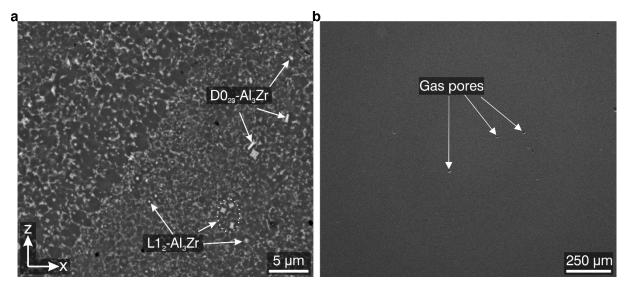

Supplementary material


Supplementary Figure 1 – Powder size distribution. Evaluated by laser diffraction measurements. The powder shows a right-skewed, Gaussian-shaped size distribution with a noticeable fraction of fine, sub 20 μ m, and coarse, super 70 μ m grains. A d_{50} of 39.1 μ m, with a d_{10} of 29.9 μ m and a d_{90} of 51.4 μ m is estimated.

Supplementary Figure 2 – Powder analysis. SEM-EDS/BSD image of the powder's surface and cross-section. The powder shows decent sphericity with many satellite particles and a high number of splatters located around the particles. Numerous primary Al_3Zr precipitates can be seen within grains. The GBs are covered by a continuous eutectic layer formed by segregation. Nanopores are rarely detected on the GBs.

Supplementary Figure 3 – DSC analysis. The alloy has an experimentally determined solidification interval of 106 °C. The exact determination of both solidus and liquidus temperature is difficult due to the indistinct transition points.

Supplementary Figure 4 – Two Al₃Zr phases visible in an SEM-BSD image and low magnification SEM-ETD image. a) In addition to numerous metastable $L1_2$ -Al₃Zr precipitates, stable $D0_{23}$ -Al₃Zr was detected sporadically and inhomogeneously distributed in the cross-sections. The latter does not contribute to grain refinement due to its incoherence to the matrix. b) SEM-ETD image of lower magnification shows sporadic circular gas pores.