Experimentally quantifying critical stresses associated
with basal and prismatic slips in Zn and Zn-Ag alloys
using /n situ micropillars compression
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* Zinc (Zn) has been considered a novel promising material for bioresorbable medical implants.

* Poor strength and brittleness of as-cast pure Zn require alloying with other elements and plastic
deformation for grain size refinement to enhance mechanical properties (Fig. 1).

* Mechanical properties testing:
| — in the macroscale |

The strengthening effect is affected by:
» grain size;

» texture;

» phase composition;

» fraction and type of GBs;

» deformation mechanisms.
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* The samples of the Zn-xAg alloys (x = 0 + 2.21 at.%) were fabricated by casting and annealing. - 20f 11_3%/’//’ . : iy
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* Grains with the highest Schmid Factor for basal and prismatic slip system were selected S soton’
for the micropillars fabrication. ' Load 9 e gy O 9 Oy %% Fig. 7. The effect of Zn pillar diameter on CRSS in basal and prismatic slip systems.
T — T rm—— AT diroction Pillar size (um™"?) EBSD analysis in cross-section of deformed micropillars.
Normal to N ¥ A significant yield stress and CRSS increase with the micropillar diameter reduction was observed.
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plane drection in 6 pm and 9 pm pillars.
* A uniform orientation within 3 pm pillars deformed up to 10% was observed, while in bigger pillars
N ~ alocalized deformation occurred on the top of the pillar, resulting in a lattice rotation.
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Fig. 2. Microstructure of the annealed sample; EBSD-IPF orientation map, SF maps for basal and prismatic slip system; SE

angles considered in the calculation of the Schmid factor.

* Micropillars were fabricated by multi-step Ga™ focused ion beam (FIB) milling operated at 30kV and beam
currents from 4.5 nA to 40 pA.

* A micropillar diameter between 3 pm and 9 pm had been chosen based on the studies [1-2]: transition
from twinning to dislocation slip dominant deformation mechanism occurred within this grain size rangeg.
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Fig. 8. SEM images of Zn-xAg deformed micropillars at.% Ag
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Fig. 3. Micropillars prepared for the compression tests withing single grain with basal- or prismatic- slip favoured orientation * dislocation density 1S increasing —>

* the probability of finding dislocation source is increasing —

IN SITU MICROPILLARS COMPRESSION * Change in basal slip character from localized deformation in pure Zn to uniform in the Zn-2.2Ag alloy.

Prismatic slip takes place in two favorable planes resulting in buckling than localized pure shearing.

* Micropillars compression tests were perfomed using flat punch installed in Alemnis Standard Assembly 160 —— L A S 500 ————————————————————————
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Fig. 4. Setup for the in situ micropillars compression and the example of stress-strain curves

FUTURE PERSPECTIVES

> Current studies provide fundamental knowledge about possibilities of Zn solid solution strengthening.
> Calculated CRSS can be further implemented in crystal plasticity models, as input data, for designing
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fabrication processes of bioresobable implants requiring specific mechanical properties. 0 s 10 15 20 25 N T Y Y.
> Investigated here Zn-Ag system can be used as an antibacterial thin coating on the biomedical devices, _ Ag content (at. %) | - Agcontentlat.%)
such as orth ope dic impI ants. Fig. 10. The effect of Ag content on CRSS in basal and prismatic slip systems at various strain rates
> The knowledge gained in this research will be translated into the design of novel Zn-based porous * Strain rate sensitivity: no significant effect in basal slip system, while in prismatic slip system,
metamaterials with tailored microstructure and tunable properties for potential bioresobable maxillofacial pronounced effect was seen above 0.59 at.% Ag.
implant applications. * Strengthening effect: small Ag additions result in decrease of both CRSS, (up to 0.3 at.% Ag) and
CAD design of the 3D porous model f’rThWO_pTOTOD Ii’rhogfr.ophy o | T?mglo’re—'?ssis’refd‘ 3D poroucsjmef’ro.mo’reriol ALD T?inéﬁlgnngoTing: Bfﬁ)ciegrolqobllte ’r CRSSP (up tO 014 at% Ag) Whlle further increase in Ag Content, increase the CRSS |n bOth cases.
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made ofzine * According to [3] initial drop and further incease of CRSS with Ag additions result from increasing

dislocation density in the micropillars. The transition in strenghtening source is expected as follows:
_dislocation starvation — single-source strengthening — exhausted hardening — forest hardening.
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