temperature satisfies the constraint.

Fig. 8(b) shows the heat input to each room of DFAB, and Fig. 8
(c) shows the measured ambient temperature outside of NEST dur-
ing the experiment. The energy supplied to the rooms coincides
well with the evolution of the ambient temperature. At the begin-
ning of the day, the exterior temperature is low, and consequently,
all inputs are at their maximum. In the middle of the day, the
ambient temperature rises, and most of the rooms significantly
reduce their heat consumption. Moreover, it can be seen that the
controller expects the ambient temperature to rise and thus stops
heating early: while the ambient temperature only starts to rise
significantly at 09:00, the controller already reduces heating in
most rooms between 07:00 and 08:00. At the end of the day, the
ambient temperature drops again, resulting in an increase of
heating.

Fig. 8(d) shows the average storage temperature in solid green
and the temperature constraints in dotted black. Fig. 8(e) shows
the heat generated by the heat pump in solid green with diamond
markers and the operational range of the pump in dotted black.
Finally, Fig. 8(f) depicts the real heating demand of the NEST build-
ing in solid yellow and the heating consumption of DFAB in solid
red. In Fig. 8(d), we can see that the temperature stays well within
the constraints throughout the entire experiment. Note that the
temperature of the tank is only marginally affected by the energy
demand of DFAB but rather driven by the demand of the rest of
the NEST building. Indeed, plot (f) shows that the energy demand
of NEST is much larger than the demand of the DFAB unit.

Unfortunately, a direct comparison between the distributed,
centralized and decentralized MPC approaches cannot be made
in real experiments, as the experimental conditions are not repeat-
able. However, the case study indicates that practical implementa-
tion of the distributed controller performs satisfactorily in an
occupied budding application.
6. Conclusion

In this study, we have developed an MPC control structure for
the management of energy in an environment where both energy
hubs and buildings are considered as controlled entities. Three dif-
ferent approaches have been studied: centralized, decentralized,
and distributed. Extensive numerical experiments modeling a
building-scale energy hub system showed that the distributed
approach was the most appropriate solution. In the considered
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environment, the method managed to offer good performance with
low computational load by exploiting the output coupling between
agents through virtual shared prices. Furthermore, the method
avoids sharing local constraints and states, which reduces the need
for agents to share potentially private information. An experimen-
tal implementation was performed on a building and energy hub
located in Dübendorf, Zürich, to demonstrate the practical feasibil-
ity and the effectiveness of the method. The results obtained were
satisfactory as it was capable of maintaining the room comfort
constraints by taking into account external disturbances and opti-
mizing energy consumption.

Future work will focus on testing the experimental implemen-
tation on longer periods and varying configurations to demonstrate
the controller’s robustness. Extension of the simulation environ-
ment to other technologies, including cooling systems, photo-
voltaics, and batteries, will be investigated. Another direction of
research will be the investigation of alternative optimizationmeth-
ods to improve the performance and the speed of the distributed
controller.
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