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A B S T R A C T

Nanomaterials (NMs) are revolutionizing many industrial sectors, e.g. energy, food,
and medicine, thanks to the novel properties that emerge at the nano-scale. In
parallel to the enthusiasm for the improved performances enabled by NMs, there
are concerns about the safety of these materials for humans and the environment,
which may counteract the NM positive impacts.

Life Cycle Assessment (LCA) is a methodology well-suited for the evaluation of
the balance between the multiple positive and negative impacts associated to the life
cycle of nano-enabled products. Among the various impacts that can be assessed,
the human toxicity impact category is particularly relevant for NMs, as it links the
release of these substances to the negative effects they may have on human health.
This is done by multiplying the amount of released NM by the corresponding char-
acterization factor (CF), which indicates the marginal increase in disease occurrence
caused by a unitary emission of the NM. The CF is in turn composed by three
multiplicative factors: the Fate Factor (FF), addressing the substance distribution in
the environment; the Exposure Factor (XF), addressing the intake of the substance
from the environmental compartments; and the Effect Factor (EF), which indicates
the disease incidence associated to the intake of the substance.

The EF is estimated from human toxicological data, when available (very rarely),
or from animal toxicity studies, through a series of extrapolation steps. The ability
of an LCA study to capture the full environmental profile of nano-enabled products
depends, among other things, on the availability of in vivo studies that evaluated
the toxicity of the used NMs. In nanotoxicology, however, this kind of studies are
becoming scarcer and scarcer (but not completely replaced), as the field moves
towards a more mechanistic understanding of the interactions between living beings
and NMs, based on in vitro testing. The reduction of animal testing comes as well
as a legislative push, with many countries as well as the European Union adopting
the 3R (Replacement, Reduction and Refinement) principles for a humane use of
experimental animals.

For LCA this means that while new NMs are developed fast, it will be much
more difficult to calculate the corresponding EFs in a timely manner, risking that,
especially for prospective assessments, the results will be incomplete and thus the
decision-making biased. In vitro data could be an alternative source of toxicological
information, but their integration in the LCA methodology has been barely addressed
by the scientific community, and remains by far an unexplored topic.

The aim of this thesis is to investigate if and how in vitro data may be implemented
into LCA to calculate human EFs, with a focus on non-cancer effects and the
inhalation route.

As a foundation step, the challenges and advantages of using in vitro data for the
calculation of nanomaterial EFs are identified and comprehensively described. With
respect to the traditional methodology, which was developed for organic chemicals,
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two aspects have to be considered: first of all, NMs behave differently from chemicals,
and thus require a different approach, for example concerning their unique identity,
which is determined by more than their chemical composition alone; second, using
in vitro data instead of animal data requires a series of choices about the type of data
to use, their extrapolation procedure, and the verification of their predictivity and
reliability.

Being able to use in vitro data would benefit the LCA methodology not only thanks
to the larger amount of available data, but also by avoiding the need for inter-species
extrapolation, which is a considerable source of uncertainty in the calculation of the
EFs.

Since a fundamental missing step is the extrapolation from in vitro data to human
data, the models and methods currently available that could be used and combined
into an extrapolation strategy were investigated. Models that had the widest the-
oretical coverage of NMs and that could be applied with commonly available in
vitro data were prioritized, to assure that enough data would be available to test the
strategy. A combination of in vitro dosimetry and lung dosimetry was selected as
most promising strategy for inhaled spherical particles. The first model simulates
the deposition of particles in the in vitro system, thus providing a more precise
indication of the dose of NMs to which the cells are exposed. Lung dosimetry can
be used to link the deposited dose to an air concentration and an intake dose for
humans, therefore bridging the cellular response to a human dose.

To apply the strategy in a systematic way, a Combined Dosimetry model (CoDo)
was developed and used in a case study about titanium dioxide. In vitro and in
vivo data about the inflammatory and cytotoxic effects of TiO2 were systematically
collected. To compare the toxicity between the two data sources, from each dose-
response curve a Benchmark Dose (BMD20) was calculated based on the deposited
dose per area of lung cells (in vitro and in vivo). Three hypothesis were then verified
using CoDo: 1) most doses used in vitro represent lung burdens that are reached only
after long exposures to NMs; 2) compared with in vivo data, in vitro BMD values
were on average higher (thus less toxic), but both data sets had a large variability; 3)
both the physico-chemical and the experimental conditions affect the toxicity of the
NM on the cells, which can be predicted based on these parameters.

The last step consisted in the calculation of in vitro-based EFs. In addition to
applying CoDo to extrapolate from in vitro to human doses, a parallelogram approach
was chosen to extrapolate from cellular to whole organism responses. According
to this approach the ratio between animal and animal cells responses is not species
specific and can thus be used to extrapolate from a human cellular response to a
human response (as an in vitro-to-in vivo extrapolation factor). Since the human
BMD calculated via the parallelogram approach refers to sub-acute effects, the sub-
acute-to-chronic extrapolation factor from the consensus model USEtox was used
to calculate the EFs. The in vitro-based EFs for titanium dioxide and amorphous
silica were very similar and in the same range as the traditional animal-based EFs.
For crystalline silica and cerium oxide the discrepancy in quantity and quality of
toxicological data prevented the calculation of the EFs. Due to the large effect that
the NM properties and experimental conditions have on the toxicity results, ad hoc
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experiments where multiple particles are tested on animals, animal cells, and human
cells would be needed to verify the predictivity and thus generalizability of the in
vitro-to-in vivo extrapolation factors.

In conclusion, this thesis provided a clear overview of the status and future steps
needed for the use of in vitro data for the calculation of EFs in LCA. It also identified
and illustrated a practical procedure for the calculation of in vitro-based EFs; to allow
its systematic application to large data sets, the CoDo model was developed. The
calculated in vitro-based EFs seem to confirm the adequacy of the procedure, though
they also highlight the need for fit-for-purpose data to proceed with a thorough
verification and generalization.
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R I A S S U N T O

Grazie alle proprietà innovative che emergono alla scala nanometrica, i nanomateriali
(NM) stanno rivoluzionando molti settori industriali, dal settore energetico al settore
alimentare e a quello medico. In parallelo all’entusiasmo per le migliori performance
garantite dai NM, la sicurezza di questi materiali per gli esseri umani e l’ambiente
ha suscitato preoccupazioni, in quanto tale aspetto potrebbe controbilanciare gli
effetti positivi dei NM.

Il Life Cycle Assessment (LCA) è una metodologia particolarmente indicata per
la valutazione del bilancio dei vari aspetti positivi e negativi associati con il ciclo
di vita dei prodotti contenenti NM. Tra i vari impatti che possono essere valutati,
la categoria di impatto tossicità umana è particolarmente rilevante per i NM, in
quanto collega il rilascio di queste sostanze nell’ambiente agli effetti negativi che
potrebbero avere sulla salute umana. Per fare ciò, la quantità di NM emessi viene
moltiplicata per il fattore di caratterizzazione (CF) corrispondente, il quale indica
l’aumento marginale nell’incidenza di una patologia causata dall’emissione di una
unità di NM. Il CF è a sua volta composto da tre fattori moltiplicativi: il Fate Factor
(FF), che descrive la distribuzione della sostanza nell’ambiente; l’Exposure Factor
(XF), che descrive l’intake della sostanza dai comparti ambientali; e l’Effect Factor
(EF), che indica l’incidenza di una malattia associata all’intake della sostanza.

L’EF viene stimato dai dati tossicologici umani, quando disponibili (molto rara-
mente), o dagli studi sugli animali attraverso una serie di estrapolazioni. La capacità
di uno studio LCA di valutare in modo completo il profilo ambientale dei prodotti
contenenti NM dipende, fra le altre cose, dalla disponibilità di studi in vivo in cui la
tossicità del NM in questione sia stata verificata. Tuttavia, in nanotossicologia questo
tipo di studi sta diventando sempre più raro (anche se non completamente superato),
in quanto questa disciplina si sta orientando verso una comprensione meccanicistica
delle interazioni tra esseri viventi e NM basata sui test in vitro. La riduzione della
sperimentazione animale è inoltre il risultato di una spinta legislativa; molte nazioni,
e anche l’Unione Europea, hanno adottato i principi delle 3R (Replace, Reduce,
Refine) per un uso responsabile della sperimentazione animale. Nel mondo LCA
questo significa che stare al passo con lo sviluppo di nuovi NM sarà molto difficile,
in quanto i dati necessari per calcolare nuovi EF non saranno prodotti altrettanto
velocemente. Di conseguenza, soprattutto per gli studi su tecnologie emergenti, i
risultati dell’analisi rischiano di essere incompleti e le decisioni prese sulla base
di tali risultati sbagliate. I dati in vitro potrebbero essere una fonte alternativa di
informazioni tossicologiche, ma la loro integrazione nella metodologia LCA è stata
solo minimamente affrontata dalla comunità scientifica, e rimane di gran lunga un
argomento inesplorato.

Questa tesi si ripropone di studiare se e come i dati in vitro possano essere integrati
nell’LCA per calcolare gli EF, con un particolare focus sugli effetti non carcinogenici
causati dall’inalazione di NM.
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Come fondamenta del lavoro, le criticità e i vantaggi dell’uso dei dati in vitro
per il calcolo degli EF dei NM sono stati identificati e descritti approfonditamente.
Rispetto alla metodologia tradizionale, che è stata sviluppata per i composti chimici
organici, due aspetti devono essere considerati: innanzitutto, i NM si comportano
diversamente dai composti chimici, e quindi richiedono un approccio differente, ad
esempio riguardo alla loro identità, che è determinata non solo dalla loro composi-
zione chimica. In secondo luogo, usare i dati in vitro invece di quelli animali richiede
una serie di scelte riguardo al tipo di dati da usare, la procedura di estrapolazione, e
la verifica della loro predittività e affidabilità. La metodologia LCA beneficerebbe dal
poter usare i dati in vitro non solo per la maggior mole di dati disponibili, ma anche
evitando in questo modo di estrapolare da una specie animale all’uomo, passaggio
che nella metodologia tradizionale per il calcolo dell’EF è una notevole fonte di
incertezza.

L’estrapolazione dai dati in vitro ai dati sugli esseri umani è un passaggio fon-
damentale ma ancora ignoto; per questo motivo, i modelli e i metodi esistenti che
potrebbero essere usati e combinati in una strategia di estrapolazione sono stati
identificati e valutati. Per assicurare che abbastanza dati fossero disponibili per
valutare tale strategia, sono stati prioritizzati quei modelli che avessero una larga
copertura teorica dei NM e che allo stesso tempo potessero essere usati con i dati in
vitro comunemente disponibili. Una combinazione di dosimetria in vitro e dosimetria
polmonare è stata scelta come strategia più promettente per le particelle sferiche
inalate. Il primo modello simula la deposizione delle particelle in vitro, fornendo
quindi una indicazione più precisa della quantità di NM a cui le cellule sono esposte.
La dosimetria polmonare può essere usata per calcolare la concentrazione nell’aria
e la dose respirata di NM che porta ad una certa dose depositata nei polmoni,
connettendo quindi la risposta cellulare ad una dose umana.

Per applicare la strategia in modo sistematico, un modello di dosimetria combinata
(CoDo) è stato sviluppato e applicato ad un caso di studio sul biossido di titanio.
In primo luogo dati in vitro e in vivo sugli effetti citotossici e infiammatori del TiO2
sono stati raccolti in modo sistematico. Per comparare la tossicità tra i due tipi di
dati, da ogni curva dose-risposta è stata calcolata la corrispondente Benchmark Dose
(BMD20) in dose depositata per superficie. Tre ipotesi sono state poi verificate usando
CoDo: 1) la maggior parte delle dosi utilizzate in vitro rappresentano concentrazioni
a livello polmonare ottenibili solo dopo lunghe esposizioni ai NM; 2) i valori BMD
in vitro erano in genere piu alti di quelli in vitro, cioè meno tossici, anche se ambedue
i gruppi di dati avevano una grande variabilita; 3) sia le proprietà fisico-chimiche
del materiale che le condizioni sperimentali influenzano la tossicità dei NM, che può
essere predetta tenendo in considerazione questi parametri.

L’ultimo passaggio consiste nel calcolo di EF usando i dati in vitro. Oltre ad
applicare CoDo per estrapolare da una dose in vitro a una dose umana, l’approccio
del parallelogramma è stato scelto per estrapolare da una risposta cellulare a una
risposta dell’intero organismo. Secondo questo approccio il rapporto tra le risposte
dell’animale e delle cellule animali è costante per qualsiasi specie, e può quindi
essere usato per estrapolare dalla risposta delle cellule umane alla risposta dell’essere
umano (come un fattore di estrapolazione da in vitro a in vivo). Siccome il BMD
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umano calcolato con l’approccio del parallelogramma si riferisce ad effetti sub-acuti,
il fattore di estrapolazione da effetti sub-acuti a cronici dal modello consensuale
USEtox è stato applicato per calcolare gli EF. Gli EF calcolati per il biossido di
titanio e la silice amorfa erano molto simili e nello stesso range degli EF calcolati in
modo tradizionale dai test sugli animali. Per la silice cristallina e l’ossido di cerio la
discrepanza in termini di qualità e quantità dei dati ha reso impossibile il calcolo
dell’EF. Visto il notevole effetto che le proprietà dei NM e le condizioni sperimentali
hanno sulla tossicità, esperimenti ad hoc dove molti materiali sono testati sugli
animali e sulle cellule umane e animali sono necessari per verificare la predittività e
quindi la generalizzabilità dei fattori di estrapolazione da in vitro a in vivo.

In conclusione, questa tesi ha fornito una chiara overview dello stato e dei passi
futuri necessari per l’uso dei dati in vitro nel calcolo degli EF in LCA. Inoltre, una
procedura pratica per il calcolo di EF sulla base di dati in vitro è stata identificata
e illustrata. Il modello CoDo è stato sviluppato per permetterne una applicazione
sistematica con grandi set di dati. Gli EF calcolati dai dati in vitro sembrano con-
fermare la bontà del metodo, anche se allo stesso tempo mostrano chiaramente la
necessità di dati specifici per una robusta validazione e generalizzazione.
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1
I N T R O D U C T I O N

1.1 nanomaterials

In December 1959, with his speech “There’s plenty of room at the bottom”, Richard
P. Feynman addressed the potential of miniaturization, from a way to store large
amounts of information in very small spaces – the entire Encyclopaedia Britannica
on the head of a pin – to rearranging atoms to control the structure of materials [1].

When the miniaturization reaches the nanometer scale, i.e. 10
−9 m, we talk about

nanomaterials (NMs) and nanotechnology. Specifically, NMs have been defined by
the International Organization for Standardization (ISO) as materials “with any
external dimension in the nanoscale or having internal structure or surface structure
in the nanoscale” [2], i.e. in the 1-100 nm range.

Even though the term nanotechnology was invented in 1974 [3], the use of NMs
is not an achievement of the 20

th century, since these materials have been used
for the last 4500 years: for example, silver and copper nanoparticles were applied
for decoration on pottery, and cementite particles were used to strengthen steel
swords [4]. However, it is with the development of the scanning tunneling microscope,
which granted Gerd Binnig and Heinrich Rohrer the Nobel Prize for Physics in
1986 [5], that the the door to nanotechnology was effectively open, thanks to the
possibility to visualize and thus better undestand and control materials at the
nanoscale [6].

NMs can come in the form of particles, fibers, and plates, which have respectively
at least three, two, and one dimension in the nanoscale [7]. Differently from their
bulk counterparts, the properties of NM can be tuned by tweaking the NM size and
configuration: for example, quantum effects, thermal and electrical conductivity, and
magnetism can emerge at the nanoscale [8]. The elevated surface area compared to
the particle mass is also extremely important for NM, as it is responsible for the
high reactivity of the material and thus the high interaction with the surrounding
environment (e.g. adsorption, protein corona formation, dissolution, etc.) [9].

The peculiar properties of NM have resulted in novel applications in many sectors,
ranging from healthcare to energy, chemistry, and electronics (Figure 1.1) [10, 11],
making nanotechnology one of the Key Enabling Technologies of the 21

st century [12].
The growing effort in translating NM research to marketable applications and the
increased investments in this technologies show that a bright future is expected for
nanotechnology [7].

Such a fast expansion calls for a “global action to further expand standards,
certifications, and regulations for the upcoming wave of nanoproducts in order to
ensure their reliable and safe use” [7]. In fact, due to the use of NM in the industrial
sector and their availability in consumer products, both workers and the general
population are more and more exposed to NMs, which raises the question of their

1
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Figure 1.1: An example of the multiple applications of NMs in different sectors. Adapted
from Baig, Kammakakam & Falath [8].

safety [13]. At the same time, while NMs may have negative impacts on human
health, their use may substitute other potentially more toxic chemicals, or have other
benefits such as improving the performance and efficiency of a product [14]. To
evaluate whether each application of a NM is a more sustainable option than the
existing alternative, Life Cycle Assessment is a particularly well-suited methodology.

1.2 life cycle impact assessment and human toxicity effect factors

Life Cycle Assessment (LCA) is a methodology used to evaluate the environmental
impacts of a product or service along its life cycle, i.e. from the extraction of raw
materials to the end of life, with the goal of identifying the option with the best
environmental profile among substitutes or to pinpoint the most critical phase
and process in a product/service life cycle [15]. An LCA consists of four iterative
phases [16]:

• Goal and Scope phase: the goals and methodological choices of the study are
chosen and justified;



1.3 status of nanotoxicology 3

• Life Cycle Inventory (LCI) phase: all the inputs and outputs (including emis-
sions) needed/occurring along the life cycle are quantified;

• Life Cycle Impact Assessment (LCIA) phase: links the Life Cycle Inventory
flows to environmental impacts;

• Interpretation phase: the results are interpreted, the study is evaluated critically,
and recommendations are given.

One of the impacts that can be included in an LCA is the impact on human health
caused by the emission to the environment of chemicals and other substances (e.g.
NMs). In the LCIA phase, the emitted amount of each substance is multiplied by
its characterization factor, which indicates the toxicity potency of the substance
per amount emitted into an environmental compartment [17]. Multiple impact
assessment methods for human toxicity exist, but we refer from now on to the USEtox
method, the UNEP/SETAC global scientific consensus model for the characterization
of human toxicological and ecotoxicological impacts of chemicals [18], due to its
recognition in the LCA community.

A characterization factor is calculated as a combination of a fate factor, indicating
the distribution of a substance in the environmental compartments, an exposure
factor, indicating how much of the substance in taken in by humans from the
environmental compartments, and an effect factor indicating the incidence of a
disease in the human population resulting from the substance intake [18]. The
effect factor is calculated by extrapolating the results of animal toxicity studies
to humans, which makes the LCIA methodology dependent on the availability of
animal studies conducted by toxicologists. If no effect factor can be calculated due
to the unavailability of fit-for-purpose toxicological data, the potential impact of a
substance is disregarded (i.e. assumed to be zero), which may result in uninformed
decision-making [19]. For example, the comparison of a conventional product and a
nano-enabled product would be clearly limited if no effect factor is available for the
NM used in the latter option.

1.3 status of nanotoxicology

While nanotoxicology in the past heavily relied on animal testing, such practice,
in line with the 3Rs principles for a more humane use of animals in research, has
been drastically reduced in favor of other methods such as in vitro and in silico
approaches, thanks to the possibility these methods offer of investigating toxicity in
a more mechanistic way [20].

Moreover, as the number of newly developed NM increased over the years, it
became ever more evident that relying on each NM to be tested individually would
push nanotoxicology into a frustratingly inadequate position. The goal of nanotox-
icology assessment expanded from the evaluation of single NMs to the ability of
using toxicological tests in a predictive way.
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1.3.1 Predictive nanotoxicology

Ten years ago, Meng and coworkers were among the first to propose a clear strategy
for developing a predictive nanotoxicology [21]. In their paper, they highlighted
the need for a platform that could deal with the immense number of biophysical
interactions that occur once NM are introduced into a biological environment. In
the development of the platform, pitfalls should be avoided, such as choosing
end-points, model systems, and techniques that, although successfully used in
classical toxicological assessment, are not applicable to NM. Their general concept
is to consider the mechanisms of injury linked to disease pathogenesis, or in vivo
toxicological outcomes, while taking into account the physicochemical properties of
NM [21].

For example, the generation of reactive oxygen species (ROS) can occur in the
presence of certain NM and induce (pro)inflammatory effects in cells. Through
cytokine production and the stimulation of inflammatory pathways, this can further
lead to oxidant injury and disease development. As a strategy, it was suggested that,
for NM observed to cause inflammation on an organ level in vivo, the presence of
oxidative stress and inflammation at the cellular level should be tested as well, and
linked to the physicochemical properties of the material. To assess the link between
ROS production and disease outcome, the authors propose a three-tier approach
where antioxidant defense, pro-inflammatory effects, and cytotoxicity are assessed
via cellular assays [21].

Correlating the physicochemical properties of NM with biological outcomes is the
ultimate goal of predictive nanotoxicology [22]. The potent way to enable predictive
nanotoxicological assessment is to develop in vitro and in vivo quantitative structure-
activity relationships (QSARs) models to correlate, through their mechanisms of
injury, adverse health effects with NM physicochemical properties: thus ultimately
limiting the need for in vivo testing [23]. To further increase the efficiency of screening,
the aim should be on high-content and high-throughput testing strategies, while
standard reference NM libraries would elucidate the material properties that are
most likely to lead to biological injury [24].

The pathway to achieving predictive nanotoxicology is still paved with hindrances,
especially when it comes to the knowledge gaps on the biotransformation of NM in
biological environments. However, there are success stories where predictive nan-
otoxicology has been achieved: the fiber paradigm, for long, stiff, and biopersistent
fibers [25, 26], and the band gap paradigm [27, 28], for NM with electronically active
surfaces, containing transition metals or redox-cycling organic chemical impurities.

The fiber toxicology structure-activity paradigm is related to biopersistence, fiber
diameter, and length. The fiber diameter influences pulmonary deposition, while
the fiber length is thought to be the most important factor in fiber pathogenicity
by contributing to inflammation, tumor and fibrosis response, and formation of
granuloma. Furthermore, biopersistent long fibers remain in the respiratory system,
as their clearance by macrophages is hindered due to their dimensions: thus leading
to frustrated phagocytosis, which can ultimately lead to chronic mesothelioma
inflammation [25, 26].
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While for the fiber paradigm geometry is the most important toxicological char-
acteristic, the band gap paradigm is based on the conduction band energy. Past
research showed that the conduction band energy levels of different NM can be used
to predict in vivo toxicological scenarios based on induced oxidative stress in vitro [27,
28]. Analysis of 24 metal oxide particles showed that, when their conduction band
energy levels overlapped with the cellular redox potential, NM induced oxygen
radicals, oxidative stress, and inflammation, both in vivo and in vitro [27]. In the
past decade, a strong emphasis was put on establishing a connection between NM
physicochemical properties and observed toxicity effects. An alternative research
direction focused instead on the correlation between initial biological responses and
overall toxicity to verify the predictivity of early events that can be tested in vitro, as
opposed to costly in vivo studies. In this research direction, Meng et al. [21] suggested
that both reactive oxygen species production and protein unfolding could represent
initial indicators of a toxic response.

1.3.2 Where nanotoxicology stands today

Since the development of the first paradigm, the nano field has shown promising
achievements both in terms of knowledge gains and development and refinement of
tools, all of which assist the advancement towards predictive nanotoxicology (1.1).

However, one of the great remaining challenges is the limited availability of
complete data sets, which hinders not only the development of non-testing strategies
but also the mechanistic interpretation of experimental data.

Often, available data fail to represent the complexity inherent to NM and their
interactions with biological systems and therefore have limited effectiveness when
looking for correlations between NM properties and toxic effects. This is the case for
the characterization of NM physicochemical properties, which are often measured in
dry-state conditions. Correlating such "powder-form" properties (intrinsic properties)
to toxicity can be difficult, since, once in contact with a biological environment, NM
and their properties will be modified by a system of competing and/or synergic
processes [29]. Colloidal stability, dissolution, and re-precipitation of NM affect both
the particles themselves (e.g. size, surface area), and their behavior (e.g. sedimen-
tation and diffusion), which ultimately influence the cellular response in vitro, and
the biodistribution, pharmacokinetics, and systemic toxicity in vivo [30]. At the same
time, proteins interact with the surface of NM, creating a dynamic protein corona
that changes with time and the surrounding environment (extrinsic properties) [31].
All these physicochemical and biological processes, summarized as NM biotrans-
formation, transform a single type of NM in a population of particles/molecules
with heterogeneous properties, each one interacting differently with living systems.
At the nano-bio interface, such heterogeneous properties, together with cell char-
acteristics, affect NM cellular contact, determining whether particles will be taken
up, through which uptake pathway, and at which rate. Inside the cells, changes in
the environmental conditions, such as pH change in lysosomes, further trigger NM
modification and toxicity [32, 33].
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Table 1.1: Some of the achievements that have marked the progress towards predictive
nanotoxicology, and some remaining challenges to address in the next ten years.

Achievements Remaining challenges

Predictive Band gap paradigm for metal
oxides

Correlating the intrinsic NM
properties to observed effects

Fiber paradigm Characterizing NM after bio-
transformation

Knowledge gains Protein corona Predicting and controlling
protein corona evolution and
interaction

NM charge-toxicity correla-
tion

Clear predictive paradigm –
lack of values

Organ-level biodistribution Data for biodistribution mod-
eling

Tools Advanced characteriza-
tion techniques including
advanced human in vitro
models

Real-time, label-free and non-
destructive characterization
techniques

QSAR models Complete data sets

A standardized system for
data storage and reuse

Wide acceptance and compli-
ance by the community

The need for understanding and taking into account these dynamic and complex
NM transformations has been known for more than a decade [34]. The advancements
in characterization techniques and the development of experimental endpoints
looking at the nano-cellular interface have made it possible to measure NM properties
and study the interactions of NM with biological entities [35]. However, despite
multiple requests for standardized reporting [29, 36], critical information is still often
not disclosed, demonstrating a lack of consensus in the scientific community. More
efforts are needed in this direction, both in adopting a common characterization
reporting standard and also in mechanistically and dynamically describing the
transformations of NM in biological media (see the work by Faria et al. [37] and the
responses generated by their proposal [38]).

Assessing the biotransformation processes of NM in biological systems requires
appropriate models, which should be cost-effective, allow high-throughput screening,
and have the potential for standardization [39]. Over the past decade, the success of
advanced in vitro models was evident as the research moved from the classical 2D
cancer cell monocultures towards 3D organoid-like primary-cell co-cultures, which,
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when exposed to NM, better represent the intricate cell-to-cell signaling typical of in
vivo situations [39, 40]. A successful in vitro model for predictive nanotoxicology is
able to properly replicate all critical events that occur in vivo.

The knowledge gained about NM biodistribution in vivo shows that a complex
system of interactions determines the fate of NM in the body and that NM properties
play a major role in it, as observed in case-by-case studies [41]. As NM biodistribution
in the body over time cannot (yet) be assessed in vitro, complementary methodologies,
such as in silico PBPK modeling, will be necessary to support the further growth and
development of in vitro systems [42].

Predictive in silico modeling is a non-testing data-generating strategy that can
accelerate the assessment of NM toxicity [43]. Its foundation lies in the hypothesis
that structurally similar NM should have similar biological activities, making it
possible to infer toxicological information for untested NM [44]. Successful models
have been developed in the last years, most of them addressing the in vitro effects of
metal oxide NM [45], and guidelines have been published to support the use of in
silico modeling for regulatory purposes [44]. However, despite the fast development
in computational nanosafety, the number of predictive models is still limited [46,
47]. One of the main reasons is the scarcity of high-quality data and standardized or
at least verified experimental methods with appropriate controls, which results in
incomplete and eventually unreliable datasets [24].

1.3.3 Future multidisciplinary efforts

Nanotoxicology has without a doubt progressed in the mechanistic understanding
and prediction of toxicity, taking into account multiple challenges and taking action
on different fronts, including advanced methodologies, increased computing power,
standardization, and data availability.

The complexity of nano-bio interactions calls for a multidisciplinary effort and
new solutions to address all the relevant aspects needed to describe and model such
processes (Figure 1.2). First, many classical biochemical analyses in the analytical
field have reached their limits since they are unable to monitor dynamic interactions.
Instead, to detect such complex kinetics there is a need for advanced methods that can
be conducted in real-time and in situ without interfering with the biotransformation
processes (label-free methods) [22].

Second, the development of advanced in vitro models should continue, to reach a
sufficient complexity to represent in vivo conditions, but also of obtaining a level of
standardization that assures reliable results.

The combination of advanced in vitro models, relevant endpoints, and adequate
analytical tools will generate a considerable flow of data for in silico modeling [49],
which will provide precious insights into early events and kinetics of NM biotrans-
formation. Moreover, supported by the exponential increase in computational power,
big data analysis will extract patterns of toxicity from standardized, high-quality
data, unlocking the development of new toxicity paradigms.
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Figure 1.2: Graphical representation of the most promising developments needed to bring
the current nanosafety research to the next level. From Milosevic, Romeo &
Wick [48].

1.4 in vitro toxicological data in lcia

In 2020, Salieri et al. [50] calculated human EFs for some soluble NMs based on the
in vitro toxicity of the NM compared to the corresponding ion, by assuming that the
relative potency of the two substances would be maintained in vivo. The EFs were
calculated by multiplying the existing EFs for the metal ions by the ratio between
the NM and the ion EC50 measured in vitro. The approach is appropriate because
both substances have the same mode of toxicity, i.e. the toxicity is elicited by the
ion, which is released from the highly soluble NM [51]. Except for this work, a few
articles mentioned that in the future in vitro data might be a source of toxicological
information, but without indicating how these data could be effectively integrated
in the LCIA methodology [52, 53].

1.5 motivation

The development of effect factors for NMs lays at the intersection of the Life Cycle
Impact Assessment and the nanotoxicology fields, with LCIA defining requirements
and extrapolation procedures and nanotoxicology providing toxicological data.
Compared to what would be needed to assure a good coverage of NMs in LCIA,
only a limited amount of toxicological data is available for the calculation of effect
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factors, due to both the reduction of animal studies and the complexity of NMs
and their properties. As a result, the scarcity of available effect factors hinders a
comprehensive assessment of products containing NMs.

On the other side, though, a much bigger amount of toxicological data are pro-
duced in vitro, using more and more physiologically relevant systems, and a lot of
effort is being put in understanding and increasing the predictivity of these data
for humans. Being able to implement this kind of data into the LCIA methodology
would help overcome the scarcity of in vivo data, thus accelerating the inclusion of
NMs and guaranteeing a more complete assessment of nanotechnology, which is
needed for its safe and sustainable future use.

Given the limited work done until now in this direction, this topic remains largely
unexplored. First of all, a full picture of the current status of this subject is missing.
It is obvious that an extrapolation strategy is needed to use in vitro data in LCIA,
but except for the one proposed for soluble particles no other procedure exists that
may be applied to other types of NMs.

1.6 objectives

The research questions of the thesis are:

1. Which are the challenges to the use of in vitro toxicity data for the development
of human toxicity effect factors for nanomaterials?

2. Which in silico models are better fit to support the selection, refinement, and
extrapolation of in vitro toxicity data to develop human toxicity effect factors
for nanomaterials?

3. How reliable are the toxicological information from in vitro data in the scope
of LCIA?

a) Are all in vitro data representative of realistic exposure conditions? How
can we check it?

b) How relevant are the experimental conditions for the results of in vitro
testing?

4. Is it possible to calculate an in vitro-to-in vivo extrapolation factor from the
existing in vitro and in vivo data for common nanomaterials?

To answer the research questions, the following goals were set:

1. Identify a strategy to implement in vitro data into LCIA

2. Develop a model to extrapolate in vitro doses to human doses, which can be
easily used with big input data sets;

3. Verify if in vitro results can be predicted based on the properties of the ma-
terial and the experimental conditions, and evaluate whether the latter affect
substantially the toxicity;
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Chapter 2
State of the art, challenges and opportunities for the use of in vitro data in LCIA

(Romeo et al. 2022 - revision resubmitted to Environmental science: Nano)
RQ1

Chapter 3
Defining the extrapolation strategy
(Romeo et al. 2020 - Environment 

International)
RQ2 & G1

Chapter 4

(Romeo et al. 2022 - NanoImpact)

Chapter 5
Calculation of in vitro-to in vivo 

extrapolation factors and in 
vitro-based Effect Factors

(Romeo et al. 2022 - ready for 
submission to ES&T)

RQ4 & G4

Development of model 
G2 

Evaluation of in vitro data
RQ3 & G3

Figure 1.3: The relationship between the chapters of the thesis, the research questions (RQ),
the goals (G) and the papers associated to the chapters (introduction excluded).

4. Calculate in vitro to in vivo extrapolation factors for nanomaterials and apply
them for the derivation of effect factors for some common nanomaterials.

The research questions and goals are articulated through the chapters following
this logic thread, as depicted in Figure 1.3:

• Chapter 2 sets the scene of LCIA of nanoparticles and in vitro data in LCIA,
clearly identifying where research stands at the moment and which challenges
and opportunities exist when addressing the thesis topic (research question
1). It also provides both human effect factors and their uncertainty range as a
benchmark for the results shown in the next chapters;

• Chapter 3 addresses research question 2 and goal 1, by describing the process
of going from many different disconnected models and methods to a clear
strategy to use in vitro data for the calculation of effect factors;
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• Chapter 4 includes the model that calculates the human doses corresponding
to in vitro doses (goal 2), which is used to assess existing in vitro data in terms
of exposure ranges and predictivity (research question 3 and goal 3);

• Chapter 5 focuses on the calculation of in vitro to in vivo extrapolation factors
and human toxicity effect factors for some nanomaterials (research question 4

and goal 4), and refers back to chapter 2 to evaluate the quality of the results.

1.7 publications included in this thesis

Five publications are included in this thesis, presented in the introduction and in
chapters from 2 to 5. The first paper, in its published version, has been adapted and
included in sections 1.1 and 1.3 of the introduction.

Chapter 2 corresponds to the resubmitted version after one round of revision. The
next two chapters (3 and 4) correspond to the published versions of the articles,
while the last chapter (5) represents the version of the paper ready for submission.
The supplementary materials of all articles are included as appendices.

“Milosevic, A., Romeo, D. & Wick, P. Understanding Nanomaterial Biotransforma-
tion: An Unmet Challenge to Achieving Predictive Nanotoxicology. Small 16, 1907650

(2020)”
Daina Romeo as co-first author contributed to the conception and drafting of the

article.

“Romeo, D., Hischier, R., Nowack, B., Jolliet, O., Fantke, P. & Wick, P. In vitro-based
human toxicity effect factors: challenges and opportunities for nanomaterial impact
assessment. Environmental Science: Nano. revision resubmitted (2022)”

Daina Romeo conceptualized the work, collected and assessed the data, and wrote
the manuscript.

“Romeo, D., Salieri, B., Hischier, R., Nowack, B. & Wick, P. An integrated path-
way based on in vitro data for the human hazard assessment of nanomaterials.
Environment international 137, 105505 (2020)”

Daina Romeo conceptualized the work, collected and assessed the data, and wrote
the manuscript.

“Romeo, D., Nowack, B. & Wick, P. Combined in vitro-in vivo dosimetry enables
the extrapolation of in vitro doses to human exposure levels: A proof of concept
based on a meta-analysis of in vitro and in vivo titanium dioxide toxicity data.
NanoImpact 25, 100376 (2022)”
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Daina Romeo collected the data, developed the model, performed the analyses,
and wrote the manuscript.

“Romeo, D., Hischier, R., Nowack, B. & Wick, P. Progress towards in vitro-based
human toxicity effect factors for the Life Cycle Impact Assessment of inhaled nano-
materials: an approach for low-solubility particles. To be submitted to Environmental
Science & Technology (2022)”

Daina Romeo performed all data collection, computations, and wrote the paper.
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2
I N V I T R O - B A S E D H U M A N T O X I C I T Y E F F E C T FA C T O R S :
C H A L L E N G E S A N D O P P O RT U N I T I E S F O R N A N O M AT E R I A L
I M PA C T A S S E S S M E N T

2.1 abstract

The growing number of nanomaterials being produced represents a challenge for
the assessment of their toxicity impacts in Life Cycle Assessment (LCA). The human
toxicity effect factor, indicating the population incidence risk caused by chemical
exposure, is traditionally estimated from in vivo animal test data; however, this
kind of studies is being reduced in favor of in vitro testing. In this perspective, we
identify the peculiarities of nanomaterials compared to chemicals, and how this
affects, or should affect, the LCA toxicity characterization methodology within the
Life Cycle Impact Assessment (LCIA) step. Then, we discuss both the challenges
but also the opportunities of integrating in vitro data into LCIA, such as the scarcity
of chronic in vitro experiments and avoiding inter-species extrapolation. Moreover,
we show the acceptable uncertainty space for in vitro-derived toxicity effect factors
for nanomaterials, based on the range of uncertainty of toxicity effect factors for
chemicals. Last, we advocate that using in vivo data as benchmark for the accuracy
of derived human toxicity effect factors may in certain cases be misleading. While
the adaptation of the LCIA toxicity characterization methodology for nanomaterials
and in vitro data is not yet achieved, cross-discipline discussions are a fundamental
step towards a successful integration of both new data sources and new substance
types into LCIA.

2.2 introduction

The increasing number of nanomaterials that are being developed requires a careful
assessment before entering the market, to make sure their use is safe for humans. [1]
Besides, such materials could provide additional functionalities and enhanced per-
formances compared to existing technologies and chemicals, thus representing a
more sustainable alternative. [2, 3] Two methodologies address these issues: Human
Health Risk Assessment (HRA) aims at evaluating whether the health risks posed by
nanomaterials to humans in specific exposure situations are acceptable or not [4],
while Life Cycle Assessment (LCA) aims at comparing products or processes based
on the environmental impacts that they generate along their life cycle, including
their (negative) effects on human health. [5] Despite differences in goals, procedures
and boundary conditions, these two methodologies rely on the same kind of data
to provide information about nanomaterial toxicity, i.e. human toxicological data
or data from animal studies. [6] While human toxicological data are rare and can
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only be obtained after the population has been already exposed, animal data are
becoming scarcer as well, as the toxicology field moves from a phenomenological
approach to a mechanistic approach, where in vitro testing is preferred to investigate
if and how toxicity arises. [7]

Over the past years, different approaches have been investigated and developed
in the HRA and nanotoxicology fields to accelerate the evaluation of nanomaterial
toxicity and to derive human-relevant information from in vitro data instead of
animal data. [8] Among many, the development of more advanced in vitro models has
brought these experiments closer to realistic conditions, both in terms of exposure
and dose-response [9]; the development of Adverse Outcome Pathways (AOP)
provides insights on the link between initial events that can be observed in vitro
and the progression of toxicity up to human pathology [10]; grouping approaches
are more and more used to infer toxicity based on the similarity in properties of
untested and tested nanomaterials. [11, 12]

USEtox, the UNEP/SETAC global scientific consensus model for the characteri-
zation of human toxicological and ecotoxicological impacts of chemicals [13], is a
widely applied Life Cycle Impact Assessment (LCIA) model. [14, 15] It defines the
methodological steps for the calculation of toxicity-related characterization factors
(CFs), which represent the potential toxicity-related impacts on human health and
on ecosystem quality caused by the emission of substances into the environment.
Other impact assessment methods, such as Recipe 2016, use similar approaches. [16]
For human toxicity impacts, a CF is obtained by the combination of a fate factor
(FF), indicating the distribution of the substance in the environmental compartments,
an exposure factor (XF), indicating the intake of a substance by humans from an
environmental compartment and through different exposure pathways, and a toxicity
effect factor (EF), which indicates the disease incidence in the human population
linked to the intake of a substance. [13, 17] The toxicity effect factor is calculated
either from human data or by extrapolating to humans the information from animal
studies, separating cancer and non cancer effects. As non cancer effects are the ones
more easily tested in vitro, from hereafter the term "toxicity effect factor" will be used
to indicate non-cancer toxicity effect factors only.

Considering that the market for nanomaterials and nanomaterial-containing prod-
ucts is now in a phase of fast growth [18], calculating human toxicity effect factors for
nanomaterials becomes a much-needed as well as tedious task. In this perspective,
we explore and discuss the challenges and opportunities of integrating in vitro data
into human toxicity characterization of nanomaterials in LCIA. In the frame of
these activities, we identified two main types of hurdles that currently hinder the
development of toxicity effect factors for nanomaterials: a) the lack of nano-specific
LCIA toxicity characterization methods, and b) the scarcity of animal toxicity studies
with respect to the number of existing nanomaterials. For the first point, we describe
consecutively the strategies that have been proposed to adapt to nanomaterials the
toxicity effect factor calculation procedure originally developed for organic chemicals
and metal ions, pointing out which challenges remain today yet to be solved. As
a potential solution to the second point, we discuss the challenges as well as the
advantages of using in vitro toxicity data in place of in vivo toxicity data.
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2.3 toxicity effect factors calculation

2.3.1 The USEtox 2.0 methodology

The human toxicity effect factor “relates human health effects to the mass taken
in by humans via different exposure pathways” [13], discriminating between the
inhalation and ingestion routes. The toxicity effect factors for each route are derived
from the lifetime human ED50,(hED50) i.e. the lifetime dose inducing non-cancer
disease in 50% of the population, considering 70 years of lifetime, 70 kg body weight
for ingestion and 13 m3/d of inhalation rate for inhalation [19], with the formula:

EF =
0.5

hED50

In the absence of human toxicological data, a human-equivalent ED50 is calculated
from animal data, by applying the following extrapolation and correction factors as
needed:

• Interspecies extrapolation factor: divide by the factor, 1 for inhalation or varying
from 1.1 for pig to 7.3 for mouse for oral exposure;

• Route-to-route: multiply by 1;

• Discontinuous to continuous exposure correction factor: multiply by Days per week
7 ·

hours per day
24 ;

• Sub-chronic or sub-acute to chronic extrapolation factors: divide respectively
by 2 or 5;

• Acute LD50 to chronic ED50: divide by 26;

• NOAEL to ED50 extrapolation factor: multiply by 9;

• LOAEL to NOAEL extrapolation factor: divide by 4.

2.3.2 Proposed changes to the methodology

In 2002, Pennington et al. [20] suggested that the ED10 would be a better reference
point in the dose-response curved compared to the ED50, since this measure better
represents the marginal toxicity slope at environmentally-relevant exposure levels.

A recent publication [21] proposes an update of the methodology for the calcula-
tion of toxicity EFs for non-cancer endpoints. The new human toxicity dose-response
framework is based on probabilistic dose-response assessment; a probabilistic ap-
proach is applied as well for the extrapolation between toxicological dose descriptors
(e.g. NOAEL to LOAEL) and the related uncertainty. [22] The new method adopts
the Benchmark Dose (BMD) approach to estimate a human lifetime ED10, and even
though multiple dose descriptors can be used (e.g. NOAEL, LOAEL), they are all
converted to a BMD value via extrapolation factors. [23] The choice of the BMD
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approach aligns the LCIA methodology with the current consensus in risk assess-
ment (RA). [24, 25] Compared to the NOAEL, which was widely used in RA in the
past [26], the BMD presents multiple advantages, such as: 1) the full non-linear dose-
response curve is used for its calculation, as described in Chiu et al. [22]; 2) the BMD
is less dependent on the number and spacing of the selected doses; 3) the uncertainty
of the BMD is quantifiable and can be reported as confidence intervals. [27, 28]

2.4 why we cannot treat nanomaterials as chemicals

Fundamental differences between chemicals and nanomaterials entail that the ap-
proaches developed for the former cannot be simply applied to the latter.

First of all, nanomaterials cannot be defined solely by their chemical composition,
as the same material can exist in multiple forms, i.e. have different sizes and size
distributions, crystalline structures, coatings, shapes, etc.. [29] The combination of
these characteristics determines then the individual material properties, which differ
from their bulk counterpart. [30, 31] This requires an additional effort in terms of
material characterization, and represents a challenge in terms of reproducibility and
comparability. [31]

During storage, use, and disposal of nanomaterials and nano-enabled products,
these properties can change due to transformation processes such as oxidation,
aggregation, and dissolution; [32] in the case of smart nanomaterials, the change in
properties and/or activation of specific functions is designed to occur in reaction to
specific stimuli, thus adding an additional level of complexity to the characterization
and toxicity assessment. [33] When released into the environment, nanomaterials can
undergo chemical, physical, and biological transformations, as well as interacting
with macro-molecules. [34–36] Once entering biological systems, they can again be
subject to bio-transformations that modify their properties and behavior, such as the
formation of a protein corona. [37]

Not only the behavior, but also the toxicity of nanomaterials is delineated by
the combination of these properties, while for chemicals the biological effects are
governed by the chemical identity only. [38] For this reason, nanoparticle toxicity
is better expressed as a function of the property/ies driving it; for example surface
area can be a better reference dose than mass for inhaled low-toxicity low-solubility
particles. [39] However, understanding which and how properties affect toxicity
is not a trivial task, especially when considering that a nanomaterial reaching a
biological target is not anymore as homogeneous as the pristine material, but consists
of a population of different materials with different physico-chemical properties. [37]

This complexity in the structure and properties of nanomaterials distinguishes
them from chemicals, and calls for ad hoc approaches.

2.5 nano-specific challenges

Compared to chemicals, the development and use of toxicity effect factors for
nanomaterials presents some intrinsic and some methodological challenges.
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As stipulated in section 2.4, nanomaterials exist in a potentially endless number of
nanoforms, determined by their physico-chemical properties, and are often heteroge-
neous mixtures once they reach and enter a human body. How should this vastness
of property combinations be managed in LCIA? At which point do we consider two
nanomaterials/nanoforms as different enough to require for each of them a specific
toxicity effect factor? It is obviously not possible to develop toxicity effect factors for
each single form; instead, a more realistic approach could be to group nanomaterials
based on their toxicity, and use a single toxicity effect factor for each group. However,
to classify nanomaterials without testing each one of them we need to understand
how their physico-chemical characteristics affect their toxicity. [40] At which point
the change in properties determines a significant shift in toxicity, see for example the
fiber paradigm identifying nanofibers as carcinogenic only if they are at the same
time stiff, long, and biopersistent? [41] In this direction, multiple grouping strategies
have been developed, in which nanomaterials are classified based on their intrinsic
and extrinsic properties, their behaviour, or their mode of action (see Giusti et al.
[42] for a comprehensive overview). Establishing groups of nanomaterials is though
made difficult by the scarcity of data, the lack of harmonized experimental methods,
and concerns about the quality of the data. [42]

Walser et al. [43] faced a similar challenge when developing a derivation strategy
for the calculation of EF for nanomaterials. In their procedure, a critical first step
is the assignment of a clear chemical identity to the substance, which would be
representative of nanomaterials with similar toxic effects, thus allowing to reduce the
need of new toxicity effect factors to materials that are not comparable with those
already existing. However, developing such a scientifically-justifiable hierarchy for
grouping is not an easy task because of the large number of combinations of physical
and chemical properties of nanomaterials, and requires a consensus among a variety
of specialists such as risk assessors and LCA scientists. If a nanomaterial requires a
new EF, Walser et al. [43] suggests a tiered approach to manage data scarcity, where,
in the absence of animal data, the EF is extrapolated based on the classification
into either poorly soluble, low-toxicity nanoparticles, persistent high aspect ratio
nanofibers, or soluble metals and metal oxides. While not yet included in such a
strategy, in vitro data could play an important role in LCIA as a basis of comparison
of the potency of nanomaterials with similar mode of toxicity action. [43] Building on
the work from Walser et al. [43], Fransman et al. [44] defined a step-by-step procedure
to calculate EF for inhaled nanomaterials. For the determination of the ED50, the dose
should be expressed in the most relevant dose metric, based on the recognition of
the impact that surface area and particle number may have on toxicity. Normalizing
the EF by a unit specific surface area or a specific number of particles would then
allow to cover the whole spectrum of these two properties, whereas a mass-based EF
would be unique to each nanomaterial with e.g. a different specific surface area.

Despite the fact that such initial frameworks have been developed in order to
calculate EFs for nanomaterials, it is clear that the challenges connected to the
peculiarities of the broad variety of nanomaterials cannot be answered by the LCA
field and scientists alone. But LCA practitioners need to be aware of all this, for
example in order to define the applicability range of the toxicity effect factors they



24 chapter 2

develop, or to calculate the toxicity effect factor as a function of the most relevant
properties, similar to how Laurent et al. [45] calculated NOAEL values for titanium
dioxide as a function of its primary size.

From a methodological point of view, the extrapolation factors used to convert
different dose descriptors (e.g. LOAEL, NOAEL) to an ED50 and non-chronic to
chronic exposures have been obtained from the analysis of organic chemical toxicity
data. [46–48] The suitability of these factors for nanomaterials is yet unknown, but
they have been used until now in the absence of better options. [45] To verify existing
factors as well as to develop nano-specific ones, we would need in vivo toxicity data
reporting pairs of, for example, NOAEL and ED50 values, or effects at sub-acute
and chronic exposure conditions. Hence, a good number of data points covering
different types of nanomaterials would be actually needed; for organic chemicals, the
number of pairs used ranged from 21 for the NOEL-ED50 comparison of non-cancer
effects [47], to more than 200 pairs for sub-chronic to chronic NOAEL values. [46]

Considering the scarcity of animal studies about nanomaterial toxicity, in particular
chronic ones, and the difficulty in combining results from different studies due to
the high variability in properties, first of all the size, but also due to the lack
of transparent and comprehensive reporting of such properties, calculating nano-
specific extrapolation factors seems a remote possibility.

2.6 existing toxicity effect factors for nanomaterials

Most LCA studies overlook the potential impacts caused by nanomaterial release,
often because of the lack of CFs for such materials. [49] The few existing toxicity effect
factors for nanomaterials have been calculated by applying the USEtox approach
for bulk chemicals, with slight adaptations in some cases (Table 2.1). The main
differences pertained to the dose used in the calculation of the toxicological doses
descriptors (e.g. ED50 or ED10), which in some cases was expressed in deposited
dose instead of intake dose, or in surface area instead of mass. In the former case,
the EF was then calculated in cases per intake dose by converting the dose descriptor
from deposited to intake dose using size-specific deposition fractions calculated via
a lung dosimetry model [50, 51]; in this case, while the EF calculation deviates from
the consensus model, the obtained EF is expressed in the same unit as USEtox EFs,
thus allowing its use for the calculation of characterization factors without further
adaptations. On the contrary, when the toxic effects were proportional to the surface
area of the particle rather than the mass, i.e. the relevant dose metric was the surface
area, it affected not only the dose descriptor calculation but also the EF, which was
normalized by the specific surface area of the nanoparticle. In this way, the EF could
be applied to nanoforms with different surface area. Only in two studies the human
toxicity effect factors had been calculated from in vitro toxicity data: in one case
the EF was calculated by assuming the in vitro endpoint (reactive oxygen species
production) to be predictive of the incidence of inflammation in humans, therefore
considering the in vitro ED50 in mg/million neutrophils as corresponding to the
human ED50, and requiring only to extrapolate from cellular dose to intake dose. [52]
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The other study instead used a comparative approach, as suggested also by Walser
et al. [43]; the EF was estimated via a relative potency approach, by multiplying the
EF of the corresponding ion (e.g. copper ions and copper oxide nanoparticles) by the
difference in potency between ion and nanoparticle, measured in vitro. [53]

2.7 challenges and advantages of the use of in vitro data

In addition to human and animal toxicological data, in vitro toxicity data is a more
recent but already richer source of toxicological information, which could potentially
be used to calculate human toxicity effect factors for nanomaterials as well as
chemicals(Figure 2.1).

Figure 2.1: The landscape of data sources and extrapolation factors needed to calculate
toxicity effect factors from each data type. When human toxicological data
are available, the EF can be directly calculated. In the case of animal toxicity
data, which represent a bigger data pool compared to human data, multiple
extrapolation steps may be needed to calculate the EF, respectively accounting
for the differences in species, exposure time, and toxicological dose descriptor. In
vitro data represent the richest data source, but would require as well additional
extrapolation procedures to be used to calculate the EF. In particular, the
response at cellular level would have to be related to a response at human
level (due to the difference between in vitro and human endpoints); shorter
exposure times would have to be extrapolated to chronic exposures; organ
doses measured in vitro would have to be linked to the corresponding intake
doses.

Using in vitro data would have many advantages, -beyond the simple fact that
producing such data is much more simple compared to animal data-, but it intro-
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Table 2.1: Toxicity effect factors for non-cancer effects of nanomaterials. Differences from the USEtox methodology can be observed in the
unit of the toxicity effect factor, in the toxicological dose descriptor calculation, and in the source of toxicological information.
SWCNT: Single-walled carbon nanotubes; MWCNT: Multi-walled carbon nanotubes.

Nanomaterial Effect factor Unit Exposure route Differences from USE-
tox methodology

Source data Ref.

SWCNT 5.3 · 10−2 cases/kgintake Inhalation - In vivo [55]

SWCNT 1.1 · 10−3 cases/kgintake Ingestion - In vivo [55]

MWCNT 1.4 · 10−2 cases/kgintake Inhalation - In vivo [55]

MWCNT 13 cases/kgintake Ingestion - In vivo [55]

MWCNT 530 cases/kgintake Inhalation Dose descriptor cal-
culated in mass de-
posited in the lung

In vivo [50]

MWCNT 2.5 · 103 cases/kgintake Inhalation Dose descriptor cal-
culated in mass de-
posited in the lung

In vivo [50]

Carbon black 2.9 · 10−2 cases/(m2/g ·
kgintake)

Inhalation Surface area as dose
metric

In vivo [50]

Titanium dioxide 1.72 · 10−2 cases/kgintake Inhalation Indoor workplace ex-
posure (45 years, 240

days/year)

In vivo [56]

Titanium dioxide 7.26 · 10−3 cases/kgintake Inhalation - In vivo [56]

Titanium dioxide 1.15 cases/kgintake Inhalation - In vivo [57]

Titanium dioxide 2.94 · 10−2 cases/kgintake Ingestion - In vivo [57]

Titanium dioxide 1.21 · 106 cases/(kgdeposited/glung)Inhalation Dose descriptor cal-
culated in mass de-
posited per lung unit
mass

In vivo [58]
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Nanomaterial Effect factor Unit Exposure route Differences from USE-

tox methodology
Source data Ref.

Titanium dioxide 5.6 · 10−2 cases/(m2/g ·
kgintake)

Inhalation Surface area as dose
metric

In vivo [50]

Titanium dioxide 5.6 · 10−2 cases/(m2/g ·
kgintake)

Inhalation Surface area as dose
metric

In vivo [44]

Copper 5.96 · 10−1 cases/kgintake Ingestion Calculated from in
vitro experiments

In vitro [52]

Copper oxide 4.5 · 10−2 cases/kgintake Inhalation Dose descriptor calcu-
lated via relative po-
tency approach

In vitro [53]

Copper oxide 7.5 · 10−3 cases/kgintake Ingestion Dose descriptor calcu-
lated via relative po-
tency approach

In vitro [53]

Silver 6.5 · 10−1 cases/(m2/g ·
kgintake)

Inhalation Surface area as dose
metric

In vivo [50]

Silver 1.2 cases/kgintake Inhalation Dose descriptor calcu-
lated via relative po-
tency approach

In vitro [53]

Silver 5.9 · 10−1 cases/kgintake Ingestion Dose descriptor calcu-
lated via relative po-
tency approach

In vitro [53]

Zinc oxide 2.9 · 10−2 cases/kgintake Inhalation Dose descriptor calcu-
lated via relative po-
tency approach

In vitro [53]

Zinc oxide 2.5 · 10−2 cases/kgintake Ingestion Dose descriptor calcu-
lated via relative po-
tency approach

In vitro [53]
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duces at the same time also new challenges and requires that the respective LCIA
methodologies are adapted accordingly. While these advantages and challenges are
not necessarily nanomaterial-specific but more generally apply to the use of in vitro
data for any kind of substances (e.g. endocrine disruptors [54]), the nanomaterial per-
spective is nevertheless required when developing a practical approach to overcome
these hurdles for this material category.

First of all, compared to animal-based nanotoxicology, in vitro nanotoxicology is a
fast-evolving and very active field, meaning that any consideration we do based on
current technologies, practices, and experimental systems, should account for the
fact that those practices will be further improved over the years, and we therefore
can expect more realistic systems and higher-quality results in the future.

A comparison of in vitro and in vivo toxicity screening tests showed that the former,
in addition to sparing the life of many animals, was cheaper than the latter (see
Meigs et al. [59] for figures on specific comparisons of in vivo vs. in vitro experiments).
While the costs increase with the complexity of in vitro systems, the results obtained
using these systems are also more informative. [60] Considering that in vitro tests can
be both high-content and high-throughput, their application offers the possibility
to test many more nanomaterials and also react faster to the development of new
materials than what would be possible using only animals. [61, 62]

Being able to do more tests in less time also means, with respect to the toxicity
effect factor calculation, that different cell lines could be used to test both the
inhalation and the ingestion exposure routes, avoiding the need for route-to-route
extrapolation. Moreover, multiple doses can be used to obtain a dose-response curve
and identify resulting BMD or ED50 values, instead of extrapolating from NOAEL
or LOAEL values.

Since in vitro tests are based on human cells, we can avoid the need of extrapolating
from animal to human, but we need to extrapolate a cellular response to a human
response instead. To do so, we need the in vitro system to mimic as much as
possible at least the early events driving the toxic effects that we would observe in
humans. Unfortunately, in vitro systems cannot currently capture the complexity
of in vivo pathophysiological conditions. However, in vitro technologies are starting
to anticipate this complexity by moving from cancer cell lines to primary human
cells, from mono-cultures to co-cultures, from 2D to 3D systems, and from static to
dynamic conditions, creating novels systems such as organs-on-a-chip. [63]

While submerged mono-cultures can be considered quite rudimentary systems, co-
cultures, where different cell lines are cultured together to represent the complexity
of cell-cell interactions, more realistically respond to nanomaterial exposure. [63–66]
Depending on the case, additional factors have to be considered and integrated in
the in vitro system to mimic physiological conditions. Cells exposed to a flow (e.g.
blood and lymph) are subjected to sheer stress, which affects the cellular structure
and function. [67] Microfluidic technologies, thanks to their ability to replicate steady
and transient flows, have revolutionized the study of the microenvironment of cells,
even though their complexity is still a limit to their wide application. [68] The liver is
another example: in this organ, CYP450 enzymes are fundamental for the metabolism
of substances, but in vitro mono-cultures of hepatocytes lose this function. However,
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growing the cells on specific extracellular matrices or co-culturing them with other
liver cells restores the CYP enzyme activity. [69]

More and more used, organoids are 3D multicellular in vitro systems in which stem
cells organize and differentiate into complex tissue structures, thus mimicking spe-
cific organs. [60, 70, 71] Recognized by the World Economic Forum as a top emerging
technology in 2016, organs-on-a-chip allow a level of emulation of biological systems
never seen before. [72] By combining living cell tissues (that can go from simple
2D cultures to complex organoids) with a microfluidic system, the organ-on-a-chip
creates a physiological microenvironment where the complex responses to stimuli or
substances can be monitored. [73, 74]

There is therefore great potential for in vitro tests to better mimic human responses,
even though the current costs and complexity of these advanced systems limit their
systematic application [60, 74], making the use of these data difficult in the LCIA
context. Moreover, additional work is needed to verify the predictivity and reliability
of these technologies [63], and until then LCIA should prefer to extrapolate human
toxicity from animal data (if available).

An additional criticality resides in the choice of in vitro endpoints predictive of the
effects at the level of the whole organism. Here, rather than focusing on acute toxic
responses, the emphasis should be on disrupted cell functions or non-lethal injuries
which are seen as suitable indicators of the early phases of a chronic response. [75] In
multiple cases, the release of cytokines in vitro was shown to correlate well with acute
in vivo inflammation in the lung, indicating the inflammation pathway as promising
for predictive purposes. [76–80] On the other hand, a large-scale comparison of in
vitro and in vivo point of departures of chemicals (i.e. doses at which low effects were
observed) showed low predictivity of in vivo adverse effects using in vitro bioactivity
data: in 89% of the cases the in vitro dose descriptor was lower than the in vivo
one, but the ratio between the two values ranged several orders of magnitudes. [81]
Hence, more studies are still needed in this issue in order to verify if and which in
vitro data might be predictive of in vivo effects.

The exposure length is another critical aspect for the implementation of in vitro
data into LCIA. While the methodology requires chronic ED50, either from chronic
experiments or extrapolated from shorter exposure times with the corresponding
extrapolation factors (developed for organic chemicals), in vitro studies are mostly
focusing on acute effects and exposures. While in vitro tests have been shown to
be predictive of acute in vivo effects, especially inflammation [82–84], a correlation
with chronic effects is not yet known. However, recent advancements in cell culture
methods are making it possible to maintain cells alive for longer periods of time,
thus allowing sub-chronic toxicity testing in vitro. [85–88]

A further challenge for the use of in vitro data is the need to link observed effects
on the cells to intake doses instead of the dose delivered to the cells, i.e. combine
the toxicodynamics of the material (i.e. the interaction of the toxicant with the
target, in this case the cells) with its toxicokinetics (i.e. the fate of the toxicant
in the body). [89] When considering inhaled nanomaterials and their effect on
the lung, the MPPD dosimetry model [51] is widely used in risk assessment to
estimate the deposition of particles in the lung; moreover, such model has been
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recommended also for the development of toxicity effect factors via inhalation. [50]
When the target organ is not the original point of entry of the nanomaterial, the
back-calculation of the intake dose from the organ dose is more complex; in this
case, Physiologically-Based Pharmaco-Kinetic models (PBPK) can be used to model
the distribution, excretion, and metabolism of the nanomaterial in the human body.
Unfortunately, the existing PBPK models cover only a handful of nanomaterials, and
generalizing them to expand their applicability is made difficult by the complexity
of the biotransformations nanomaterials are subjected to in biological systems. [37,
90]

All in all, while we cannot afford to ignore the in vitro data pool, its implementation
into LCIA is not (yet) straightforward but we still need further, novel procedures that
make this data compatible with the methodology, such as the examples presented
above. At the same time, the methodology itself requires both adaptations and
benefits from the peculiarities of in vitro data.

2.8 uncertainty space for the integration of in vitro data in lcia

Due to the high uncertainty of the EF, the human health impacts calculated in LCA
via the USEtox or similar methodologies should be used qualitatively to identify the
most impacting substances, only comparing the magnitude of the results rather than
the precise value. [13] The level of uncertainty of the EF depends on the uncertainty
of the extrapolation factors used to extrapolate animal data to chronic human data
(Table 2.2).

Table 2.2: The uncertainty factor k associated to each EF extrapolation factor. Each study
calculated the uncertainty factor according to Slob [91], i.e. so that 95% of the
data used for the determination of the extrapolation factor was within a factor k
from the median (equation 2.1).

Extrapolation factor Uncertainty factor k Ref.

Interspecies 19 [46]

Route-to-route 50 [48]

NOAEL to ED50 11 [47]

LOAEL to NOAEL 4 [47]

Acute LD50 to chronic 46 [48]

Sub-acute to chronic 12 [46]

Sub-chronic to chronic 12 [46]

Sub-acute to sub-chronic 15 [46]
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For log-normally distributed data, the uncertainty factor k is defined based on the
95% confidence interval, so that

P{M
k

< x < M · k} = 0.95 (2.1)

with P the probability, x the variable being calculated and M the median. [91]
The uncertainty factor of the toxicity effect factor is a combination of the uncer-

tainties of each extrapolation factor used; to calculate it, we followed the analytical
method of Slob [91] which is based on the assumption of log-normal-distributed un-
certainties for multiplicative models, as also done in USEtox. [13, 47] The uncertainty
factor of the toxicity effect factor kEF is calculated according to the formula:

kEF = exp
√

ln2 k1 + ln2 k2 + ... + ln2 kn (2.2)

with k the uncertainty factor of each extrapolation factor.
Route-to-route extrapolation is the factor with the highest uncertainty; the possibil-

ity to perform specific in vitro experiments for each exposure route would make this
extrapolation factor, and its connected uncertainty, unnecessary. The uncertainty in
extrapolating from animals to humans and from NOAEL/LOAEL to ED50 is avoided
as well given the use of human cells and the possibility to construct a dose-response
curve by testing multiple doses. Based on equation 2.2 the combined uncertainty
of these extrapolation factors, which may be avoided using in vitro data, is of a
factor 277. However, as discussed before, the focus of in vitro studies on acute effects
can be a challenge for their use, not only for their predictivity but also in terms
of uncertainty contribution; as the acute LD50 to chronic extrapolation factor for
chemicals has the second highest uncertainty, we may expect a similar impact for
in vitro data. Hence, a shift towards sub-acute and sub-chronic in vitro experiments
would help reduce this source of uncertainty.

All in all, we could consider in vitro data a good alternative to animal data if
the uncertainty of the in vitro toxicity effect factor is equal or smaller than the one
from animal data. As the extrapolation factors for in vitro data do not exist yet, we
calculated the uncertainty space into which the in vitro toxicity effect factor should
fall, based on the uncertainty of in vivo extrapolation factors and equation 2.2.

For example, the toxicity effect factor for inhalation from Pini et al. [56] from Table
2.1 (EF= 7.26 · 10−2 cases/kgintake) was calculated from the NOAEL value obtained
from a sub-chronic oral study on mice. The combination of the uncertainties of the
NOAEL-to-ED50 extrapolation factor, the sub-chronic to chronic extrapolation factor,
the interspecies extrapolation factor, and the route-to-route extrapolation factor result
in a toxicity effect factor with an uncertainty of 400. Excluding the route-to-route
extrapolation, i.e. if the exposure had been via inhalation, the uncertainty factor
would have been 93. If instead of a NOAEL the study had provided an ED50, the
uncertainty would have been 47. Assuming the worst case possible, i.e. an acute
LD50 value requiring acute-to-chronic extrapolation, route-to-route extrapolation,
and interspecies extrapolation, results in an uncertainty factor of 500. Similar ranges
are reported also using a probabilistic approach, with a 400-fold uncertainty when
using sub-chronic LOAEL values. [22]
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The space of uncertainty of the toxicity effect factors calculated from in vivo data
can be very wide, but they are still accepted into e.g. USEtox as the best option
available, as having no toxicity effect factor would result in completely disregarding
the impacts of a substance in each LCA study based on the concerned impact
assessment method. The same attitude is needed towards the estimation of toxicity
effect factors from in vitro data; uncertain results are inevitable, but they can still be
fit for purpose as long as their uncertainty factor is equal or below 500.

2.9 on the risks of using animal data as benchmark

When evaluating the predictivity and accuracy of in vitro data, animal studies are
often used as benchmark. [41, 92, 93] Similarly, the toxicity effect factors calculated
from in vitro data may be compared with the ones calculated from in vivo data to
verify whether they are in accord, assuming the latter to be the most accurate of
the two. This assumption is though not necessarily true, since the reproducibility of
in vivo results and their inter-species predictivity has been shown to be poor. [94]
For example, studies on the effects of inhaled particles on rats have been used to
calculate both non-cancer and cancer toxicity effect factors [50, 58]; however, the
rat has been shown to be particularly susceptible to inhaled particles compared to
other animals, and the same mechanism causing the emergence of cancer has not
been observed in humans. [95, 96] Even in the same animal family (Muridae, which
includes rats and mice), the average interspecies predictive power was around 50%
for both long- and short-term effects, based on the analysis of 37 chemicals. [97]
While detecting toxicity in an animal increases the probability of the substance to be
toxic for other species, the opposite was not found to be true: the lack of toxicity in
an animal had very little predictive power towards human (lack of) toxicity. [98]

The goal of the toxicity effect factors being to represent the potency of the nano-
material toxicity to humans, an ED50 or ED10 value (from now on called EDx)
extrapolated from in vitro data may be more accurate than the one extrapolated from
animal data (Figure 2.2). However, this depends on how close the extrapolated-EDx
values are to the real human EDx, which is unknown. For example, an in vitro-
extrapolated EDx may be close to the real human EDx, but be very different from the
animal-extrapolated EDx; on the other hand, we could also have in vitro-extrapolated
EDx values very similar to the animal values, but being less similar to the real human
EDx. Only through human toxicological studies we can benchmark both animal- and
in vitro-extrapolated EDx values and verify their accuracy.

2.10 conclusions

A change in the LCIA methodologies is needed if we want to cover the impacts on
human health of nanomaterials in LCA, in particular with respect to the toxicity
effect factors calculation. First, we need to acknowledge that nanomaterials are not
chemicals, meaning that we cannot rely on traditional approaches but we need to
explicitly address the multidimensionality of nanomaterial identity and its impli-
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Figure 2.2: Using in vivo data as benchmark to judge the quality of the in vitro-extrapolated
EDx could lead to selecting those values (2) that are more similar to the animal-
extrapolated EDx (1), while other in vitro-extrapolated EDx values (4) might
be closer to the real, unknown human EDx. Only through epidemiological
studies (3) we can verify the accuracy of the extrapolated values in describing
the toxicity of nanomaterials to humans. It should be noted that each EDx is not
a single point, but rather an area representing the variability and uncertainty of
the measure.

cations for LCIA/LCA. Chemical composition cannot be the only distinguishing
property reported, but other relevant properties such as the shape and size should
be included as well, both in the calculation of characterization factors and in the
inventory data [99]. For the toxicity effect factor calculation, understanding the
relationship between nanoparticle properties and toxicity is needed to develop EFs
as a continuous or discrete function of the relevant property/ies [41, 45].

All in all, implementing in vitro data into LCIA has to become a priority to
avoid nanomaterial effects being ignored due to the scarcity of animal toxicity data.
However, this adaptation is not an easy task, as it falls midway between LCA and
nanotoxicology; while good propositions already exist [52, 53, 100], additional (new)
ideas and comprehensive strategies are still needed. Rather than a single solution,
an iterative and collaborative process is needed; a kind of prospective toxicity effect
factor calculation strategy where proofs of concepts based on the available knowledge
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go hand in hand with the development of adaptable theoretical structures based
on the foresight of future advancements in the nanotoxicology field. Such strategy
will be characterized, especially in the beginning, by a high level of uncertainty, but,
as we showed in section 2.8, this can be the case for animal-based EFs as well. The
uncertainty space delimited by the range of uncertainty that a traditional EF can
have (k between 19 and 500) provides a reference for comparison for in vitro-based
EFs.

In the end, such cross-discipline discussions will assure that, once the the nanotox-
icology field is ready, in vitro data can be smoothly and efficiently implemented into
LCIA. Until then, human data first and in vivo data secondly should be the preferred
source of toxicological information.

Notably, while we focused on human toxicity impacts of nanomaterials and the
calculation of EFs, the challenges and opportunities we described go beyond this
specific case. For example, a similar reasoning could be done for ecotoxicity impacts,
as the use of animal cells instead of whole organisms would speed up the toxicity
testing of new substances.



B I B L I O G R A P H Y

1. Srivastava, V., Gusain, D. & Sharma, Y. C. Critical Review on the Toxicity
of Some Widely Used Engineered Nanoparticles. Industrial & Engineering
Chemistry Research 54, 6209 (2015).

2. Corsi, I., Winther-Nielsen, M., Sethi, R., Punta, C., Della Torre, C., Libralato,
G., Lofrano, G., Sabatini, L., Aiello, M., Fiordi, L., Cinuzzi, F., Caneschi, A.,
Pellegrini, D. & Buttino, I. Ecofriendly nanotechnologies and nanomaterials
for environmental applications: Key issue and consensus recommendations
for sustainable and ecosafe nanoremediation. Ecotoxicology and Environmental
Safety 154, 237 (2018).

3. Falinski, M. M., Plata, D. L., Chopra, S. S., Theis, T. L., Gilbertson, L. M. &
Zimmerman, J. B. A framework for sustainable nanomaterial selection and
design based on performance, hazard, and economic considerations. Nature
Nanotechnology 13, 708 (2018).

4. Tsuji, J. S., Maynard, A. D., Howard, P. C., James, J. T., Lam, C.-w., Warheit, D. B.
& Santamaria, A. B. Research strategies for safety evaluation of nanomaterials,
part IV: risk assessment of nanoparticles. Toxicological sciences 89, 42 (2006).

5. Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T.,
Schmidt, W.-P., Suh, S., Weidema, B. & Pennington, D. Life cycle assessment.
Environment International 30, 701 (2004).

6. Guinée, J. B., Heijungs, R., Vijver, M. G. & Peijnenburg, W. J. Setting the
stage for debating the roles of risk assessment and life-cycle assessment of
engineered nanomaterials. Nature nanotechnology 12, 727 (2017).

7. Andersen, M. E. & Krewski, D. Toxicity Testing in the 21st Century: Bringing
the Vision to Life. Toxicological Sciences 107, 324 (2009).

8. Stone, V., Johnston, H. J., Balharry, D., Gernand, J. M. & Gulumian, M. Ap-
proaches to Develop Alternative Testing Strategies to Inform Human Health
Risk Assessment of Nanomaterials. Risk analysis : an official publication of the
Society for Risk Analysis 36, 1538 (2016).

9. Drasler, B., Sayre, P., Steinhäuser, K. G., Petri-Fink, A. & Rothen-Rutishauser, B.
In vitro approaches to assess the hazard of nanomaterials. NanoImpact 8, 99

(2017).

10. Gerloff, K., Landesmann, B., Worth, A., Munn, S., Palosaari, T. & Whelan, M.
The Adverse Outcome Pathway approach in nanotoxicology. Computational
Toxicology 1, 3 (2017).

35



36 bibliography

11. Lamon, L., Asturiol, D., Richarz, A., Joossens, E., Graepel, R., Aschberger, K. &
Worth, A. Grouping of nanomaterials to read-across hazard endpoints: from
data collection to assessment of the grouping hypothesis by application of
chemoinformatic techniques. Particle and Fibre Toxicology 15, 37 (2018).

12. Stone, V., Gottardo, S., Bleeker, E. A., Braakhuis, H., Dekkers, S., Fernandes, T.,
Haase, A., Hunt, N., Hristozov, D., Jantunen, P., Jeliazkova, N., Johnston, H.,
Lamon, L., Murphy, F., Rasmussen, K., Rauscher, H., Jiménez, A. S., Svend-
sen, C., Spurgeon, D., Vázquez-Campos, S., Wohlleben, W. & Oomen, A. G.
A framework for grouping and read-across of nanomaterials- supporting
innovation and risk assessment. Nano Today 35, 100941 (2020).

13. Rosenbaum, R. K., Bachmann, T. M., Gold, L. S., Huijbregts, M. A. J., Jolliet, O.,
Juraske, R., Koehler, A., Larsen, H. F., MacLeod, M., Margni, M., McKone, T. E.,
Payet, J., Schuhmacher, M., van de Meent, D. & Hauschild, M. Z. USEtox-
the UNEP-SETAC toxicity model: recommended characterisation factors for
human toxicity and freshwater ecotoxicity in life cycle impact assessment. The
International Journal of Life Cycle Assessment 13, 532 (2008).

14. Westh, T. B., Hauschild, M. Z., Birkved, M., Jørgensen, M. S., Rosenbaum, R. K.
& Fantke, P. The USEtox story: a survey of model developer visions and user
requirements. The international journal of Life cycle assessment 20, 299 (2015).

15. Fantke, P., Aylward, L., Bare, J., Chiu, W. A., Dodson, R., Dwyer, R., Ernstoff,
A., Howard, B., Jantunen, M., Jolliet, O., et al. Advancements in life cycle
human exposure and toxicity characterization. Environmental health perspectives
126, 125001 (2018).

16. Huijbregts, M. A., Steinmann, Z. J., Elshout, P. M., Stam, G., Verones, F., Vieira,
M., Zijp, M., Hollander, A. & Van Zelm, R. ReCiPe2016: a harmonised life cycle
impact assessment method at midpoint and endpoint level. The International
Journal of Life Cycle Assessment 22, 138 (2017).

17. Hauschild, M. Z., Huijbregts, M., Jolliet, O., Macleod, M., Margni, M., Van
De Meent, D., Rosenbaum, R. K. & McKone, T. E. Building a model based on
scientific consensus for life cycle impact assessment of chemicals: The search
for harmony and parsimony. Environmental Science and Technology 42, 7032

(2008).

18. Inshakova, E. & Inshakov, O. World market for nanomaterials: structure and trends
in MATEC web of conferences 129 (2017), 02013.

19. Fantke, P., Bijster, M., Guignard, C., Hauschild, M. Z., Huijbregts, M. A.,
Jolliet, O., Kounina, A., Magaud, V., Margni, M., McKone, T. E., Posthuma, L.,
Rosenbaum, R. K., van de Meent, D. & van Zelm, R. USEtox 2.0 Documentation
(Version 1) (ed Fantke, P.) 208 (USEtox International Center hosted at the
Technical University of Denmark, 2017).



bibliography 37

20. Pennington, D., Crettaz, P., Tauxe, A., Rhomberg, L., Brand, K. & Jolliet, O.
Assessing human health response in life cycle assessment using ED10s and
DALYs: part 2–Noncancer effects. Risk analysis : an official publication of the
Society for Risk Analysis 22, 947 (2002).

21. Fantke, P., Chiu, W. A., Aylward, L., Judson, R., Huang, L., Jang, S., Gouin, T.,
Rhomberg, L., Aurisano, N., McKone, T. & Jolliet, O. Exposure and toxicity
characterization of chemical emissions and chemicals in products: global
recommendations and implementation in USEtox. The International Journal of
Life Cycle Assessment 2021 26:5 26, 899 (2021).

22. Chiu, W. A., Axelrad, D. A., Dalaijamts, C., Dockins, C., Shao, K., Shapiro,
A. J. & Paoli, G. Beyond the RfD: broad application of a probabilistic ap-
proach to improve chemical dose–response assessments for noncancer effects.
Environmental health perspectives 126, 067009 (2018).

23. Aurisano, N., Huang, L., Jang, S., Chiu, W., Judson, R. S., Jolliet, O. & Fantke, P.
Broadening the chemical coverage to derive human toxicity dose-response
factors for non-cancer endpoints. Abstracts/Toxicology Letters 350S 1, S276 (2021).

24. World Health Organization. Guidance document on evaluating and expressing
uncertainty in hazard characterization– 2nd edition. tech. rep. (Geneva, 2018).

25. Haber, L. T., Dourson, M. L., Allen, B. C., Hertzberg, R. C., Parker, A., Vincent,
M. J., Maier, A. & Boobis, A. R. Benchmark dose (BMD) modeling: current
practice, issues, and challenges. Critical reviews in toxicology 48, 387 (2018).

26. Travis, K. Z., Pate, I. & Welsh, Z. K. The role of the benchmark dose in a
regulatory context. Regulatory Toxicology and Pharmacology 43, 280 (2005).

27. Filipsson, A. F., Sand, S., Nilsson, J. & Victorin, K. The Benchmark Dose
Method—Review of Available Models, and Recommendations for Application
in Health Risk Assessment. Critical Reviews in Toxicology 33, 505 (2010).

28. Slob, W. Benchmark dose and the three Rs. Part I. Getting more information
from the same number of animals. Critical Reviews in Toxicology 44, 557 (2014).

29. Sajid, M. Nanomaterials: types, properties, recent advances, and toxicity con-
cerns. Current Opinion in Environmental Science & Health 25, 100319 (2022).

30. Dhawan, A., Sharma, V. & Parmar, D. Nanomaterials: A challenge for toxicolo-
gists. Nanotoxicology 3, 1 (2009).

31. Schwirn, K., Tietjen, L. & Beer, I. Why are nanomaterials different and how
can they be appropriately regulated under REACH? Environmental Sciences
Europe 2014 26:1 26, 1 (2014).

32. Mitrano, D. M., Motellier, S., Clavaguera, S. & Nowack, B. Review of nano-
material aging and transformations through the life cycle of nano-enhanced
products. Environment International 77, 132 (2015).

33. Gottardo, S., Mech, A., Drbohlavová, J., Małyska, A., Bøwadt, S., Riego Sintes, J.
& Rauscher, H. Towards safe and sustainable innovation in nanotechnology:
State-of-play for smart nanomaterials. NanoImpact 21, 100297 (2021).



38 bibliography

34. López, A. D., Fabiani, M., Lassalle, V. L., Spetter, C. V. & Severini, M. D. Critical
review of the characteristics, interactions, and toxicity of micro/nanomaterials
pollutants in aquatic environments. Marine Pollution Bulletin 174, 113276 (2022).

35. Mazari, S. A., Ali, E., Abro, R., Khan, F. S. A., Ahmed, I., Ahmed, M., Nizamud-
din, S., Siddiqui, T. H., Hossain, N., Mubarak, N. M. & Shah, A. Nanomaterials:
Applications, waste-handling, environmental toxicities, and future challenges
– A review. Journal of Environmental Chemical Engineering 9, 105028 (2021).

36. Lowry, G. V., Gregory, K. B., Apte, S. C. & Lead, J. R. Transformations of
nanomaterials in the environment. Environmental Science and Technology 46,
6893 (2012).

37. Milosevic, A., Romeo, D. & Wick, P. Understanding Nanomaterial Biotransfor-
mation: An Unmet Challenge to Achieving Predictive Nanotoxicology. Small
16, 1907650 (2020).

38. Oomen, A. G., Bos, P. M., Fernandes, T. F., Hund-Rinke, K., Boraschi, D., Byrne,
H. J., Aschberger, K., Gottardo, S., Von Der Kammer, F., Kühnel, D., Hristozov,
D., Marcomini, A., Migliore, L., Scott-Fordsmand, J., Wick, P. & Landsiedel, R.
Concern-driven integrated approaches to nanomaterial testing and assessment-
report of the NanoSafety Cluster Working Group 10. Nanotoxicology 8, 334

(2014).

39. Schmid, O. & Stoeger, T. Surface area is the biologically most effective dose
metric for acute nanoparticle toxicity in the lung. Journal of Aerosol Science 99,
133 (2016).

40. Burello, E. & Worth, A. P. A theoretical framework for predicting the oxidative
stress potential of oxide nanoparticles. Nanotoxicology 5, 228 (2011).

41. Donaldson, K. & Tran, C. L. An introduction to the short-term toxicology
of respirable industrial fibres. Mutation Research/Fundamental and Molecular
Mechanisms of Mutagenesis 553, 5 (2004).

42. Giusti, A., Atluri, R., Tsekovska, R., Gajewicz, A., Apostolova, M. D., Battistelli,
C. L., Bleeker, E. A., Bossa, C., Bouillard, J., Dusinska, M., Gómez-Fernández,
P., Grafström, R., Gromelski, M., Handzhiyski, Y., Jacobsen, N. R., Jantunen, P.,
Jensen, K. A., Mech, A., Navas, J. M., Nymark, P., Oomen, A. G., Puzyn, T.,
Rasmussen, K., Riebeling, C., Rodriguez-Llopis, I., Sabella, S., Sintes, J. R.,
Suarez-Merino, B., Tanasescu, S., Wallin, H. & Haase, A. Nanomaterial group-
ing: Existing approaches and future recommendations. NanoImpact 16, 100182

(2019).

43. Walser, T., Meyer, D., Fransman, W., Buist, H., Kuijpers, E. & Brouwer, D. Life-
cycle assessment framework for indoor emissions of synthetic nanoparticles.
Journal of Nanoparticle Research 17, 245 (2015).

44. Fransman, W., Buist, H., Kuijpers, E., Walser, T., Meyer, D., Zondervan-van
den Beuken, E., Westerhout, J., Klein Entink, R. H. & Brouwer, D. H. Com-
parative human health impact assessment of engineered nanomaterials in the
framework of life cycle assessment. Risk Analysis 37, 1358 (2017).



bibliography 39

45. Laurent, A., Harkema, J. R., Andersen, E. W., Owsianiak, M., Vea, E. B. &
Jolliet, O. Human health no-effect levels of TiO2 nanoparticles as a function of
their primary size. Journal of Nanoparticle Research 19, 130 (2017).

46. Vermeire, T., Pieters, M., Rennen, M. & Bos, P. Probabilistic assessment factors for
human health risk assessment tech. rep. March (Rivm, 2001), 1.

47. Huijbregts, M. A. J., Rombouts, L. J. A., Ragas, A. M. J. & van de Meent, D.
Human-toxicological effect and damage factors of carcinogenic and noncar-
cinogenic chemicals for life cycle impact assessment. Integrated environmental
assessment and management 1, 181 (2005).

48. Rosenbaum, R. K., Huijbregts, M. A. J., Henderson, A. D., Margni, M., McKone,
T. E., van de Meent, D., Hauschild, M. Z., Shaked, S., Li, D. S., Gold, L. S.
& Jolliet, O. USEtox human exposure and toxicity factors for comparative
assessment of toxic emissions in life cycle analysis: sensitivity to key chemical
properties. The International Journal of Life Cycle Assessment 16, 710 (2011).

49. Salieri, B., Turner, D. A., Nowack, B. & Hischier, R. Life cycle assessment of
manufactured nanomaterials: Where are we? NanoImpact 10, 108 (2018).

50. Buist, H., Hischier, R., Westerhout, J. & Brouwer, D. Derivation of health effect
factors for nanoparticles to be used in LCIA. NanoImpact 7, 41 (2017).

51. Miller, F. J., Asgharian, B., Schroeter, J. D. & Price, O. Improvements and
additions to the Multiple Path Particle Dosimetry model. Journal of Aerosol
Science 99, 14 (2016).

52. Pu, Y., Laratte, B., Marks, R. S. & Ionescu, R. E. Impact of copper nanoparti-
cles on porcine neutrophils: ultrasensitive characterization factor combining
chemiluminescence information and USEtox assessment model. Materials Today
Communications 11, 68 (2017).

53. Salieri, B., Kaiser, J.-P., Rösslein, M., Nowack, B., Hischier, R. & Wick, P. Relative
potency factor approach enables the use of in vitro information for estimation
of human effect factors for nanoparticle toxicity in life-cycle impact assessment.
Nanotoxicology, 1 (2020).

54. Emara, Y., Fantke, P., Judson, R., Chang, X., Pradeep, P., Lehmann, A., Siegert,
M. W. & Finkbeiner, M. Integrating endocrine-related health effects into com-
parative human toxicity characterization. Science of The Total Environment 762,
143874 (2021).

55. Rodriguez-Garcia, G., Zimmermann, B. & Weil, M. Nanotoxicity and Life Cycle
Assessment: First attempt towards the determination of characterization factors
for carbon nanotubes. IOP Conference Series: Materials Science and Engineering
64, 012029 (2014).

56. Pini, M., Salieri, B., Ferrari, A. M., Nowack, B. & Hischier, R. Human health
characterization factors of nano-TiO2 for indoor and outdoor environments.
The International Journal of Life Cycle Assessment 21, 1452 (2016).



40 bibliography

57. Ettrup, K., Kounina, A., Hansen, S. F., Meesters, J. A. J., Vea, E. B. & Laurent, A.
Development of Comparative Toxicity Potentials of TiO2 Nanoparticles for Use
in Life Cycle Assessment. Environmental Science & Technology 51, 4027 (2017).

58. Tsang, M. P., Li, D., Garner, K. L., Keller, A. A., Suh, S. & Sonnemann, G. W.
Modeling human health characterization factors for indoor nanomaterial emis-
sions in life cycle assessment: a case-study of titanium dioxide. Environmental
Science: Nano 4, 1705 (2017).

59. Meigs, L., Smirnova, L., Rovida, C., Leist, M. & Hartung, T. Animal testing and
its alternatives – the most important omics is economics. ALTEX - Alternatives
to animal experimentation 35, 275 (2018).

60. Pimtong, W., Samutrtai, P., Wongwanakul, R. & Aueviriyavit, S. Predictive
models for nanotoxicology: in vitro, in vivo, and computational models. Hand-
book of Nanotechnology Applications, 683 (2021).

61. Choi, J. Y., Ramachandran, G. & Kandlikar, M. The impact of toxicity testing
costs on nanomaterial regulation. Environmental Science and Technology 43, 3030

(2009).

62. Bondarenko, O., Mortimer, M., Kahru, A., Feliu, N., Javed, I., Kakinen, A., Lin,
S., Xia, T., Song, Y., Davis, T. P., Lynch, I., Parak, W. J., Leong, D. T., Ke, P. C.,
Chen, C. & Zhao, Y. Nanotoxicology and nanomedicine: The Yin and Yang of
nano-bio interactions for the new decade. Nano Today 39, 101184 (2021).

63. Wick, P., Grafmueller, S., Petri-Fink, A. & Rothen-Rutishauser, B. Advanced
human in vitro models to assess metal oxide nanoparticle-cell interactions.
MRS Bulletin 39, 984 (2014).

64. Hempt, C., Hirsch, C., Hannig, Y., Rippl, A., Wick, P. & Buerki-Thurnherr, T.
Investigating the effects of differently produced synthetic amorphous silica (E
551) on the integrity and functionality of the human intestinal barrier using
an advanced in vitro co-culture model. Archives of Toxicology 95, 837 (2021).

65. Kasper, J., Hermanns, M. I., Bantz, C., Maskos, M., Stauber, R., Pohl, C.,
Unger, R. E. & Kirkpatrick, J. C. Inflammatory and cytotoxic responses of an
alveolar-capillary coculture model to silica nanoparticles: Comparison with
conventional monocultures. Particle and Fibre Toxicology 8, 1 (2011).

66. Wang, Y., Adamcakova-Dodd, A., Steines, B. R., Jing, X., Salem, A. K. & Thorne,
P. S. Comparison of in vitro toxicity of aerosolized engineered nanomaterials
using air-liquid interface mono-culture and co-culture models. NanoImpact 18,
100215 (2020).

67. Delon, L. C., Guo, Z., Oszmiana, A., Chien, C. C., Gibson, R., Prestidge, C.
& Thierry, B. A systematic investigation of the effect of the fluid shear stress
on Caco-2 cells towards the optimization of epithelial organ-on-chip models.
Biomaterials 225, 119521 (2019).



bibliography 41

68. Chen, H., Yu, Z., Bai, S., Lu, H., Xu, D., Chen, C., Liu, D. & Zhu, Y. Microfluidic
models of physiological or pathological flow shear stress for cell biology,
disease modeling and drug development. TrAC Trends in Analytical Chemistry
117, 186 (2019).

69. Fröhlich, E. Comparison of conventional and advanced in vitro models in the
toxicity testing of nanoparticles. Artificial Cells, Nanomedicine and Biotechnology
46, 1091 (2018).

70. De Souza, N. Organoids. Nature Methods 15, 23 (2018).

71. Hu, B., Cheng, Z. & Liang, S. Advantages and prospects of stem cells in
nanotoxicology. Chemosphere 291, 132861 (2022).

72. World Economic Forum. These are the top 10 emerging technologies of 2016 |
World Economic Forum https://www.weforum.org/agenda/2016/06/top-10-

emerging-technologies-2016/ (2022).

73. Wick, P., Chortarea, S., Guenat, O. T., Roesslein, M., Stucki, J. D., Hirn, S.,
Petri-Fink, A. & Rothen-Rutishauser, B. In vitro-ex vivo model systems for
nanosafety assessment. European Journal of Nanomedicine 7, 169 (2015).

74. Wu, Q., Liu, J., Wang, X., Feng, L., Wu, J., Zhu, X., Wen, W. & Gong, X. Organ-
on-a-chip: recent breakthroughs and future prospects. BioMedical Engineering
OnLine 2020 19:1 19, 1 (2020).

75. Comfort, K. K., Braydich-Stolle, L. K., Maurer, E. I. & Hussain, S. M. Less
Is More: Long-Term in Vitro Exposure to Low Levels of Silver Nanoparticles
Provides New Insights for Nanomaterial Evaluation. ACS Nano 8, 3260 (2014).

76. Monteiller, C., Tran, L., MacNee, W., Faux, S., Jones, A., Miller, B. & Donald-
son, K. The pro-inflammatory effects of low-toxicity low-solubility particles,
nanoparticles and fine particles, on epithelial cells in vitro: the role of surface
area. Occupational and environmental medicine 64, 609 (2007).

77. Duffin, R., Tran, L., Brown, D., Stone, V. & Donaldson, K. Proinflammogenic
Effects of Low-Toxicity and Metal Nanoparticles In Vivo and In Vitro: High-
lighting the Role of Particle Surface Area and Surface Reactivity. Inhalation
Toxicology 19, 849 (2007).

78. Dobrovolskaia, M. A. & McNeil, S. E. Understanding the correlation between in
vitro and in vivo immunotoxicity tests for nanomedicines. Journal of Controlled
Release 172, 456 (2013).

79. Teeguarden, J. G., Mikheev, V. B., Minard, K. R., Forsythe, W. C., Wang, W.,
Sharma, G., Karin, N., Tilton, S. C., Waters, K. M., Asgharian, B., Price, O. R.,
Pounds, J. G. & Thrall, B. D. Comparative iron oxide nanoparticle cellular
dosimetry and response in mice by the inhalation and liquid cell culture
exposure routes. Particle and Fibre Toxicology 11, 46 (2014).

https://www.weforum.org/agenda/2016/06/top-10-emerging-technologies-2016/
https://www.weforum.org/agenda/2016/06/top-10-emerging-technologies-2016/


42 bibliography

80. Rushton, E. K., Jiang, J., Leonard, S. S., Eberly, S., Castranova, V., Biswas, P.,
Elder, A., Han, X., Gelein, R., Finkelstein, J. & Oberdörster, G. Concept of
Assessing Nanoparticle Hazards Considering Nanoparticle Dosemetric and
Chemical/Biological Response Metrics. Journal of Toxicology and Environmental
Health, Part A 73, 445 (2010).

81. Paul Friedman, K., Gagne, M., Loo, L.-H., Karamertzanis, P., Netzeva, T.,
Sobanski, T., Franzosa, J. A., Richard, A. M., Lougee, R. R., Gissi, A., et al.
Utility of in vitro bioactivity as a lower bound estimate of in vivo adverse effect
levels and in risk-based prioritization. Toxicological Sciences 173, 202 (2020).

82. Loret, T., Rogerieux, F., Trouiller, B., Braun, A., Egles, C. & Lacroix, G. Pre-
dicting the in vivo pulmonary toxicity induced by acute exposure to poorly
soluble nanomaterials by using advanced in vitro methods. Particle and Fibre
Toxicology 15, 25 (2018).

83. Donaldson, K., Borm, P. J. A., Oberdorster, G., Pinkerton, K. E., Stone, V.
& Tran, C. L. Concordance Between In Vitro and In Vivo Dosimetry in the
Proinflammatory Effects of Low-Toxicity, Low-Solubility Particles: The Key
Role of the Proximal Alveolar Region. Inhalation Toxicology 20, 53 (2008).

84. Han, X., Corson, N., Wade-Mercer, P., Gelein, R., Jiang, J., Sahu, M., Biswas, P.,
Finkelstein, J. N., Elder, A. & Oberdörster, G. Assessing the relevance of in
vitro studies in nanotoxicology by examining correlations between in vitro
and in vivo data. Toxicology 297, 1 (2012).

85. Guglielmo, C. D., Lapuente, J. D., Porredon, C., Ramos-López, D., Sendra, J. &
Borrás, M. In Vitro Safety Toxicology Data for Evaluation of Gold Nanoparti-
cles–Chronic Cytotoxicity, Genotoxicity and Uptake. Journal of Nanoscience and
Nanotechnology 12, 6185 (2012).

86. Phuyal, S., Kasem, M., Rubio, L., Karlsson, H. L., Marcos, R., Skaug, V. &
Zienolddiny, S. Effects on human bronchial epithelial cells following low-dose
chronic exposure to nanomaterials: A 6-month transformation study. Toxicology
in Vitro 44, 230 (2017).

87. Thurnherr, T., Brandenberger, C., Fischer, K., Diener, L., Manser, P., Maeder-
Althaus, X., Kaiser, J. P., Krug, H. F., Rothen-Rutishauser, B. & Wick, P. A
comparison of acute and long-term effects of industrial multiwalled carbon
nanotubes on human lung and immune cells in vitro. Toxicology Letters 200,
176 (2011).

88. Chortarea, S., Barosova, H., Clift, M. J. D., Wick, P., Petri-Fink, A. & Rothen-
Rutishauser, B. Human Asthmatic Bronchial Cells Are More Susceptible to
Subchronic Repeated Exposures of Aerosolized Carbon Nanotubes At Occu-
pationally Relevant Doses Than Healthy Cells. ACS Nano 11, 7615 (2017).

89. Welling, P. G. Differences between pharmacokinetics and toxicokinetics. Toxi-
cologic Pathology 23, 143 (1995).



bibliography 43

90. Lamon, L., Asturiol, D., Vilchez, A., Cabellos, J., Damásio, J., Janer, G., Richarz,
A. & Worth, A. Physiologically based mathematical models of nanomaterials
for regulatory toxicology: A review. Computational Toxicology 9, 133 (2019).

91. Slob, W. Uncertainty Analysis in Multiplicative Models. Risk Analysis 14, 571

(1994).

92. Cho, W.-S., Duffin, R., Poland, C. A., Duschl, A., Oostingh, G. J., MacNee, W.,
Bradley, M., Megson, I. L. & Donaldson, K. Differential pro-inflammatory
effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo;
zinc and copper nanoparticles, but not their ions, recruit eosinophils to the
lungs. Nanotoxicology 6, 22 (2012).

93. Weldon, B. A., Griffith, W. C., Workman, T., Scoville, D. K., Kavanagh, T. J. &
Faustman, E. M. In vitro to in vivo benchmark dose comparisons to inform
risk assessment of quantum dot nanomaterials. Wiley Interdisciplinary Reviews:
Nanomedicine and Nanobiotechnology 10, e1507 (2018).

94. Hartung, T. Opinion versus evidence for the need to move away from animal
testing. Altex 34, 193 (2017).

95. Warheit, D. B. Pulmonary Bioassay Methods for Evaluating Hazards Following
Exposures to Nanoscale or Fine Particulate Materials. Assessing Nanoparticle
Risks to Human Health, 99 (2011).

96. Warheit, D. B., Kreiling, R. & Levy, L. S. Relevance of the rat lung tumor
response to particle overload for human risk assessment—Update and inter-
pretation of new data since ILSI 2000. Toxicology 374, 42 (2016).

97. Wang, B. & Gray, G. Concordance of Noncarcinogenic Endpoints in Rodent
Chemical Bioassays. Risk Analysis 35, 1154 (2015).

98. Van Norman, G. A. Limitations of Animal Studies for Predicting Toxicity in
Clinical Trials: Is it Time to Rethink Our Current Approach? JACC: Basic to
Translational Science 4, 845 (2019).

99. Hischier, R. Framework for LCI modelling of releases of manufactured nano-
materials along their life cycle. The International Journal of Life Cycle Assessment
19, 838 (2014).

100. Romeo, D., Salieri, B., Hischier, R., Nowack, B. & Wick, P. An integrated path-
way based on in vitro data for the human hazard assessment of nanomaterials.
Environment International 137, 105505 (2020).



3
A N I N T E G R AT E D PAT H WAY B A S E D O N I N V I T R O D ATA F O R
T H E H U M A N H A Z A R D A S S E S S M E N T O F N A N O M AT E R I A L S

3.1 abstract

In line with the 3R concept, nanotoxicology is shifting from a phenomenological to
a mechanistic approach based on in vitro and in silico methods, with a consequent
reduction in animal testing. Risk Assessment (RA) and Life Cycle Assessment (LCA)
methodologies, which traditionally rely on in vivo toxicity studies, will not be able to
keep up with the pace of development of new nanomaterials unless they adapt to use
this new type of data. While tools and models are already available and show a great
potential for future use in RA and LCA, currently none is able alone to quantitatively
assess human hazards (i.e. calculate chronic NOAEL or ED50 values). By highlighting
which models and approaches can be used in a quantitative way with the available
knowledge and data, we propose an integrated pathway for the use of in vitro data
in RA and LCA. Starting with the characterization of nanoparticles’ properties, the
pathway then investigates how to select relevant in vitro human data, and how to
bridge in vitro dose-response relationships to in vivo effects. If verified, this approach
would allow RA and LCA to stir up the development of nanotoxicology by giving
indications about the data and quality requirements needed in risk methodologies.

3.2 introduction

Engineered nanomaterials (ENM) are synthesised particles with at least one dimen-
sion in the size range 1-100 nm, whose peculiar properties allow novel applications
in many sectors, such as energy, electronics, health, chemistry, materials, textiles [1,
2]. In the last 30 years, the nanotechnology field has been following an exponential
trend of development [3], and has been recognized as one of the Key Enabling
Technologies of the 21

st century [4].
Together with the acknowledgement of the benefits of nanomaterials, there is

also concern about eventual negative environmental and/or health impacts, since
their wide use may presents a novel risk of involuntary exposure, and the same
properties that make them innovative could determine a different toxicity compared
to bulk materials [5, 6].The attention on potential toxic effects comes not only from
a regulatory point of view (down-stream measures), but also from the proactive
approach "Safer-by Design", which aims at selecting safer substances already during
the development of new ENM [7, 8]. Identifying risks early and in an adequate
manner, both in terms of exposure and toxic potential, can be achieved by combining
the knowledge of nanotoxicology and general risk methodologies such as Risk As-
sessment (RA) or Life Cycle Assessment (LCA) [9–11]. Following the new paradigm
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Figure 3.1: The transition towards a mechanistic nanotoxicology determines a reduction in
animal studies, which are the traditional data source of risk methodologies such
as Risk Assessment and Life Cycle Assessment. At the same time, a growing
amount of in vitro studies are being produced, but a way to use this new type
of data in risk methodologies is still missing.

for the toxicology of the 21
st century [12], the nanotoxicology field is developing

towards a mechanistic approach to toxicity, based on in vitro and in silico models [13].
Thus, rather than observing the toxic effects of substances on animals, the focus
shifts to: (i) understanding how toxicity is exerted, from a biochemical level up to a
population [14], (ii) identifying which and to what extent the characteristics of the
tested substances induce toxicity [15], (iii) developing new screening and predictive
methods [16]. The translation of this vision to practice relies on the new tools and
disciplines that aim at understanding and measuring toxicity from a mechanistic
point of view, for example by developing in vitro models that are more predictive of
in vivo effects [12]. Undoubtedly this path is not free from technical and regulatory
challenges [17–19], however it has set a direction that has influenced research by
stimulating the development of alternative approaches in toxicology. The effect of
these changes is and will be a reduction of animal testing and an increasing availabil-
ity and refinement of in vitro data and in silico tools, which are not yet implemented
in LCA and RA (Figure 3.1).

Traditionally, both RA and LCA use epidemiological or in vivo toxicological
data to establish a dose-response assessment (Figure 3.2). Risk assessment calls
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this step hazard characterization, while in LCA it is described by the so-called
effect factor, as defined in the consensus model USEtox [20], applied as reference
methodology for the assessment of human health impacts. Risk Assessment, faithful
to its threshold approach, focuses on the maximum dose at which no adverse effect
is observed (NOAEL, eventually derived from the LOAEL, lowest observed adverse
effect level) [21], while LCA derives a linear dose-response curve from the dose
generating an effect on 50% of the individuals (EC50 or ED50) [20]. Hence, when
assessing the effects of ENM, both methods rely on classical nanotoxicological data
to derive these toxicological dose descriptors. However, epidemiological studies
of ENM are rare, and are available only when exposure has already caused an
impact on human health, while animal data will become scarcer due to the transition
occurring in the toxicology field.

To keep up with the pace of development of new (nano)materials, risk method-
ologies have to account for the shift in type and source of nanotoxicology data, and
adapt accordingly. This methodological challenge can be proactively approached:
without waiting for well-established non-animal methods and models, RA and LCA
can already identify and express their new needs in terms of data and data qual-
ity [22], to make sure they are met as the nanotoxicology field progresses towards
more advanced in vitro and in silico models and a reduced use of animal testing.

Currently, there is not yet a complete strategy for a quantitative assessment of ENM
human health impacts implementable with the available non-animal data and in
silico models [23, 24], i.e. a defined quantitative in vitro in vivo extrapolation (QIVIVE)
procedure [25]. Previous studies focused on (i) single methods and their potential,
without addressing all the requirements of LCA and RA [26–28], (ii) potential of
future (i.e. not yet implementable) integrated approaches and frameworks [29–31],
and (iii) limitations and focus areas for future developments in the nanotoxicology
field [27, 32, 33].

In our knowledge, all the strategies proposed for a quantitative ENM hazard
assessment and effect factor calculation rely on future advancement of in silico
tools or conceptual frameworks. Rather than producing an extensive review of
available methods and models, we focus on a subset that addresses the choice
and refinement of in vitro data, and the subsequent extrapolation to in vivo data.
Building on the changes in the type of data produced in nanotoxicology and the
requirements of RA and LCA, this work explores a pathway towards a QIVIVE of
ENM, for a next-generation human toxicity assessment. We highlight how methods
can support each other and which data are required for this integrated approach.
Last, acknowledging the youth of the field, this paper pinpoints which quality
requirements in nanotoxicology could accelerate the development of alternative
strategies in human health impact assessment. The overall goal of this review is to
provide the risk assessment and life cycle assessment communities with a potential
way to implement in vitro data in hazard assessment, making it possible to provide
feedback to the nanotoxicology community about the requirements, in terms of data
and quality, of risk methodologies.
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Figure 3.2: The traditional human toxicity assessment in Risk Assessment and Life Cycle
Assessment. Epidemiological data and in vivo animal data are used to derive
the NOAEL and/or LOAEL values for RA, and the EC50 or ED50 values for
LCA. Extrapolation and safety factors are applied in case of sub-optimal data,
for example to account for differences in target species (from animal to human),
duration of exposure, population variability. The result of the combination
of the hazard characterization and the exposure assessment is the human
health risk assessment, while human health impact assessment derives from the
integration of fate, exposure and effect factors. Colored dashed arrows highlight
the correspondence between RA and LCA steps.
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3.3 state of the art of the integration of in vitro data in ra and lca

In the area of nanotoxicology, some attempts have been proposed to integrate in vitro
data in RA and LCA, applying different methods and models.

Cheng et al. [34] coupled pharmacokynetics and in vitro pharmacodynamics of gold
nanoparticles using a probabilistic risk assessment approach. The pharmacodynamics
was derived from in vitro toxicity dose-response curves for multiple submerged cell
cultures, calculating the dose effectively reaching the cells using an in vitro dosimetry
model. The ED5 and ED10 values estimated from the dose-response relationship
were used as internal doses from which the injected external doses are estimated,
using a Physiologically-Based Pharmacokinetic model (PBPK). The obtained values
representing the human equivalent dose generating the death of 5% and 10% of
cells were compared with results from in vivo studies. As the authors point out,
while their strategy provides interesting insights for risk assessment, the choice of
cytotoxicity as in vitro endpoint is significantly different from sub-lethal, sub-chronic,
or chronic endpoints traditionally evaluated in risk assessment, which hinders the
predictivity of the proposed approach.

The importance of choosing relevant in vitro endpoints and linking the in vitro dose
to the corresponding external exposure dose was highlighted also by Forsby and
Blaauboer [35]. Their approach for the risk assessment of neurotoxicity of chemicals
(not nanoparticles) requires the calculation of a set of endpoints that encompass
cytotoxic, physiological, morphological and neuochemical effects. The assumption is
that the lowest-dose showing any of these effects in vitro could be used as lowest
observed effect level (LOEL) surrogate. This value is then coupled with a PBPK
model to estimate the lowest observed effect dose (LOED), i.e. the external exposure
dose producing a concentration in the blood and brain equal to the LOEL value
calculated in vitro. In their study, the comparison of the estimated LOED with the
corresponding values from in vivo experiments showed a good correlation (within
one order of magnitude). While this approach seems promising, it is not specifically
developed for ENM, and its applicability to this type of substances would have to be
demonstrated.

A single work has so far addressed the use of in vitro data in Life Cycle Assess-
ment [36]. The study estimated the in vivo ED50 values of a set of soluble nanoparticles
from the in vitro and in vivo EC50 and ED50 of comparable known substances with
the same mode of toxicity, using a Relative Potency Approach (explained in detail
in chapter 3.4). The main assumption of this methodology is that, if the in vitro
dose-response curves of the test and reference substances are parallel, the ratio of
the two substances’ EC50 values in a subhuman system corresponds to the ratio in
the human system [37]. The correlation between in vitro and in vivo data, without
explicitly describing or modelling any process occurring between the cellular and
whole organism level (e.g. the kinetics of the substances) is an assumption that
however needs to be verified before this approach could be extensively implemented,
and the integration with other models is a possible solution highlighted by the
authors as a way to further develop this reported approach.
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3.4 a pathway for future-oriented hazard assessment of manufac-
tured nanomaterials

As shown in chapter 3.3, nanotoxicology a priori offers data, methods, and models
that actually have the potential to support RA and/or LCA. However, since a
single straightforward substitute of animal data does not exist yet, it is necessary
to connect and integrate these different approaches/methods to calculate an EC50,
ED50, NOAEL, or LOAEL in the absence of in vivo studies.

These models and approaches cover various aspects connected to the choice and
refinement of in vitro data and their extrapolation to in vivo data. The choice of
models to integrate is per se a subjective decision, that relies on the understanding
of the available options and depends on the specific goal of the strategy. In our
case, we aimed at selecting a strategy that was as much as possible implementable
with the already available data. Therefore, inspired by the concept of Weight of
Evidence [38, 39], we evaluated the readiness and potential for quantitative use of
the models. The evaluation was performed considering as criteria the applicability
range and the number and type of ENM included until now in each model. We then
prioritized those models already covering a wide range of materials, considering
the theoretical applicability range only in a second instance. This information was a
support to the judgement on the integrability of different models and the selection
of the strategy. The proposed pathway (Figure 3.3) is rooted in the properties of
nanomaterials, and relies on the use of in vitro human data. After choosing in vitro
models and testing, as well as of relevant dose units, data from submerged in vitro
cultures can be refined to account for the dose effectively reaching the cells via an in
vitro dosimetry model (such as the one-dimensional Distorted Grid model). To move
towards a higher representativeness of in vivo dose-response relationships, the in
vitro data can be coupled with kinetic models such as PBPK models and the Multiple-
Path Particle Dosimetry (MPPD) model, to link a response in vitro to the result of
whole organism exposure. Even if with more constraints, a Relative Potency Factor
Approach (RPF) can support those cases in which kinetic models are not available.
The final outcomes are the respective values required within LCA and RA for the
assessment of human health impacts. Each single step of this proposed pathway and
the connected supporting models are presented in detail in the following sections.

3.5 nanomaterial properties

The first indispensable step for the hazard assessment of ENM is to precisely know
their physico-chemical properties [40]. Since properties such as toxicity depend
on ENM physico-chemical characteristics (e.g. size, surface area, shape), a precise
characterization is needed to uniquely identify the substance under examination,
and allow the reproducibility of the study. Often ENM are characterised in the
form they have been purchased (e.g. nanopowder), however, the interaction with
biological systems in vivo or in vitro will affect the characteristics of ENM, and
therefore modify their properties [41]. For this reason, the characterization step has
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Figure 3.3: Graphic representation of the proposed pathway for the assessment of human
health impacts of ENM from non-animal data, in alignment with the new trends
and developments in nanotoxicology. The importance of the properties of ENM
(light blue) is described in section 3.5. The selection of in vitro data (section 3.6),
in grey, includes the evaluation of Quantitative Structure-Activity Relationship
models (QSAR), in vitro dosimetry models, Adverse Outcome Pathway (AOP),
and "omics" technologies. The extrapolation from in vitro to whole organism
level (section 3.7), in green, includes the evaluation of the correlations between
in vitro and in vivo data, Physiologically-Based Pharmacokinetic models (PBPK),
the Multiple-Path Particle Dosimetry (MPPD) model, and the Relative Potency
Factor approach (RPF).
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to be consistent with the type of test that will be conducted: for in vitro toxicological
tests, the ENM should also be characterized in the exposure media, which should
possibly mimic in vivo conditions [42]. For example, eventual agglomeration processes
occurring in human blood should be replicated in the in vitro system, to increase
the representativity of the study; as the effects are caused by the agglomerated
ENM, and not the pristine ENM, the new size of the ENM should be measured and
reported.

The characterization step is also needed to express the ENM dose in a unit that is
relevant to its toxicity. In fact, while exposure doses are often reported in mass, the
mass is not necessarily the driver of toxicity, but other characteristics, such as surface
area, surface charge, shape, are responsible of the potential negative effects [43]. This
because toxicity is exerted by the Biologically Effective Dose (BED), i.e. the active
agent that is directly associated to a response; on a practical level, the closer the
specified dose converges with the BED, the more likely the dose-response association
will be evident [44]. With a well characterized substance, the mass-based dose can be
converted to the BED, which, for example, has been shown to affect the correlation
between in vitro and in vivo responses [45].

A good characterization of ENM provides a robust basis for any subsequent test,
supports an initial idea about the potential mode of toxicity and the classification of
ENM, and provides all the data necessary to express their dose in units relevant to
their toxicity.

3.6 selection of in vitro data

In vitro tests assess the response of isolated cells, organoids or tissues to the exposure
to ENM, i.e. their pharmacodynamics. Unlike in vivo testing, in vitro assays are
cheaper, faster, and can use human cells, avoiding in this way the critical point of
extrapolating from species to species [46]. Moreover, they are better fit to study and
explain the mechanism of toxicity, since they can describe the interaction of particles
and living beings on a molecular and cellular level. At the same time, however, in
vitro data do not represent a systemic response, especially when only one cell type
is used, which limits the direct use of these data in RA and LCA. To overcome this
limitation, more complex systems are being developed, reflecting the tri-dimensional
structure of organs [47], and the real exposure of cells [46]. This shows that the
field has not yet reached a mature state, and that in the future we can expect in
vitro models to be more representative of tissues/organs and their interaction with
ENM [48].

3.6.1 AOP and “omics" technologies support the choice of endpoints

A challenge for the use of in vitro data is the choice of cells and endpoints, since a
wide range of physiological, morphological, and chemical effects can be measured
at cellular level, for different cell types [49]. Such a selection should be guided by
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the knowledge of the kind of data that are required by RA and LCA: the focus is
preferably on chronic effects caused by a lifetime exposure [20]. While in the future
more complex models could be more predictive of chronic exposure effects [50],
currently most in vitro tests show acute and sub-acute responses obtained by one or a
few repeated doses, rather than the effect of a long-term low-dose exposure. The aim
then would be to select those endpoints that show non-lethal injuries or disruptions
in cell functioning that could be attributed to an early phase of a chronic response
rather than an acute toxic response such as death [50]. As a consequence, cell viability
tests, which are performed in great numbers, are only partially informative, as they
represent a critical acute response obtained at relatively high doses.

Identifying the early cellular effects potentially leading to a disease is one of the
focus points of the Adverse Outcome Pathway (AOP), a framework that maps the
path that, from a molecular initiating event (MIE) and through a variable number
of key events, leads to an adverse outcome at organism or population level [51].
A quantitative AOP identifies all the necessary and causally-interlinked steps at
molecular, cellular, organ level that will lead to an adverse effect, and reports
quantitatively the relationships between these steps, the exposure doses, and the
time, obtaining for each step a dose-(time)-response curve [14]. AOPs have the
potential to support the development of predictive toxicity models and the selection
of early biomarkers and assays predictive of adverse outcomes [52].

A promising resource in the establishment and application of AOPs are “omics"
technologies, which is a generic term for all those “methods that aim to analyse
complex biological samples by focusing on a complete set of biomolecules, e.g. the
whole genome (genomics), transcriptome (transcriptomics), proteome (proteomics) or
metabolome (metabolomics)" [53]. Through the production of high-content databases,
“omics" technologies provide information about the complete genetic or molecular
profiles of perturbed living systems, including the correlations and dependencies
occurring between molecular components [54]. Their use lies both in the determi-
nation of MIE and key events, and in proposing biomarkers for particles toxicity
screening [55]. The “omics profile" can also be used comparatively, to classify the
effect of ENM with respect to other chemicals, drugs, and diseases [56].

Whereas from a regulatory perspective the standard remains the use of classical
toxicity tests [57], the use of these data is gaining acceptance, with a growing number
of studies using “omics" data to identify modes of toxicity. However, the development
of AOPs relevant for ENM is still in an initial qualitative phase, where the focus
is on the identification of key events, but no information is available about the
relationship existing between them [58]. Halappanavar et al. [59] screened in vitro
and in vivo data about ENM toxicity and assigned the reported biological events
to potential key events and adverse outcomes. Interestingly, most key events were
linked to chronic inflammation and oxidative stress. The available data did not allow
the development of quantitative AOP, but only a qualitative identification of key
events. A few other attempts have been done towards quantitative AOPs [60–62], but
there is still no standardized approach to AOP quantification, and the application of
different methodologies has shown diverging results [61], which suggests that the
path to quantitative AOPs is still long.
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3.6.2 Realistic doses and in vitro dosimetry

The choice of the doses used in in vitro tests is crucial for the relevance of the tests
for RA and LCA. As seen before, these methodologies investigate chronic effects
caused by environmental exposure, which should guide the selection of in vitro
doses. A dose as coherent as possible to expected environmental exposure will show
effects more realistic than high doses that more easily produce cytotoxic effects,
characteristic of acute toxicity [63]. Thus, the in vitro dose should represent the
fraction of the environmental concentration effectively reaching the target cells [64].
When this internal dose is not directly available, it can be obtained by using models
that simulate the kinetic of the particles in the body (as explained in section 3.7.2).

The next step is to assure that the cells in the in vitro system are effectively exposed
to such dose [65]. For chemicals soluble in the exposure media of submerged systems,
the cellular dose corresponds to the concentration in the media. ENM, on the other
hand, are not dissolved in the media, and are therefore affected by solution dynamics
via agglomeration, settling, and diffusion processes, and by chemical interaction with
the media (e.g. change of surface and surface charge) [66]. Due to these interactions,
the concentration of the particles in the media not necessarily corresponds to the
dose that reaches the cells, and the assumption of in vitro systems of proportionality
between the concentration of a substance in the media and the cellular dose does
not hold true for ENM [67].

Here, we present two ways to calculate the dose effectively reaching the cells: Quan-
titative Structure-Activity Relationship (QSAR) models, and the one-dimensional
Distorted Grid (DG) model.

Quantitative Structure-Activity Relationship models are computer-assisted (in
silico) methods that identify those characteristics of the physico-chemical structure
of ENM that are related to a biological activity, property or effect, with the aim of
predicting such activity by only knowing the selected descriptors [68]. One of the
activities that have been modelled is the uptake of ENM by human cells [69–73]. The
data source of all the studies was a database of 109 nanoparticles with the same
superparamagnetic core, and different coatings [74]. The uptake was studied for
different cell types, including pancreatic cancer cells [69–73], endothelial cells [72],
and macrophages [73]. The determinants of cellular uptake were properties linked
to the chemical formulas of the coating groups, such as lipophilicity, magnetic
properties, size of the nanoparticles. All models showed a good performance in
terms of sensitivity and specificity.

An interesting consideration after an evaluation of these models is that exogenous
parameters, such as those relative to the interaction with the exposure media, were
not taken into the account, and since some of these variables were constant over
the dataset, their influence on cellular uptake is not captured. This is the case for
the type of exposure media, the dose, and the exposure time [75]. This restricts
the applicability domain of the models; considering that the dose influences the
uptake [76], the uptake predicted by these QSARs can be considered reliable only
for the same doses used to build the models.
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For the models to capture the contribution of more variables, and provide previ-
sions for a larger class of nanomaterials, more complete datasets are necessary [77].
The requirement of large amounts of data to be built and validated is one of the
limitations of QSAR models [78]. To accelerate the solution of this issue, modelers
and experimentalists can collaborate to make sure that experimental data provide all
the features required for QSAR, such as a large enough sample size, and a complete
particle characterization [79]. Up to now, the available QSARs should be used only
when the case study falls in the applicability domain of the model, and important
limitations such as the lack of dose-dependent uptake functions should be taken
into account.

In vitro dosimetry models allow the calculation of the dose of ENM effectively
reaching the cells in submerged in vitro cultures, to compare biological responses
to exposure doses more physiologically-relevant than the ENM concentration in
the media [80]. The one-dimensional Distorted Grid (DG) model [81] (Matlab code
available for free as supplementary software of [82]) simulates sedimentation and
diffusion processes of suspended particles to calculate their transport over time. It
represents an advancement with respect to the In vitro Sedimentation, Diffusion and
Dosimetry (ISDD) model [66] and the updated volumetric centrifugation method
(VCM) ISDD [83].

The DG model is able to simultaneously simulate the behavior of a polydisperse
suspension of soluble or non soluble particles, considering the characteristics of the
media, of the particles, and of the experiment (Table 3.1). It also accounts for the
adsorption of particles on the cells, which determines the level of re-suspension of
particles deposited at the bottom of the system.

The output is the fraction, mass, surface area, or number of particles/agglomerates
moving vertically through the media and reaching cells over time, expressed as
absolute values or concentrations. The model has been validated by comparison
with experimental data for multiple ENM suspensions; a protocol to prepare and
characterize the nanomaterials is also available to assure a standardised calculation
of all needed parameters [82].

3.6.3 In summary, the choice of in vitro endpoints and doses

The choice of endpoints and doses is a fundamental step for the use of in vitro
data [84]. Even if AOPs are providing new knowledge about the development of
toxicity over time and across different levels of biological organization, the field is
still in an early stage. Waiting for quantitative indications, for now the choice of in
vitro endpoints relies on the knowledge about the mode of toxicity of the nanoparticle
(e.g. oxidative stress induction), the type of data preferred in RA and LCA, and,
more generally, the experts’ experience. While the amount taken up by the cells
would be a more precise dose, our analysis of models state of development showed
that QSAR uptake models have, for now, a too limited range of application to be
used consistently, making the DG model a preferable solution for in vitro dosimetry
(Table 3.2).
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Table 3.1: The input parameters and the output of the One-dimensional Distorted Grid
model.

One-dimensional Distorted Grid Model

Inputs

System parameters

Height of suspension column

Media density

Media viscosity

Temperature

ENM parameters

Concentration in mass

Density of ENM

Effective density of agglomerates

Diameter of suspended ENM

Solute ENM fraction

Outputs

Deposited ENM over time

Concentration of particles

Mass of particles

Number of particles

Surface area of particles

By combining the characterization of nanoparticles with the DG model, we obtain
a dose-response curve in vitro where the dose is expressed as biologically effective
dose reaching the cells, and the response is one or more endpoints that are chosen by
expert judgement to be a good indicator of chronic, sub-chronic or sub-acute effects.
Even if still reliant on arbitrary choices, not overlooking any of these points provides,
for a well characterized ENM, a more precise evaluation of in vitro responses, and
high potential for integration with the next steps of our proposed pathway.

3.7 from in vitro to whole organism level

Linking a cellular response to an in vivo response is a challenge for which a standard
approach has not being identified yet. One strategy is to verify whether there is
any correlation between in vitro and in vivo results. Another approach couples the
information about pharmacodynamics obtained by in vitro tests with pharmacoki-
netics modelling. Last, the Relative Potency Factor Approach allows the estimate of
in vivo ENM potency (i.e. the dose that yields a given level of response) from the
comparison with the potency of a better characterized reference substance using
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Table 3.2: The theoretical applicability range of the models and approaches that can be
used to select or refine in vitro data, and the type of particles that are currently
covered.1Labib et al. [57], 2Gerloff et al. [58], 3Worth et al. [15].

Model Applicability range Currently covered ENM

AOP Any ENM (disease spe-
cific)

Lung fibrosis from carbon
nanotubes1

Liver fibrosis from metal
oxides2

QSAR uptake models Any ENM Coated iron oxide3

DG model Spherical ENM Any spherical ENM

subhuman data (e.g., subcellular, cellular, animal) [37]. The three options and the
type of data they can generate are presented in figure 3.4.

3.7.1 Correlation of in vitro and in vivo data

To assert the predictivity of in vitro tests for in vivo responses to ENM exposure,
a correlation should exist between the results of these two tests [87]. Coherently
with the fact that most in vitro studies represent an acute or sub-acute response, the
reference in vivo endpoints also assess the acute/sub-acute toxicity of nanoparticles,
with a particular focus on lung inflammation [45, 87–89].

To verify the existence of a correlation between the responses in vivo and in vitro,
it is fundamental to set a criterion for comparison, i.e. define which doses and
responses are assumed to correspond [88]. For example, the considered dose can be
the exposure level [87], or the amount of particles associated to the cells [67], and can
be expressed in mass or surface area [89], while the choice of endpoints to compare
is guided by the knowledge on nanoparticles mechanisms of toxicity [45, 90].

The experimental tests provide, for each particle and according to the chosen
criteria, a dose-response curve in vitro and in vivo; to assess the existence of a
correlation for multiple particles, these values need to be combined. To reduce the
number of variables, each response can be normalized per unit dose, providing in
this way an estimation of the potency of each nanoparticle [45]. Since each point
with a different slope in a dose-response curve has a different normalized response,
Han et al. [88] proposed to select the point corresponding to the steepest slope, i.e.
the maximum response per unit of dose. Following this strategy, the dose-response
curve is simplified to a single value representing the most sensitive response, which
is induced at medium doses. The correlation is then investigated by comparing the
in vivo and in vitro marginal responses of all the selected nanoparticles.

The results of these studies highlight the effect of expressing the dose and the
normalized response in mass dose or in a unit closer to the BED, usually the surface
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Figure 3.4: The three analyzed ways to bridge a cellular response to in vivo conditions,
and their outcome at the current level of knowledge. Option 1 (section 3.7.1):
investigate the correlation of in vitro and in vivo responses. Currently correlations
have been found only for acute inflammatory responses to inhaled nanoparticles.
Option 2 (section 3.7.2): use kinetic models to link a response in vitro to the
external doses generating such response, i.e. an external dose-in vitro response
curve. Option 3 (section 3.7.3): the relative potency approach can be used to
estimate a response in vivo if the necessary conditions of this method are verified.
Adapted with permission from [85] and [86].
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Figure 3.5: The effect of the choice of dose unit, either mass (A) or particle surface area (B),
on the correlation of in vivo and in vitro responses. A: “In vivo (number of PMNs
in rat lung lavage) vs. in vitro (release of LDH in rat alveolar macrophage + rat
type 2 cell-line co-culture) correlation, using the highest measured response
elicited with high doses of the different particles" [45]. B: “In vivo (number of
PMNs/cm2 in rat lung lavage) vs. in vitro (release of LDH/cm2 in rat alveolar
macrophage + rat type 2 cell-line co-culture) correlation, using the highest
response per unit particle surface area" [45]. Adapted with permission from
Rushton et al. [45].

area. Mass unit doses generally showed no correlation [87, 91], while statistically-
significant linear relationships unveiled when the doses were expressed as particle
surface area [45, 88, 89]. In particular, Rushton and colleagues [45] used both original
data and the data from Sayes et al. [87] (for which no correlation was found using
mass-based doses), and showed good correlations with surface area doses (Figure
3.5). Interestingly, all the assessed in vitro endpoints were reliable predictors of the
in vivo effect, even if with different levels of correlation. Even if the assays used
different cell lines (or cell-free systems), they were all selected to show the effects of
oxidative stress, which is one of the mechanisms of toxicity of nanoparticles [58].

These studies showed that in vitro tests can be used as a predictive tool for acute
in vivo effects, if relevant endpoints and dose units are selected. Such correlations
are not demonstrated for chronic in vivo effects, for which comparable in vitro tests
are rarely available. The advancement of in vitro systems towards set-ups that allow
for chronic testing, such as the chronic in vitro model for dermal exposure to silver
nanoparticles [50], could provide the data to assess the predictivity of in vitro tests
for chronic effects in vivo.

3.7.2 Reaching the target organ: kinetic models

While in vitro tests describe the pharmacodynamics of ENM, the pharmacokinetics
and respiratory tract dosimetry fields investigate the fate of ENM in the body, to
determine whether and in which dose the ENM will come in contact with organs
and tissues after the exposure to an external dose [92]. PBPK models are originally
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developed in pharmacology to map the distribution of drugs in the whole organism
over time, as determined by absorption, distribution, metabolism, and excretion
(ADME) processes [93, 94]. On the other hand, respiratory tract dosimetry models,
such as the MPPD model, restrict their focus to the respiratory system, modelling
the deposition and clearance of inhaled particles [95].

The application of these models is double. If the environmental exposure levels to
a substance are known, through a kinetic model it is possible to calculate how the
substance distributes over time among the organs; on the contrary, applying these
models following the reverse dosimetry concept allows to calculate the external dose
causing a certain concentration in a specific organ or tissue at a certain time [96]. Such
approaches can support the use of in vitro testing in RA and LCA by (i) determining
in vitro doses that are coherent with environmental exposure levels, (ii) calculating
the external dose that generates a response in vitro that is relevant for RA and LCA
(e.g. extrapolate an EC50 or ED50 in vivo from an EC50 in vitro), (iii) allowing the
comparison and modelling of human kinetics from animal kinetic models [97].

PBPK models estimate the distribution of chemicals inside the body by modelling
ADME processes. In the model, the human or animal body is simplified as a set of
compartments interconnected by the blood circulatory system, and the distribution
of ENM in each compartment over time is modelled by a system of differential
equations. The processes that regulate the fate of ENM in the organism are described
by physiological parameters, such as the blood flow rate and the organs size, and
particle-specific parameters, such as the permeability of organ membranes and the
excretion rate (Table 3.3) [49].

Compared to traditional chemicals, the distribution of ENM to the organs is
not driven only by the transfer of the ENM from the blood through the mem-
brane, but also by the active uptake by the cells of the mononuclear phagocytic
system (MPS) [107]. The MPS is composed of phagocytic cells such as Kupffer cells,
macrophages, and monocytes, which are heterogeneously distributed in the organs
(mainly in liver and spleen), and have an immune response function [108].

The ability of the MPS to recognise and phagocytize a nanoparticle depends on the
surface of the particle, for example particles coated with specific proteins or antibod-
ies (opsonins) are more easily recognized than ENM coated with polyethylene glycol
(PEG) [109]. The MPS uptake rate depends also on the level of saturation of these
cells and on the concentration of the ENM [98, 99]. The dose-dependency of the MPS
uptake process affects the equilibrium of the whole system, meaning that different
exposure levels will produce a different distribution of ENM in the organs [100].
This increases the complexity of nano-PBPK models, since the particle-dependent
parameters describing the MPS processes are not constant, but are function of the
dose.

Nanoparticle-specific parameters are currently extrapolated from in vivo studies.
To derive MPS parameters valid for a range of exposure levels, different doses should
be tested in vivo [99]; this seems unrealistic with the reduction trend in animal testing.
However, a solution could be to test a single dose similar to environmental levels, to
assure to obtain realistic parameters. To avoid animal testing, a possibility is to use
in vitro systems that are able to mimic the transport of chemicals or ENM in specific
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Table 3.3: The input parameters and the output of the Physiologically-Based Pharmacoki-
netic Model. Due to the differences in modelling the MPS system, the authors
using each one of the MPS parameters are reported. 1: Liang et al. [98], 2: Lin,
Monteiro-Riviere & Riviere [99], 3: Lin et al. [100], 4: Cheng et al. [34], 5: Li et al.
[101], 6: Carlander et al. [102], 7: Carlander et al. [86], 8: Bachler, von Goetz &
Hungerbühler [103], 9: Bachler, von Goetz & Hungerbuhler [104], 10: Bachler et al.
[105], 11: Li et al. [106].

Physiologically-Based Pharmacokinetic Model

Inputs

Physiological parameters

Body weight

Organs weight

Cardiac output

Blood flow to organs

Volume of blood in organs

Nano-specific parameters

Tissue:plasma distribution

Permeability coefficients

Biliary/urinary excretion rates

Nano-specific
parameters of MPS
system

Max uptake rate constant1,2,3,4,5,6,7

Time to reach half of max uptake
rate1,2,3,4

Hill coefficient1,2,3,4

Release rate constant1,2,3,4,6,7,11

Uptake capacity per tissue
weight1,2,3,4,5,6,7

Uptake constant8,9,10,11

Migration rate inactive MPS cells11

Experimental parameters
Exposure dose

Exposure time

Outputs

Amount and concentration of
ENM over time

In organs

In organ tissue

In organ blood

In organ MPS
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parts of the body (for example membrane models [110]) and, using in vitro-in vivo
extrapolation (IVIVE) approaches, to derive the parameters needed in human PBPK
models [107]. Whereas this approach seems promising for conventional chemicals,
the obstacle with ENM is that their characteristics are modified by the interaction
with the biological system, and the ENM reaching an organ can be very different
from the ENM that were administered [111].

The modification of the ENM in the body represents an additional complication for
the use of PBPK models in RA and LCA; in fact, most PBPK models are developed
to study the effect of potential nanodrugs administered intra-venously (IV), and not
of environmental exposure via inhalation, ingestion or skin contact [107]. Except for
models where all parameters had been fitted from in vivo inhalation or ingestion
studies [101, 112], other models simply extended the IV PBPK models by adding a
new compartment for the specific route of exposure [102–104]. The assumption in
these cases is that once inside the body, the transport between compartments will be
the same regardless of the entrance point, and therefore parameters calculated for
IV administration will be valid also for other exposure routes [113]. This does not
mean that the ADME profile will be constant for every exposure route, but that the
ENM that reach the circulatory system will follow the same behavior. The validity
of this assumption is not certain: on an empirical level, PBPK models developed by
fitting only route-dependent parameters were not always successful [102]; from a
mechanistic perspective, there are indications that the protein corona of ENM varies
depending on the exposure route, affecting the fate of the ENM [114].

The Multiple-Path Particle Dosimetry model (MPPD), available for free at https://
www.ara.com/products/multiple-path-particle-dosimetry-model-mppd-v-304,
was developed in 1995 to calculate the deposition of inhaled particles in the air-
ways [115]. The MPPD is based on physical and physiological parameters to model
sedimentation, diffusion and impaction processes (Table 3.4). The total amount of de-
posited particles is affected by the heterogeneous structure of the lungs, the physical
characteristics of the inhaled particles, the clearance processes and the air flow.

The model was updated in 2016, and the improvements to the original model
and the expanded potential of the new version are reported by Miller et al. [116].
First of all, while the original model was developed for the rat lung [115], it has
been expanded to model humans [117], pigs [118], monkeys [119], mice, sheep, and
rabbits [116], by providing the physiological parameters of each species. Moreover,
the new MPPD can model heterogeneous mixtures with up to four subsets of particles
with different characteristics (e.g. fractions with dissimilar diameter, density). The
model has become more flexible, by allowing the user to modify the standard
clearance parameters derived from poorly soluble particles, in this way extending the
use to any type of particles and conditions (e.g. diseased subjects with compromised
clearance). Last, the results, expressed in mass, can be normalized per unit surface
area, per unit time, per unit time per unit area.

The MPPD model is widely used for the study of inhaled particles, including
ENM [120], and its applications encompass the comparison of cell doses causing in-
flammation in vivo and in vitro [67], the derivation of intake doses from dose-response

https://www.ara.com/products/multiple-path-particle-dosimetry-model-mppd-v-304
https://www.ara.com/products/multiple-path-particle-dosimetry-model-mppd-v-304


3.7 from in vitro to whole organism level 63

Table 3.4: The input parameters and the output of the Multiple-Path Particle Dosimetry
model. Parameters marked with the symbol * have default values provided.

Multiple-Path Particle Dosimetry model

Inputs

Airway morphometry

Species*

Type of model*

Functional residual capacity (FRC)*

Upper respiratory tract (URT) volume*

Aerosol properties

Particle density

Particles diameter

Aspect ratio (lenght/diameter)*

Inhalability factor (y/n)

Geometric standard deviation (GSD) of diameter*

Equivalent diameter model for irregular-shaped
particles (y/n)

Exposure conditions
Constant/Variable exposure

Clearance (y/n)

Outputs

Deposited particles

Acinar and Lobar deposition distribution

Deposition in airway regions

Regional deposition per particle diameter

Regional distribution over time

Cleared particles Clearance in airway regions
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relationships expressed per mass deposited or mass retained in the lungs [121], and
the extrapolation of human exposure levels from animal data in risk assessment [122].

3.7.3 Relative potency factor approach

The relative potency concept is used to express the effect of a substance of interest
in relationship to the effect of another substance used as standard reference [123].
The relative potency factor RPF indicates the dose needed of a substance to generate
the same effect as a given dose of a reference substance; usually it is calculated as
the ratio between the EC50 values of the reference substance and a substance "A" of
interest [124]:

RPF =
EC50re f erence

EC50A
(3.1)

A relative potency factor is valid only if the following conditions are verified:
(i) the substances share the same mechanism of toxicity, (ii) their dose-response
curves are parallel, and thus, displaced along the x-axis, (iii) they have an equal
maximum achievable response [125]. Since different endpoints have different dose-
response curves [126], the relative potency factor is assay-specific (i.e. the relative
potency might vary depending on the assay), which makes the choice of endpoint(s)
a critical decision [127]. If the two substances have a common slope, the assumption
is that the one of interest behaves like a dilution or concentration of the standard
compound [127].

The relative potency factor approach has been used in risk assessment by assuming
that the the relative potency of a substance does not change between human and
subhuman systems [37], i.e. that:

dre f erence

dA
=

Dre f erence

DA
(3.2)

With dre f erence and dA the doses at subhuman level of respectively the reference and
investigated substances, and Dre f erence and DA the corresponding doses at human
level. The relative potency factor is an indirect bioassay: if the required conditions are
verified, the assumption of constant relative potency factor can be used to estimate
the dose generating a given response at human level [37], as:

dA = dre f erence ·
DA

Dre f erence
(3.3)

It is worth noting that the relative potency factor at human level, i.e. the ratio of
the exposure doses of two substances generating a certain effect, inherently includes
the contribution of pharmacokinetics to toxicity, while the relative potency obtained
from in vitro data only considers the pharmacokinetics in vitro system, and not in the
whole human organism.
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3.7.4 In summary, the choice of in vitro-in vivo extrapolation method

In vivo-in vitro correlations, PBPK models, the MPPD model, and the relative potency
factor approach can all be used to link a response in vitro to an effect at whole
organism level. The models have been developed for various ENM (Table 3.5),
however not all of them fulfill the requirements of LCA and RA. The correlation
between in vivo and in vitro results is (for now) verified only for acute responses,
which limits its direct use in LCA and RA. However, it highlights how toxic effects are
related to the biologically effective dose, such as the surface area dose, showing the
importance of the characterization of ENM and the use of models that support this
unit (e.g. in vitro dosimetry models). The use of the relative potency factor approach
depends on the availability of a reference substance that satisfies all the necessary
conditions, and on the verification of the assumption of constant relative potency
between biological systems. PBPK models have already been used to complement
in vitro data for RA [34], however the models available for environmental exposure
are still scarce [107]. The development of new models suffers from the lack of
quantitative information about the transformation of ENM in the body, and the
effect that this has on ADME processes [102]. The MPPD model is an established
resource in the field of inhalation studies; it can be readily used for ENM, but its
application is limited to the respiratory system and exposure via inhalation [115].
Interestingly, both PBPK and MPPD models can support the choice of in vitro doses
coherent with environmental exposure levels, by estimating the concentrations in
human organs and tissues. By applying a reverse dosimetry approach to the EC50,
NOAEL, or LOAEL values obtained from in vitro assays, the responses in vitro can be
extrapolated to external exposure doses. Eventually, a relative potency approach can
be integrated to derive a systemic in vivo response from the tissue- or organ-specific
response obtained in vitro.

3.8 conclusions

Based on our evaluation combined with the analysis of the status of available in vitro
and in silico models, we proposed a pathway for the estimation of in vivo NOAEL,
LOAEL, EC50 or ED50 to use in RA and LCA. Starting from a well characterized ENM,
the pathway bases the selection of in vitro data on risk methodologies requirements,
AOP qualitative indications, and experts’ knowledge. The application of in vitro
dosimetry (e.g. through the DG model) is advised for submerged cell cultures. Last,
kinetic models (PBPK and MPPD) support the extrapolation to in vivo responses.

This new combined use of already existing models is the result of connecting
the knowledge of nanotoxicology to the needs of risk methodologies, with the goal
of addressing the reduction in animal testing not only from a nanotoxicological
perspective, but also with a proactive action from RA and LCA. In fact, since
producers (nanotoxicology) and users (risk methodologies) of data do not correspond,
an early collaboration can foster a positive feedback loop where data requirements
are efficiently met. Risk methodologies can indicate a range of realistic doses to
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Table 3.5: The theoretical applicability range of the models and approaches that can be
used to extrapolate in vitro data to in vivo data, and the type of particles that
are currently covered. 1Rushton et al. [45], 2Monteiller et al. [128], 3Péry et al.
[129], 4Bachler, von Goetz & Hungerbuhler [104], 5Carlander et al. [102], 6Bachler,
von Goetz & Hungerbühler [103], 7Lankveld et al. [130], 8Sweeney et al. [112],
9Li et al. [106], 10Li et al. [131], 11Wenger et al. [132], 12Lin, Monteiro-Riviere &
Riviere [99], 13Bachler et al. [105], 14Cheng et al. [34], 15Mager et al. [133], 16Liang
et al. [98], 17Lin et al. [134], 18Li et al. [101], 19Carlander et al. [86], 20Bi et al. [135],
21Lin et al. [136], 22Salieri et al. [36]

Model Applicability range Currently covered ENM

Correlation in vitro-in vivo Any ENM Low-toxicity Low-solubility
nanoparticles (acute
effects)1,2

PBPK models Any ENM Technetium carbon nano-
particles 3

TiO4,5
Silver 6,7

Iridium 8

PAA-peg 5,9,10,11

Gold 5,12,13,14,15

non-soluble nanoparticles 5

Cd-based QD 16,17

CeO18,19

SPION20

ZnO21

MPPD model Spherical ENM Any spherical ENM

Relative potency factor Any ENM CuO, ZnO, Silver22
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use in vitro, based on known environmental concentrations. On the other hand,
nanotoxicology can identify the dose-dependency of adverse effects, by providing
dose-response curves from which to derive LOAEL or EC50 values. When using
submerged cell cultures, the application of an in vitro dosimetry model should
become common practice, by measuring the parameters needed by the model. A
similar consideration applies for the parameters and physico-chemical properties
required by kinetic models, which could be produced along with toxicity data.

Even though the pathway is, for now, a theoretical proposal, one of the selection
criteria was the readiness of models for quantitative use, allowing the pathway to
be tested with currently available data. This paves the way for future studies and
collaborations, which can apply and refine this strategy to accelerate the evaluation
of ENM by RA and LCA methodologies.
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C O M B I N E D I N V I T R O - I N V I V O D O S I M E T RY E N A B L E S T H E
E X T R A P O L AT I O N O F I N V I T R O D O S E S T O H U M A N E X P O S U R E
L E V E L S : A P R O O F O F C O N C E P T B A S E D O N A M E TA - A N A LY S I S
O F I N V I T R O A N D I N V I V O T I TA N I U M D I O X I D E T O X I C I T Y
D ATA .

4.1 abstract

Evaluating the potential risks of nanomaterials on human health is fundamental to
assure their safety. To do so, Human Health Risk Assessment (HHRA) relies mostly
on animal studies to provide information about nanomaterials toxicity. The scarcity of
such data, due to the shift of the nanotoxicology field away from a phenomenological,
animal-based approach and towards a mechanistic understanding based on in vitro
studies, represents a challenge for HHRA. Implementing in vitro data in the HHRA
methodology requires an extrapolation strategy; combining in vitro dosimetry and
lung dosimetry can be an option to estimate the toxic effects on lung cells caused
by inhaled nanomaterials. Since the two dosimetry models have rarely been used
together, we developed a combined dosimetry model (CoDo) that estimates the
air concentrations corresponding to the in vitro doses, extrapolating in this way
in vitro doses to human doses. Applying the model to a data set of in vitro and
in vivo toxicity data about titanium dioxide, we demonstrated CoDo’s multiple
applications. First, we confirmed that most in vitro doses are much higher than
realistic human exposures, considering the Swiss Occupational Exposure Limit as
benchmark. The comparison of the Benchmark Doses (BMD) extrapolated from in
vitro and in vivo data, using the surface area dose metric, showed that despite both
types of data had a quite wide range, animal data were overall more precise. The
high variability of the results may be due both to the dis-homogeneity of the original
data (different cell lines, particle properties, etc.) and to the high level of uncertainty
in the extrapolation procedure caused by both model assumptions and experimental
conditions. Moreover, while the surface area BMDs from studies on rodents and
rodent cells were comparable, human co-cultures showed less susceptibility and
had higher BMDs regardless of the titanium dioxide type. Last, a Support Vector
Machine classification model built on the in vitro data set was able to predict the
BMD-derived human exposure level range for viability effects based on the particle
properties and experimental conditions with an accuracy of 85%, while for cytokine
release in vitro and neutrophil influx in vivo the model had a lower performance.
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4.2 introduction

The evaluation of engineered nanomaterials (ENM) potential toxicity to human
health is a fundamental step to assure a safe integration of this technology in society.
In this direction, Human Health Risk Assessment (HHRA) aims at estimating the
risk posed by a substance, e.g. an ENM, to the human population, accounting for
the potential of exposure and the hazard of the substance. The identification of the
hazard requires quantitative toxicological information either from epidemiological
studies, or, in their absence, from animal studies. Such dependency on in vivo
studies is though a limiting factor for a timely assessment of new ENM, since such
studies are resource-consuming and ethically concerning, and their accuracy and
reproducibility have shown limitations [1, 2]. Instead, the nanotoxicology field is
evolving towards a combined approach involving mechanistic studies conducted
in vitro, often generating a great amount of information (e.g. omics technology),
and bioinformatics and in silico modelling to manage, mine, and integrate the
experimental knowledge across disciplines [3, 4].

Whereas most toxicity and screening studies are now conducted in vitro using
human cells, such data cannot directly substitute animal studies in HHRA; instead,
an in vitro to in vivo extrapolation (IVIVE) strategy is needed to link cell responses to
whole organism responses. In a previous study [5], we identified a combination of
in vitro dosimetry and lung dosimetry as a mature way for IVIVE of toxicity data
about the effects of inhaled particles on the lung. The focus on this exposure route
and target organ is of particular relevance for HHRA as inhalation is considered one
of the most important entry routes of nanomaterials, especially in the workplace [6].

In vitro dosimetry simulates the deposition of particles in submerged in vitro
systems, providing a more accurate dose than the simple concentration of particles
in the media [7]. The behavior of the particles depends on the particle properties
themselves and the experimental conditions, which have to be accurately mea-
sured [8, 9]; diffusion, sedimentation, and (if applicable) dissolution processes are
then modeled to estimate the amount of particles deposited on the cells [10, 11].
Using the deposited dose has been shown to improve the correlation between in
vitro and in vivo toxicity data [12, 13]. Lung dosimetry simulates the deposition
of particles in the human or animal lung, thus identifying the amount of particles
accumulating in different sections of the respiratory system, net of clearance re-
moval processes [14]. Lung dosimetry has been used both to extrapolate animal
deposited doses to humans [15] but also to estimate relevant in vitro doses based
on human exposure levels [16–18]. In a few cases, both models were used together:
in the works from Demokritou et al. [19] and Teeguarden et al. [20], lung and in
vitro dosimetry are used to compare in vivo and in vitro results by extrapolating
both data to physiologically-equivalent effective doses (i.e. the deposited amount
of particle per surface area or cell), respectively for cerium oxide and iron oxide
nanoparticles. Pal et al. [21] instead proposed a procedure to monitor, sample, and
characterize nanoparticles released on the workplace and then apply the dosimetry
models to estimate the deposited doses in the human lung and the corresponding in
vitro doses to use for toxicity testing; printer-emitted nanoparticles and incinerated
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polyurethane-carbon nanotubes composites are presented as case studies. In all of
these cases, the nanoparticle aerosol was well-characterized, and the same particles
were used in vitro as either tested in vivo or measured on the workplace. However,
only in few cases a particle is tested at the same time in vitro and in vivo, and most
often cells are exposed to primary particles rather than sampled particulate, making
it challenging to link the in vitro dose to a human-relevant exposure level.

We believe that using realistic doses should be a priority in in vitro toxicity testing,
even when no clear exposure scenario is available as benchmark (e.g. the animal
test or the emission sampling data). However, despite dosimetry considerations not
being new, the use of both dosimetry models to select relevant in vitro doses and
compare in vitro and in vivo toxicity data is still not common practice. On a practical
level, applying the two models “by hand” can be time consuming, making it difficult
to apply them consistently beyond the single case study. To facilitate the application
of these models we developed a combined dosimetry model (CoDo) that estimates
the air concentrations for humans corresponding to in vitro doses. We show the
potential of our model via a case study about titanium dioxide, verifying how many
of the doses used in vitro are in a realistic range, estimating and comparing human
Benchmark Doses (BMD) and BMD-derived human exposure levels from in vitro and
in vivo data, and testing the possibility of estimating BMD-derived human exposure
level ranges from the particle characteristics and the experimental conditions. The
BMD represents the dose level at which a certain response level is observed, for
example a 1% increase in disease incidence compared to control in epidemiological
studies, and is derived by fitting a dose-response curve over experimental data [22].
We chose the BMD as basis of comparison of ENM toxicity as such approach is
recognised by the scientific and regulatory communities as an advanced method
to estimate safe exposure levels in HHRA [23, 24]. While the BMD is expressed as
dose per lung surface area (mg/cm2 lung), the BMD-derived human exposure levels
indicate the exposure concentration (mass of particles per volume of air, mg/m3)
over a defined exposure time corresponding to the BMD; by integrating the fate of
the particle in the lung, such indicator allows a comparison with the occupational
exposure levels, which are expressed in the same unit.

4.3 methods

4.3.1 Combined dosimetry model

The combined dosimetry model (CoDo) was developed using Python programming
language [25] to simulate the exposure concentrations corresponding to the doses
used in in vitro studies in submerged systems. It works by integrating in vitro
dosimetry and lung dosimetry, and assuming that the deposited dose per area in
vitro corresponds to the deposited dose per area in the lung (Figure 4.1).

The input data include experimental parameters about the in vitro system and
lung parameters that define the hypothetical human exposure scenario; the required
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Figure 4.1: CoDo model integrates in vitro dosimetry and lung dosimetry to estimate the
exposure concentrations corresponding to in vitro doses.

parameters and the parameters that, if not specified by the user, are calculated by
the model are shown in Table A.1.

For the simulation of the deposition of particles in vitro we integrated the one-
dimensional Distorted Grid (DG) model into CoDo; the behavior of the particles
is simulated via subsequent rounds of sedimentation and diffusion repeated over
small discrete time intervals, as described in [11]. By default, a reflective well bottom
(“non-sticky”) is selected, meaning that the particles reaching the bottom of the well
(by default a 10 µm interaction layer) are subjected to weak non-specific interactions
with the cells, and can be re-suspended due to diffusion forces; this choice is
supported by the observations of DeLoid et al. [11], who suggested that a reflective
boundary condition is most likely for metal and metal oxide particles. A “sticky”
bottom, i.e. a condition where particles have strong affinity with the cells and can
therefore be removed from the system, can be selected; in this case an adsorption
dissociation constant for agglomerate binding to cells of 10−9 is used as default; a
different value for the adsorption dissociation constant can be entered by the user to
represent intermediate levels of stickiness. The in vitro dosimetry simulation reports
the deposited mass, surface area, and number of particles per cm2 of in vitro plate.

For the calculation of the air concentrations corresponding to the in vitro doses
the user can choose between two different deposition scenarios: a conservative
estimate which assumes 100% deposition of the particles in the lung, and the use
of a lung dosimetry model to estimate the retained dose based on the particle
characteristics and exposure parameters. Regardless of the choice, four different
exposure scenarios are considered: the same exposure time as in vitro, five days
of exposure on the workplace (eight hours a day, five days a week), one year of
exposure on the workplace, and 35 years of exposure on the workplace (the average
working life in the European Union as of 2019, rounded-down [26]). The output of
the model is, for each exposure scenario, the air concentration corresponding to the
in vitro doses.
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When 100% particle deposition is assumed, the calculation of the air concentration
depends on the total amount of particles inhaled, which in turn depends on the
breathing parameters and the exposure scenario:

Air concentration =
(Deposited dose per area · Alveoli SA)

(Exposure time · BF · TV)

where the “Deposited dose per area” has been calculated via in vitro dosimetry, the
“Alveoli SA” (alveoli surface area) is 792000 cm2 for the average man and 559000 cm2

for the average woman [27], the “Exposure time” depends on the exposure scenario
(e.g. 2400 min for five days of exposure on the workplace), the “BF” (breathing
frequency) is 12 breaths/min for the average man and 14 breaths/min for the
average woman, and the “TV” (tidal volume) is 625 mL for the average man and 464

mL for the average woman [27].
Instead, if the lung dosimetry is used, the deposited mass of particles per area

is divided by the fraction of particles retained in the lung per cm2 at the end
of the exposure time. The fraction of particles retained in the lung per cm2 is
calculated as the alveolar retention fraction divided by the lung surface area (792000

cm2 for the average man and 559000 cm2 for the average woman [27]). The alveolar
retained fraction is calculated by automatically interacting with the MPPD model [28],
including clearance processes. It should be noted that for short exposure times the
deposited and retained doses correspond, while over longer exposure times the
clearance process has a significant impact on the retained dose [29, 30].

For the human exposure simulation, the user can choose, through the “type
of particle in air” parameter, to either indicate the aerodynamic diameter of the
agglomerate in air, or to consider the primary particle in air, or to consider an
agglomerate which has the same size and fractal dimension as the agglomerate
measured in vitro, but where the pores are empty instead of filled with media. The
effective density is automatically recalculated from the in vitro effective density
(agg_density), the primary particle density (pp_density) and the media density via
the formula (see SI for a demonstration of the equation) :

Air agglomerate density =
agg_density − media density
pp_density − media density

· pp_density

While this scenario is not realistic, as agglomeration in air and in cell-culture media
is driven by different processes [31, 32], we include it to represent exactly the same
agglomerate to which the cells are exposed.

The effect of the “sticky bottom” parameter, the deposition scenarios, and the lung
dosimetry type of particle in air parameter was tested with the titanium dioxide
data set (section 4.3.2), by varying the parameters one by one and comparing the
model outputs.
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4.3.2 Titanium dioxide data collection

A literature search of in vitro titanium dioxide toxicity data was performed on Scopus
using the keywords “titanium dioxide in vitro toxicity” and “titanium dioxide in vitro
inflammation”, considering the time frame 2015-2020. The 249 results were further
screened to select those that: a) evaluated the effects on lung cells, b) used human
cells and eventually also murine macrophages (RAW264.7 cell line), c) used spherical
nanoparticles, d) included endpoints on viability, reactive oxygen species production,
and/or cytokine release (IL-6, IL-1β, TNFα, IL-8), e) included the parameters needed
to apply CoDo (reported in Table A.1). Five additional papers published between
2012 and 2014 were included as well due to their completeness, resulting in 217

dose-response data sets extracted from 23 publications (see Appendix A).
In vivo titanium dioxide toxicity data was collected via a literature search on Sco-

pus using different combinations of the keywords “titanium dioxide”, “in vivo ”,“rat”,
“mouse”, “lung inflammation”, “lung toxicity”, and by screening review papers for
references to in vivo studies. The criteria for inclusion were: a) particles delivered via
pulmonary administration route (e.g. via inhalation or intratracheal instillation), b)
reported particle primary size and/or aerodynamic diameter (for inhalation) or ag-
glomerate diameter in media (for instillation), c) at least two doses tested in addition
to the negative control, d) at least one endpoint among Bronchoalveolar lavage fluid
(BALF) cytology, Lactate dehydrogenase (LDH) in BALF, reduced glutathione (GSH)
in BALF, cytokine levels (IL-6, IL-1 β, TNFα, IFNγ) in BALF. 368 dose-response data
sets were extracted from 28 publications (see Appendix A).

4.3.3 Comparison with Occupational Exposure Limits

The in vitro data set consisted of 484 dose values; multiple assays performed in the
same experimental conditions in the same study were not double-counted. CoDo was
applied choosing as lung dosimetry parameters the average man and the primary
particle in air; as comparison, the conservative scenario assuming 100% deposition
in the lung was also evaluated. For the in vitro dosimetry, a non-sticky bottom was
chosen as the most realistic condition [11]. The calculated air concentrations for
the different exposure scenarios were then compared with the Swiss Occupational
Exposure Limit (OEL) for titanium dioxide, equal to 3 mg/m3, which is among
the most conservative limits in the European area, lacking a unique value at EU
level [33].

4.3.4 Comparison of in vitro and in vivo Benchmark Doses and BMD-derived human
exposure levels

Figure 4.2 shows the procedure followed to calculate the BMD values (mass of particle
deposited per cm2 lung) and BMD-derived human exposure levels (corresponding air
concentration) using respectively the deposited doses and the human-extrapolated
doses from in vitro and in vivo data. For the in vitro data, we selected the air
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concentrations obtained via CoDo considering a non sticky bottom, the primary
particle in air, and five days of exposure on the workplace. For the in vivo data set,
the deposited dose in the lung of the animals was assumed to be 100% in the case
of instillation, while for inhalation the retained dose was calculated via MPPD by
including clearance processes and post-exposure time. Each deposited/retained dose
was then extrapolated to the corresponding air concentration needed to obtain the
same deposited dose per lung surface in the average man over five days of exposure.
The Benchmark Dose (BMD) was calculated for each dose-response data set (in
vitro and in vivo) with at least two doses in addition to control, using the PROAST
software [34, 35]. A Benchmark response (BMR) of 20% was chosen for viability
endpoints, ROS production and cytokine release (in vitro), and neutrophil (PMN)
influx in BALF in absolute numbers and in percentage of the total cell amount, LDH
in BALF and cytokines in BALF (in vivo). Such change is considered the threshold for
cytotoxicity [36], and a sign of low inflammation [37, 38], and, in general, corresponds
to the dose in which the slope of the dose-response curve changes the most in the
low-dose region [39]. The BMD in mg/cm2 lung can be converted to BMD-derived
human exposure levels in mg/m3 by dividing the former value by the deposition
fraction over five days of exposure, and vice versa.

For the comparison of BMD values, the in vivo data set was restricted to at
maximum one week of exposure, and, in the case of particle administration via
instillation to at maximum 72 hours of post-exposure time. In this way, similar
exposure times are compared in vitro and in vivo. The exclusion of data with long
post-exposure times when only the deposited dose but not the retained dose of
particles was available is in line with the work from Cosnier et al. [40], where it was
shown that PMN influx had a strong dependence on the post-exposure time when
considering the deposited dose, but not when using the retained dose. Using the
deposited dose in place of the retained dose in the case of instillation is an acceptable
approximation since the impact of clearance in the first post-exposure days has been
shown to be small [29, 30].

Surface area was used as dose metric due to its higher predictivity of dose-response
relationships for inhaled particles [41].
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Figure 4.2: The procedure followed to estimate the BMD and BMD-derived human exposure level values from in vitro and in vivo data. For in vitro data, CoDo is used to
extrapolate the doses to human, which are then used together with the corresponding effects as dose-response data in input to the BMD calculation via
PROAST, obtaining the BMD-derived human exposure levels. The values are then multiplied by the lung retention fractions to calculate the BMD in retained
dose per lung surface area. For in vivo data, two different procedures are followed depending on the used exposure method. For instillation, data is included
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the BMD from the dose-response data. The human dose is then estimated via MPPD to obtain the same deposited/retained dose per area as in the animal,
obtaining the BMD-derived human exposure level over five days of exposure.
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4.3.5 SVM classification of in vitro and in vivo BMD-derived human exposure levels

Three Linear Support Vector Machine (SVM) classifiers [42] were built on the in vitro
and in vivo data sets, considering respectively the BMD-derived human exposure
levels for viability, for cytokine release in vitro, and for PMN influx effects, as such
endpoints represented the majority of the data (respectively 55, 59 and 72 values).
Considered inputs for the classification were, for the in vitro data set, the diameter
of the primary particle, the diameter of the agglomerate, the exposure time in vitro,
the assay used, the specific surface area of the particle, the type of particle (anatase,
rutile, or any mixture), the presence or absence of serum in media, and the cell type.
For the in vivo data set, we considered the diameter of the primary particle, the
exposure length, the specific surface area of the particles, the post-exposure time
before the effects had been measured, the type of particle, the animal species, the
administration route (simplified as either inhalation or instillation), and the sex of
the animal. Numerical inputs were normalized using min-max transformation while
nominal inputs were transformed into numerical dummy variables (i.e. with 0 or 1

value) via One-Hot encoding.
The classifier used a one-vs-rest multi-class strategy and minimized the hinge

loss [43]; the best number and combination of parameters was identified via a se-
quential feature selection algorithm by maximizing the leave-one-out cross-validation
(LOOCV) accuracy [44]. LOOCV consists in iteratively training the model on all the
data set except for one sample, which is used for validation; the accuracy of the
model is calculated as the number of times the model correctly classified the vali-
dation sample, expressed as percent of the total number of classifications [45]. This
validation method provides an accurate estimation of the model performance, and is
particularly appropriated to be used with small data sets, as it is computationally
expensive [45]. A grid search algorithm was used to select the best cost parameter “c”
based again on the LOOCV accuracy. A different number of classes were considered,
with the main goal of distinguishing BMD-derived human exposure levels in a real-
istic concentration range and higher concentrations. The optimal number of classes
was chosen based not only on the maximization of the LOOCV overall accuracy, but
also to maximize the f1-score of the first class (i.e. the lowest BMD-derived human
exposure level range), with f-1 being the weighted average of the model precision
(True positives/Total positives) and sensitivity (True positives/(True positives + False
negatives).

4.3.6 Statistical analysis

The difference between Benchmark Doses (and BMD-derived human exposure levels)
calculated from in vitro and in vivo data was evaluated via Welch’s t-test with
Bonferroni correction, using Python library SciPy [46].
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4.4 results and discussion

4.4.1 Effect of parameters on CoDo results

Table 4.1 reports the effect of the sticky bottom parameter, the deposition type
parameter, and the type of particle in air parameter on the air concentrations esti-
mated from the database of titanium dioxide in vitro doses. For the bottom stickiness
parameter, the selection of sticky conditions resulted in the majority of cases in an
increased deposition of particles in the well bottom, which therefore meant a higher
concentration of particles in air was needed to obtain higher deposited amounts
in the lung. The median of the sticky over non-sticky ratio was 6.6, i.e. the sticky
conditions showed six times the deposition than in non-sticky conditions. The range
is however very wide, ranging from no difference in deposition (ratio = 1) to 70

times more deposition (ratio = 70). Such differences are driven by the contribution
of diffusion versus sedimentation processes on the deposition of particles; in fact,
the biggest differences were observed for small particles forming relatively small
agglomerates (generally below 250 nm), while with bigger agglomerates and bigger
primary particles the differences in deposition were more modest, or even negligible
in the case of micro-sized agglomerates.

Using the lung dosimetry model considering the primary particle in air results in
higher corresponding air concentration than if 100% of the particles is assumed to
deposit in the lung, as expected. The range of the ratio between air concentrations
calculated using dosimetry or assuming full deposition is very wide, ranging from
3.7 times to 159.1 times, indicating that the particle size has a strong effect on the
deposition fraction and that at max around a third of the particles effectively deposit
in the lung.

The impact of the type of particle parameter is much more contained, with a
median of the agglomerate over primary particle air concentration of 2.3, and an
interquartile range of 1.6 to 2.9. In most cases, considering agglomerates in air
resulted in lower deposition of the particles in the lung, and therefore higher air
concentrations were estimated to obtain the same deposited dose as calculated from
the in vitro doses. This can be explained by the difference in pulmonary deposition
according to the particles size (Figure A.1), which sees a declining trend for particles
bigger than 30 nm. Only with very small primary particles (e.g. 5nm), the deposition
of the agglomerates was higher (agglomerates over primary particle ratio < 1).

Another source of uncertainty in the simulation of in vitro dosimetry is the cal-
culation method for the agglomerate effective density; as demonstrated by DeLoid
et al. [8], the experimental volumetric centrifugation method is a more accurate
method than the estimation of the parameter via Sterling equation, with the latter
being either in agreement with or overestimating the measured agglomerate effective
density. However, this parameter is not often measured, except for those studies
that apply a dosimetry model; this is why CoDo uses the Sterling equation when an
agglomerate effective density is not provided. To avoid this source of uncertainty, we
recommend to follow the protocol by DeLoid et al. [9] for the characterization of the
particle properties in the in vitro system.
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Table 4.1: The effect of the stickiness, the deposition type, and particle type in air param-
eters on the estimated air concentration of particles. The showed medians and
quartile ranges refer to the ratio between the air concentrations calculated con-
sidering a sticky bottom versus a non-sticky bottom for the stickiness parameter,
lung dosimetry considering the primary particle in air versus 100% deposition
for the deposition type, and air agglomerates versus primary particles in air for
the particle type in air parameter.

Parameter Compared re-
sult

Median value First-Third
quartile range

Min-max
range

Stickiness of
bottom

sticky/non
sticky

6.6 1.4-27.6 1.0-70.1

Deposition
type

dosimetry
considering
primary par-
ticle/100%
deposition

4.1 4.0-6.0 3.7-159.1

Particle type
in air

agglomerates/
primary parti-
cles

2.3 1.6-2.9 0.1-4.0

4.4.2 Comparison of in vitro doses and Occupational Exposure Limit

The comparison of in vitro doses with the OEL value indicates that most in vitro
doses are representative of long human exposures. Figure 4.3 shows the distribution
of the in vitro doses based on the ratio between the extrapolated air concentration
and the Occupational Exposure Limit when considering the same exposure time for
humans as the in vitro experiment. In Figure 4.3a, which shows the results when
applying the lung dosimetry model considering the primary particle in air, 11% of
the doses are below the OEL (i.e. have an air concentration over OEL ratio between
zero and one), and another 20% are between one and ten times the OEL. Even
with the conservative assumption of 100% deposition in the lung only 24% of the
dose are below the OEL, while 50% are more than ten times the exposure limits
(Figure 4.3b). Instead, when extrapolating the in vitro doses to a year-long human
exposure on the workplace (Figure 4.4), three quarters of the doses are less than
ten times the OEL, with 51% below the OEL itself. The results indicate that only
low lung deposited doses (corresponding to the lower in vitro doses) are reached
in law-abiding workplaces after short human exposure times, while most in vitro
doses depict deposited levels reached after a year of workplace exposure. It should
be noted, however, that cells exposed to a single dose do not have the same bio-
response as when exposed to repeated doses over a longer exposure time, even if
the cumulative dose is the same [47–50].
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Figure 4.3: The distribution of the in vitro doses based on their extrapolated air concen-
trations over OEL ratio considering the same exposure time as in vitro, when
using lung dosimetry and assuming the primary particle in air (a), and with
the conservative assumption of 100% deposition in the lung (b). The y axis
(“Number of points”) reports the absolute number of data points, i.e. doses,
while the percentage of doses belonging to each range is indicated over each
bar. The bottom of the well is considered non-sticky. N=484.

Ten years ago, Gangwal et al. [17] used a similar, but reversed, approach to suggest
realistic in vitro dose ranges based on occupational exposure levels. Their study
assumed total deposition of particles in vitro, which we found true only for the
biggest agglomerates and/or for longer exposure times, indicating that their in vitro
concentrations would in most cases be underestimated. A critique, at the time, was
that estimating the highest in vitro concentrations from the deposited amount of
particles over 45 years of exposure would result in very high doses to be administered
all at once, compared to a long-term accumulation [51]. While CoDo includes as well
such long-term exposure scenarios (35 years), which can be useful to clearly identify
extreme doses (as in Figure A.2a), we recommend to choose the dose range for acute
studies based on the short-term exposure levels, considering that legal thresholds
may be exceeded either because of concentration spikes (as the OEL is calculated as
an average concentration over the exposure time), but also because of non-compliance
or lack of regulation. For longer repeated exposures, the one year exposure level
may be used as upper benchmark concentration. In both cases, it is important to
verify that the chosen doses do not conflict with experimental constraints, such as
assay interference [52]. Moreover, the impact of different stickiness conditions should
be considered, as the stickier the bottom the higher the risk of exceeding realistic
conditions, as shown by comparing Figure 4.3b with Figure A.2b, which shows the
distribution of in vitro doses when considering one year of exposure and a sticky
bottom.

A last consideration should be made about the OEL used as basis for comparison;
depending on the country, a slightly different exposure limit may apply, and this
would affect the classification of the in vitro data; this depends in part on the fraction
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Figure 4.4: The distribution of the in vitro doses based on their extrapolated air concen-
trations over OEL ratio, considering one year of exposure on the workplace.
The y axis (“Number of points”) reports the absolute number of data points, i.e.
doses, while the percentage of doses belonging to each range is indicated over
each bar. The bottom of the well is considered non-sticky. N=484.

of particles the limit applies to, since in certain cases a specific limit for the nano-
sized fraction exists, while in others the limit refers to the inhalable fraction. Using
for example the NIOSH limit for ultrafine TiO2 particles, which is 0.3 mg/m3, would
result in even more in vitro doses to be above the legal limit. This because the OEL is
set to protect workers’ health and is derived from animal data, to which safety factors
are applied to account for uncertainties in the extrapolation; the more stringent limit
for the ultrafine fraction of titanium dioxide reflects the higher risk posed by the
nanomaterial compared to its bulk counterpart [53].

4.4.3 In vitro and in vivo Benchmark Dose and BMD-derived human exposure level
comparison

The comparison of the BMDs in surface area dose extrapolated from in vitro and in
vivo data showed for both data sets a wide range of values, extending over more than
four orders of magnitude (Figure 4.5). No clear trend for specific titanium dioxide
types emerged, nor any difference based on the endpoint considered (Figure A.3 and
A.4). The in vitro BMD median value was around 0.38 cm2/cm2, with an interquartile
range of roughly two orders of magnitude (4.1 · 10−2 - 6.42 cm2/cm2), while in vivo
BMDs were generally lower, with the median at 0.01 cm2/cm2 and the interquartile
range between 1.99 · 10−3 and 7.0 · 10−2 cm2/cm2. Overall, in vivo data were one
order of magnitude more precise than in vitro ones, both when considering 50% and
90% of the data centered on the median (assuming that the 5% lowest and highest
values might be outliers).

The differences between in vitro and in vivo BMDs may be attributed to the
differences between human (cells) and animals, between in vitro and in vivo endpoints,
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but also to the different level of uncertainty of in vitro dosimetry and animal lung
dosimetry.
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Figure 4.5: The distribution of the human BMD values extrapolated from the in vitro data
set (a), and the in vivo data set (b), for different titanium dioxide types, expressed
in surface area dose. The red dashed line represents the median value, and the
aquamarine area the interquartile range of the distribution (25%-75%).

A more detailed comparison of animal and cell-based BMD values in surface area
dose for inflammatory endpoints showed similar values for rat, mouse, and murine
macrophages, while human cells turned out to be less susceptible to inflammatory
effects, as shown in Figure 4.6. Both in vitro and in vivo endpoints, respectively
the release of pro-inflammatory cytokines and the neutrophil influx in BALF, are
indicators of inflammation, and have been suggested as one of the most promising
endpoints for IVIVE [54]. The rat BMD values were generally lower than the mouse
ones (despite the difference not being statistically significant), in line with the
observations of comparative studies [55, 56]. For anatase TiO2, the murine cell line
showed values similar to the animal data, while human co-cultures of A549 epithelial
cells and THP1 macrophages had a BMD range significantly higher than the animal
one (370 times higher than the rat, 96 times higher than the mouse). The dendritic
cells showed BMD values similar to the mouse data, but higher than the rat and
significantly lower than the co-culture. THP-1 monocytes had a median value similar
to the co-culture one,and were statistically different from the rat data.

Comparing the animal and human co-culture BMD for NM105/P25 TiO2, a mix-
ture of 80% anatase and 20% rutile, primary particle size 21 nm, confirmed the
significantly higher BMD for the co-culture compared to the rat (362 times higher)
and the mouse (138 times higher), even though we couldn’t ascertain the similarity
of murine macrophages and animal BMD due to lack of data.

When comparing the data it should be kept in mind that the calculated BMD
values have a high uncertainty, as multiple experimental factors may affect the
results; this was clear for example in the P25 data, which, despite using the same
particle, showed a very high variability both in vitro and in vivo. A limitation of the
analysis is the scarcity of comparable in vitro and in vivo studies; for example, as
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observable in Figure 4.5, most animal studies tested rutile TiO2, while in vitro studies
focused more on the anatase form. This prevented a more robust and comprehensive
comparison of BMDs across species and cell lines.
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Figure 4.6: Comparison of the rat and mouse BMD in surface area for PMN influx in
BALF and the BMD in surface area for cytokine release (IL-6, IL-1β, TNFα,
IL-8) of multiple cell lines: the murine macrophage RAW264.7, human dendritic
cell (DC) monoculture, human monocytes THP-1, and a coculture of human
epithelial cells A549 and human macrophages differentiated from THP-1 cells.
The colored boxes represent the interquartile range of BMD values, the single
points are outliers, calculated as points exceeding 1.5 times the interquartile
range past the high or low quartile (represented by the whiskers). * 0.01 < p <
0.05, ** 0.001 < p < 0.01, *** 0.0001 < p < 0.001.

4.4.4 Testing the surface area dose metric hypothesis

In our comparison of BMD values we did not observe any relevant difference when
using the mass dose or the surface area dose. As surface area has been often reported
as the most relevant metric for acute pulmonary toxicity [41, 57], we wanted to verify
whether our results depended on the use of the human exposure concentration
estimated via CoDo, or whether they were due to the high variability of the data in
terms of particles properties and experimental conditions. Therefore, we applied our
model to the data set from Rushton et al. [58], for which the authors observed a linear
relationship between the in vitro and in vivo steepest slope of the dose-response curve
of eight different particles, when considering the surface area dose (Figure 4.7a).
The linear relationship was maintained when using the human air concentration in
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surface area as dose (Figure 4.7b), indicating that extrapolating to humans via CoDo
does not “hide” the relationship between in vitro and in vivo effects when they are
observed using surface area doses. We could though not test the existence of this
relationship on our TiO2 data set due to the scarcity of corresponding in vitro and in
vivo data.
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Figure 4.7: Correlations between in vitro luciferase-transfected human type II lung epithelial
cell line (A549 Luc-1) luciferase response and in vivo inflammatory response
(number of neutrophils). (a): responses normalized to the instilled surface area
dose (in vivo) and particle concentration in media in surface area dose (in
vitro). (b): responses normalized to the human-extrapolated air concentrations
in surface area dose.

4.4.5 SVM classification models

The optimal SVM model built on the in vitro viability data set used six features to
classify the data in three BMD-derived human exposure level ranges, considering
five days of workplace exposure. The selected features are: the primary particle
diameter, the agglomerate diameter, the presence or absence of serum in media,
the anatase type, the dendritic cell (DC) cell type, and the LDH assay. Since the
classifier is built on the provided data set, the relevance of different features is
affected by how these features are represented in the training data. For example,
while the exposure time is a known parameter affecting toxicity, it was not a good
predictor in our model because the training data it was built on included mostly
exposure times of 24 hours, i.e. the effect of the exposure time on toxicity was not
well-represented in the data set. The data was classified in the classes: BMD-derived
human exposure level< 10mg/m3, 10mg/m3 <=BMD-derived human exposure
level< 50mg/m3, BMD-derived human exposure level>= 50mg/m3. The model has
an overall accuracy of 85% (Table 4.2 and Figure 4.8a), correctly classifying most
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data points belonging to the lowest and highest classes, i.e. BMD-derived human
exposure level <= 10mg/m3 and BMD-derived human exposure level > 50mg/m3.
The analysis of the coefficients (Figure A.5, A.6, and A.7) shows the importance in
particular of the LDH assay, the primary particle diameter, the anatase type and the
presence/absence of serum in media for the classification into the three different
classes.

For cytokine release, the optimal model classified the data in three classes: BMD-
derived human exposure level< 10mg/m3, 10mg/m3 <=BMD-derived human ex-
posure level< 50mg/m3, BMD-derived human exposure level>= 50mg/m3, and
used six features: the presence or absence of serum in the media, the agglomerate
diameter, the exposure time, the 65% anatase 35% rutile titanium dioxide type, and
multiple cell types, i.e. A549+THP1 macrophages, human bronchial epithelial cell
(16HBE)+ THP1+Human Lung Microvascular Endothelial Cells (Hlmvec), murine
macrophages (RAW264.7), human monocyte-derived macrophages (hMDM), Human
lung epithelial cells (BEAS-2B), and dendritic cells (DC). The SVM model had a
worse performance than for viability endpoints, with a total accuracy of 66% (Figure
4.8b and Table 4.2). The type of cells used and the presence or absence of serum
were important features for the classification (Figure A.8, A.9, and A.10).
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Figure 4.8: Confusion matrix of the SVM classification model built on the in vitro data set
for (a) viability endpoints (55 data points), and (b) cytokine release endpoints
(59 data points). The columns indicate in which BMD-derived human exposure
level range (Exp. level in the figure) each data point was classified, i.e. the
predicted class, while the rows indicate in which class the data point really
belongs. The anti-diagonal (i.e. the diagonal from top right to bottom left)
indicates the number of data points correctly classified in each class.

For the in vivo data, the optimal classifier utilized only three features, i.e. the
primary particle diameter, the length of exposure, and the rutile type, to classify
the data in three classes for the neutrophil influx in BALF endpoint: BMD-derived
human exposure level< 5mg/m3, 5mg/m3 <=BMD-derived human exposure level<
8mg/m3, BMD-derived human exposure level>= 8mg/m3. Figure 4.9 and Table 4.3
report the accuracy, precision, sensitivity and f1-score for the different classes.
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Table 4.2: The performance of the SVM classifiers for viability and cytokine release built
on the in vitro data. Exp. level indicates the BMD-derived human exposure level
considering five days of workplace exposure. Precision measures the number
of true positives over the sum of true and false positives. Sensitivity measures
the ratio of true positives over true positives and false negatives. F1-score is a
weighted average of precision and sensitivity. Accuracy is the ratio of correctly
classified data points.

Class Precision Sensitivity f1-score Number of
data points

Viability

Exp. level< 10mg/m3
0.80 0.86 0.83 14

10 <=Exp. level< 50mg/m3
0.80 0.57 0.67 7

Exp. level>= 50mg/m3
0.89 0.91 0.90 34

Accuracy 0.85 55

Cytokine release (IL-6, IL-1β, TNFα, IL-8)

Exp. level< 10mg/m3
0.86 0.46 0.60 13

10 <=Exp. level< 50mg/m3
0.55 0.60 0.57 20

Exp. level>= 50mg/m3
0.70 0.81 0.75 26

Accuracy 0.66 59

The model correctly classifies the lowest class in 91% of the cases, while the
precision, i.e. the number of true positives over the sum of true and false positives,
is 73%, versus 63% of the baseline (probability to randomly guess correctly the
belonging to the first class). The misclassification of the data belonging to the middle
class suggests that, in addition to the limited amount of data points, the data has a
lot of noise and/or some data points are outliers. To strengthen the model, and in
particular the middle class predictions, future experiments would have to focus on
replicating the conditions of the middle class data set. The analysis of the coefficients
in Figure A.11, A.12, and A.13 show that the primary particle diameter and the rutile
type are the most important features, while the total length of exposure contributes
marginally.

4.4.6 Limitations

Great uncertainties exist in the calculation of human exposure levels corresponding
to in vitro doses. As presented in section 4.4.1, both in vitro and lung dosimetry
parameters affect the results. While the user may test the different conditions and
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Table 4.3: The performance of the SVM classifier for PMN influx in BALF built on the in vivo
data. Exp. level indicates the BMD-derived human exposure level considering
five days of workplace exposure. Precision measures the number of true positives
over the sum of true and false positives. Sensitivity measures the ratio of true
positives over true positives and false negatives. F1-score is a weighted average of
precision and sensitivity. Accuracy is the ratio of correctly classified data points.

Class Precision Sensitivity f1-score Number of data
points

Exp. level< 5mg/m3
0.73 0.91 0.81 45

5 <=Exp. level< 8mg/m3
0.00 0.00 0.00 8

Exp. level>= 8mg/m3
0.62 0.53 0.57 19

Accuracy 0.71 72
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Figure 4.9: Confusion matrix of the SVM classification model built on the in vivo data set
(72 data points), for the neutrophil influx in BALF. The columns indicate in
which BMD-derived human exposure level range (Exp. level in the figure) each
data point was classified, i.e. the predicted class, while the rows indicate in
which class the data point really belongs. The anti-diagonal (i.e. the diagonal
from top right to bottom left) indicates the number of data points correctly
classified in each class.
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calculate a range rather than a single value, there are other sources of uncertainties
on which less control can be exerted at modeling level. For example, the model
assumes that the agglomerate in the in vitro system are stable over time, and while a
dispersion procedure has been published by DeLoid et al. [9], it is not always followed
(especially in older studies). Moreover, considering only the median diameter is
a simplification of the real size distribution of the particles, and depending on
the method used to measure this property a different value may be obtained, for
example DLS has been shown to be greatly affected by the presence of large particles
compared to NTA [59].

Concerning lung dosimetry, the lack of information about the particle agglomera-
tion state in the air and the correspondence between an airborne particle and the
particle tested in vitro represents a challenge. The approach proposed by Pal et al.
[21] solves this issue by considering the emission of particles on the workplace as the
starting point: the aerosol is collected and used in in vitro tests, after applying lung
and in vitro dosimetry to assure correct dosing. In this way, the cells are exposed
to the airborne particles, which though could still be altered by e.g. the interaction
with the media. However, CoDo takes the opposite approach, i.e. starting from the
in vitro dose and moving up towards an hypothetical exposure scenario, thus not
requiring any environmental sampling or knowledge of specific exposure conditions.
This makes the model more accessible to the nanotoxicology community, but also
increases the uncertainty of the results.

All these sources of uncertainty should be kept in mind also when calculating
BMD and BMD-derived human exposure levels; additionally, further variability is
introduced for example by differences in in vitro and in vivo experimental conditions
that may affect the toxicity of the particles, such as the presence of serum in the
media [38]. Last, choosing representative endpoints in vitro remains an important
issue for the extrapolation of in vitro effects to human-relevant endpoints [5].

4.5 conclusions

Applying the theoretical framework developed in our previous publication [5], we
developed a combined dosimetry model (CoDo) that estimates the human exposure
concentrations corresponding to the doses used in vitro. Our analysis of titanium
dioxide data confirms that most in vitro doses are still quite high, being representative
of long exposure times. CoDo can be used retrospectively to assess the doses used in
in vitro studies, but also prospectively to select realistic doses during the design of
an experiment.

The wide range covered by the human surface area BMDs extrapolated from
in vitro and in vivo data suggests that both data sources have a large inter-study
variability, but in vivo data produce more consistent results. By comparison, in vitro
values were on average thirty-eight times higher than in vivo ones; when looking
specifically at different TiO2 types and different cell lines, we observed comparable
BMDs from rodents and murine cell experiments, while human macrophages and
co-cultures showed a lower susceptibility to inflammatory effects. However, the
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scarcity of comparable data across species, cell lines, and particle types hinders the
evaluation of the effects of these factors on the BMD range.

The SVM classification model built on the in vitro data set for viability endpoints
was able to predict with good accuracy the range of the BMD-derived human
exposure level, based on a limited number of particle properties and experimental
parameters.

Combined dosimetry demonstrated to be a successful strategy for IVIVE, and
CoDo a useful tool when working with big data sets, allowing a meta analysis of
titanium dioxide toxicity data.
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5
P R O G R E S S T O WA R D S I N V I T R O - B A S E D H U M A N T O X I C I T Y
E F F E C T FA C T O R S F O R T H E L I F E C Y C L E I M PA C T A S S E S S M E N T
O F I N H A L E D N A N O M AT E R I A L S : A N A P P R O A C H F O R
L O W- S O L U B I L I T Y PA RT I C L E S .

5.1 abstract

Life Cycle Assessment calculations of products containing nanomaterials are limited
in their comprehensiveness by the lack of characterization factors, linking nano-
material emissions to their impacts on human health. This is mainly due to the
scarcity of animal toxicological data compared to the number of existing nanoma-
terials, a constraint that could be lifted if in vivo data could be substituted by in
vitro data to calculate nanomaterials’ effect factors (EF). In this work we present a
step-by-step procedure to calculate in vitro-to-in vivo extrapolation factors to estimate
human Benchmark Doses (BMD) and subsequently in vitro-based EFs for inhaled
non-soluble nanomaterials. Titanium dioxide, amorphous silica, crystalline silica,
and cerium oxide are used as examples. Based on mouse data, the in vitro-based
EF of TiO2 is between 2.76·10−4 and 1.10·10−3 cases/(m2/g · kg intake), depending
on the aerodynamic size of the particle, in good agreement with in vivo-based EFs,
suggesting that the calculated in vitro-to-in vivo extrapolation factor, even though
preliminary, might be adequate for this nanomaterial. Amorphous silica EF is in a
similar range as TiO2, but the result is less robust due to the few in vivo data available.
The discrepancy between in vivo and animal in vitro data in terms of availability
and quality limits the coverage of more nanomaterials, as observed for crystalline
silica and cerium oxide. Systematic testing on human and animal cells is needed
to reduce the variability in toxicological response determined by the differences in
experimental conditions, thus helping improve the predictivity of in vitro-to-in vivo
extrapolation factors.

5.2 introduction

Nanotechnology has been recognized as one of the Key Enabling Technologies of
the 21

st century, thanks to its revolutionary applications in multiple sectors, ranging
from energy to healthcare [1]. Nanomaterials are defined as materials “with any
external dimension in the nanoscale or having internal structure or surface structure
in the nanoscale” [2]. In parallel to the enthusiasm for their novel functions, the
inclusion of nanomaterials in products has also raised concerns about their potential
impacts on the health of workers, consumers, and in general humans exposed to
them along the product life cycle [3].
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Life Cycle Assessment (LCA) is the preferred methodology to assess the en-
vironmental impacts of nano-enabled products and compare them with existing
alternatives, accounting for the negative but also positive impacts that a new tech-
nology may have on the overall environmental profile of the product (e.g. increased
toxicity for humans but reduced greenhouse gas emissions) [4].

In LCA, impacts are calculated by linking all emissions occurring during a product
life cycle to their corresponding characterization factors, which define the incidence
of negative health/ecological effects caused by the emission of a substance. For
toxicological impacts (on humans as well as on the ecosystem), the LCA community
agreed on the use of USEtox as common consensus model [5]. Within USEtox, a char-
acterization factor is calculated as a combination of: 1) a fate factor, which indicates
how a substance is distributed in the environmental compartments following its
emission; 2) an exposure factor, which describes the human uptake of the substance
from the environmental compartments via multiple exposure pathways; 3) and an
effect factor (EF), which relates the uptake of the substance to potential negative
health effects [6]. USEtox and its calculation principles have been developed for
organic chemicals and metal ions [5, 7], and is thus not adequate for nanomateri-
als [8]. A nano-specific fate model has been developed to calculate the fate factor for
nanomaterials [9], while the exposure factor is either calculated according to existing
methodologies or disregarded [10]. The EF is calculated from animal toxicological
studies using those extrapolation factors (e.g. the interspecies extrapolation factor)
needed to convert the animal results to a human chronic ED50, i.e. the lifetime
dose generating a 50% increase in disease probability for humans [5]. Since these
extrapolation factors have been obtained based on data for organic chemicals, their
validity for nanomaterials is yet to be proven [11, 12]. However, a bigger challenge
lies upstream: animal testing is being reduced in favor of alternative methods, result-
ing in a scarcity of toxicological data compared to the number of newly developed
nanomaterials [13].

A potential solution to this could be to use in vitro data, i.e. the results of toxico-
logical studies conducted on human cells, as data pool for the calculation of human
toxicity EFs, as suggested by several authors [14, 15]. Salieri et al. [16] proposed an
approach to calculate EFs for soluble nanoparticles from in vitro data, based on the
fact that the toxic effects are mainly caused by the dissolved ions rather than the
particle itself. This approach is though not fit for non-soluble particles.

Recently we proposed that a combination of models could be used for the calcula-
tion of EFs from in vitro data [17], and we developed a model to ease the application
of this strategy for the specific case of inhaled spherical nanomaterials and their
effects on the lung [18]. In this paper, we provide a proof of concept of the estimation
of in vitro-to-in vivo extrapolation factors, and we use these preliminary factors to
calculate in vitro-based EFs for titanium dioxide, amorphous silica, crystalline silica,
and cerium oxide.
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5.3 materials and methods

5.3.1 Overview of methodology
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Figure 5.1: The five steps for the calculation of in vitro-based human EFs.(1) Collection of
in vivo and in vitro (from animal and human cells) data; (2) calculation of the
deposited and retained dose per cm2 of cell culture or lung corresponding to the
in vitro and in vivo doses; (3) Calculation of the BMD20 from the dose-response
curves; (4) Derivation of the in vitro-to-in vivo extrapolation factors based on
the ratio between animal and animal in vitro BMD20 values, and (4.1) use of
the extrapolation factors to calculate the human BMD20 from the human in
vitro BMD20; (5) Calculation of the in vitro-based EF following the traditional
extrapolation procedure.

The calculation of in vitro-to-in vivo extrapolation factors and in vitro-based EFs
follows multiple steps, depicted in Figure 5.1. The first step is the collection of
toxicity data from animal studies and from in vitro studies using animal and human
cells (1). Then dosimetry models are applied to find the deposited doses per well
area and the retained doses per alveoli area corresponding to the doses used in vitro
and in vivo (2). The obtained doses are transformed in surface area doses, and a
Benchmark Dose (BMD) is then calculated for each dose-response data set (3). The
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in vitro-to-in vivo extrapolation factors are then calculated as the ratio between the in
vivo and in vitro animal data (4). A human Benchmark Dose is extrapolated from the
human in vitro data using the in vitro-to-in vivo extrapolation factor, following the
parallelogram approach, which states that the relationship between animal data and
animal cell data is maintained also for humans and human cells (4.1) [19]. Finally, the
human toxicity EFs are calculated through the traditional extrapolation procedure
from the USEtox methodology [5] (5).

The following low-solubility nanomaterials were included in this work: titanium
dioxide, in the anatase, rutile, and P25 mixture (≈80% anatase 20% rutile) forms,
cerium oxide, amorphous silica, and finally crystalline silica as representative of a
high-toxicity nanomaterial. Titanium dioxide data were grouped for the calculation
of the extrapolation factor, while the EF was calculated for both the grouped and
the single types TiO2. For both cases, i.e. in vitro and in vivo, lung inflammation –
the release of (pro-)inflammatory factors – was chosen as relevant endpoint, since
it is considered an important mode of action through which nanomaterials cause
toxic effects; moreover, multiple studies showed a correlation between in vitro and in
vivo indicators of inflammation [20–23], suggesting that in vitro tests may be able to
measure early events leading to acute lung inflammation [24]. Acute inflammation
may become chronic if the exposure is not halted and the inflammation resolved [25],
and more serious diseases such as lung fibrosis may develop [26–28].

5.3.2 Data Collection

5.3.2.1 In vitro data

A literature search has been conducted using Google Scholar and Scopus, using
various combinations of the following keywords: “nanomaterial name”, “in vitro”,
“inflammation”, “toxicity”, “macrophages”; to find data for human or animal cells
these additional keywords indicating the species or macrophages cell line were used:
“mouse”, “rat”, “murine”, “THP-1”, “RAW264.7”, “J774A.1”, “HMDM”, “NR8383”.
Moreover, the data set published in Romeo, Nowack & Wick [18] was also used as
data source.

The criteria for inclusion of data from a study were: a) used a monoculture of
human, rat, or mouse macrophages; b) tested spherical particles; c) tested the release
of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8, MIP-2); d) included at least
two doses plus negative control; e) included all parameters needed for the use of the
Combined Dosimetry model CoDo, as described in Romeo, Nowack & Wick [18].

From 26 publications, we extracted 141 dose-response data sets, 59 using human
cells, 35 for rat cells, and 47 for mouse cells.

5.3.2.2 In vivo data

In vivo data was collected from the literature and from the data set published
in Romeo, Nowack & Wick [18] using a combination of the following keywords:
“nanomaterial name”, “rat”, “mouse”, “in vivo”, “toxicity”, “lung”, “inhalation”. The
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inclusion criteria were: a) rat or mouse as animal; b) at least two doses tested in
addition to negative control; c) neutrophil (PMN) influx as number or percentage
in Bronchoalveolar Lavage Fluid (BALF) as endpoint; d) the exposure time lasted
at maximum one week; e) the post exposure time was at maximum 72 hours if the
particles were delivered via intratracheal instillation; f) either the specific surface
area of the particles or the primary particle diameter was reported.

155 dose-response data sets, 109 using rats and 46 using mice, were extracted from
30 publications.

5.3.3 Simulation of particle deposition and retention

For in vitro data, the Combined Dosimetry model CoDo was used to simulate the
deposition of the particles on the cells, determined by sedimentation and diffusion
processes [18]. For in vivo data, when the particles were administered via inhalation
the Multiple-Path Particle Dosimetry model (MPPD) [29, 30] was used to calculate
the amount of particles retained in the animal alveoli, while for instillation we
assumed 100% deposition in the lung. The parameters used for both models are
reported in Appendix B. Whenever possible, the retained dose was preferred to the
deposited dose as it has been shown to better correlate with the effects measured in
the animal [31]. Both in vitro and in vivo deposited/retained doses were normalised
by the surface area of the cell culture well or the animal alveoli, respectively.

5.3.4 Calculation of Benchmark Doses

Since the surface area was identified in multiple studies as a more relevant dose
metric than mass [32, 33], the deposited/retained doses were transformed from mass
to surface area doses using the specific surface area (SSA) of the particles; when
not reported, the SSA was calculated from the primary particle diameter of the
particles by assuming a perfectly spherical shape. A Benchmark Response (BMR) of
20% was chosen for the BMD calculation, done with the PROAST software [34, 35].
The percentage of neutrophils in BALF was considered a quantal response, while
other endpoints were considered continuous responses. Whereas Pennington et al.
[36] proposed the use of the ED10 or BMD10 for the linear extrapolation of risk at
low-doses (in place of the ED50), we chose a BMD20, equivalent to the ED20, since
such change is considered a sign of low inflammation [37, 38] and still resides in the
low-dose region of the dose-response curve [39].

5.3.5 Calculation of in vitro-to-in vivo extrapolation factors

The calculation of in vitro-to-in vivo extrapolation factors is done in parallel for
each nanomaterial, for rat and mouse animals and cell lines, and for the two in
vivo endpoints (number of PMN and PMN percentage). For each group of data, we
calculated the ratio between each combination of in vivo and in vitro BMD20 values. A
non-parametric bootstrapping procedure was applied to estimate the distribution of
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the median in vivo-in vitro ratio. The use of the median is more robust compared to
the mean for non-normal distributions [40]. Then, we removed the outliers according
to the 1.5·IQR rule, which identifies as outliers those points that have a distance from
the 0.25 and 0.75 quantiles of at least 1.5 times the interquartile range (IQR) [41].
The in vitro-to-in vivo extrapolation factor estimated via the bootstrapping procedure
is the arithmetic mean of the estimated population of ratios, after the removal of
outliers.

5.3.6 Calculation of human toxicity EFs from in vitro data

For each particle, the calculation of the in vitro-based EFs was done following these
steps:

1. Calculate the median BMD20 from human in vitro data via non-parametric
bootstrapping;

2. Multiply by the in vitro-to-in vivo extrapolation factor to obtain the human
BMD20 in dose per cm2 lung;

3. Multiply by the human alveoli surface area to obtain the total retained dose in
the lung;

4. Divide by the retention rate to find the intake dose. The retention rates were
calculated via MPPD model for particles with aerodynamic diameter between
10 nm and 1 µm; since the retention rate is not constant over time, a 7-day
continuous exposure was chosen (same exposure limit as for the selection of
animal studies). The maximum and minimum rates were then used to obtain a
range of intake doses;

5. Divide by seven to find the daily intake dose;

6. Divide by 5 to extrapolate from subacute BMD20 to chronic BMD20 with the
extrapolation factor from Vermeire et al. [42];

7. Convert to lifetime intake by multiplying by 365 days and 70 years;

8. Convert the lifetime chronic BMD20 from cm2
particle lifetime intake to (m2

particle/gparticle) ·
kgintake;

9. Calculate the EF as 0.2/human BMD20.

5.3.7 Calculation of human toxicity effect factors from animal data

As a comparison, EFs were calculated from the collected animal data:

1. Calculate the median BMD20 from animal data via non-parametric bootstrap-
ping;
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2. Multiply the median animal BMD20 by the animal alveolar surface area to find
the total retained dose;

3. Extrapolate to retained dose in human using the ratio between the human
alveoli surface and the animal alveoli surface, as in Fransman et al. [43].

After obtaining the human BMD20 as retained dose, the EF was calculated following
steps 3 to 8 from the previous section.

5.3.8 Calculation of uncertainties

The uncertainty of LCIA extrapolation factors is expressed by the dispersion factor k,
which is defined so that the values of a variable fall in the range median/k - median
· k with a 95% probability [44]. For the in vitro-to-in vivo extrapolation factors, we
calculated the dispersion factors from the 95

th percentile of the bootstrap distribution,
after the removal of outliers, with the formula from Huijbregts et al. [45], which does
not require any assumption on the shape of the data distribution:

k =

√
97.5th percentile
2.5th percentile

(5.1)

The uncertainty of the final EF was calculated as a combination of the dispersion
factors of the extrapolation factors, according to Slob [44].

5.4 results and discussion

5.4.1 Benchmark Dose values

109 BMD20 values were obtained from the in vitro data, most of them regarding
human and mouse cells; the values ranged over multiple orders of magnitude, in
particular for the larger data sets, i.e. amorphous silica and titanium dioxide (Figure
5.2 and Table B.1). Such differences were due to the collected data rather than the
deposition simulations: the particle concentrations used in the studies ranged from
1·10−5 to 1.7 mg/cm3, and the deposited doses ranged from 1·10−6 to 0.7 mg/cm2,
or 1.27 - 8.8·103 cm2/cm2 when using the surface area dose. We did not observe any
trend based on the cytokine considered, supporting our choice of aggregating them
in a unique endpoint.

For in vivo data, we obtained 103 BMD20 values, 59 considering the absolute
number of neutrophils as endpoint (Figure 5.3) and 44 considering the percentage
of neutrophils as endpoint (Figure B.1). Also in this case the BMD20 values had
a very broad range (Table B.4), which is linked to the original data rather than
the deposition calculation, since the deposition rate was set as constant in the case
of instilled nanomaterials, and only spread over an order of magnitude for the
administration via inhalation.

The wide range of both in vitro and in vivo BMD20 can only be explained by
the differences in material properties and experimental conditions of the original
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Figure 5.2: The distribution of the BMD20 in particle surface area per cell culture area
calculated from in vitro data for each particle and cell species.
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Figure 5.3: The distribution of the BMD20 in particle surface area per lung surface area
calculated from in vivo data for the neutrophil influx endpoint, for each particle
and animal species.

studies. The impact of such factors on the biological response has been highlighted
in multiple publications [18, 38, 46, 47].

While the nanomaterials we considered are the most studied, our constraints
for the inclusion of data are quite stringent. Only studies with a comprehensive
characterization of the particle physico-chemical properties were included, since this
information was necessary for the simulation of the particle behavior in the in vitro
system. For example, multiple studies had to be discarded because they did not
report the diameter of the agglomerated particle in the media. For the calculation of
the BMD20, at least two doses plus control were needed to fit a dose-response curve
over the data, thus excluding those studies where only one dose was tested (this was
often the case for in vivo studies). Last, those data sets without a clear dose-response
relationship were discarded as well by the BMD modeling process. This explains
why some nanomaterials and species only have a few data points.
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5.4.2 In vitro-to-in vivo extrapolation factors

Table 5.1 reports the in vitro-to-in vivo extrapolation factors calculated from rat and
mouse data and considering the number of PMN as endpoint. Cerium oxide had
to be excluded since it did not have corresponding in vitro and in vivo data. The
extrapolation factors calculated for neutrophil percentage are available in Table B.2.

Table 5.1: The in vitro-to-in vivo extrapolation factors calculated for the neutrophil influx
endpoint, and their uncertainty expressed as dispersion factors k.

Nanomaterial species in vitro-to-in vivo extrapolation factor k

Crystalline SiO2 rat 3.24·10−4
8.89

Amorphous SiO2 rat 4.73 14.5

Amorphous SiO2 mouse 5.32·10−2
2.77

TiO2 rat 1.00·10−3
1.61

TiO2 mouse 4.55 1.78

The extrapolation factors obtained from the ratios of in vivo and in vitro BMD20
values (Figure B.2 and B.3) via bootstrapping are different for each particle, and show
a level of uncertainty dependent on the number and variability of the BMD20 values.
Depending on the species considered, amorphous silica and titanium dioxide follow
opposite trends. Such a difference does not support the hypothesis that a unique
extrapolation factor might be valid for low-toxicity low-solubility particles; however,
given the wide spread of BMD20 values, some data sets (e.g. for amorphous silica)
are so small that it is questionable whether they correctly represent the distribution
of the BMD20. A more reliable approach to test this hypothesis would be to have
triads of in vivo data, in vitro data using mouse cells, and in vitro data using human
cells obtained by testing in (as much as possible) the same exposure conditions and
using the same nanomaterial. In this case the comparison of the ratios of multiple
nanomaterials would not suffer from the large variability of the BMD20 values.
Unfortunately, the lack of such fit-for-purpose data prevents us from applying this
approach today.

5.4.3 Human toxicity effect factors from in vitro data

The EFs have been calculated from human in vitro data as ranges (Table 5.2), to
account for the effect that the aerodynamic particle size (which in our case was
unknown) has on the retention of the particles in the human lung. Considering
particles with an aerodynamic diameter between 10 nm and 1 µm, the retention rate
ranged between 6% and 24% of the intake dose considering seven days of continuous
exposure.



The calculated EFs significantly differ depending on which species was used to
calculate the in vitro-to-in vivo extrapolation factors. In the case of rat, the calculated
EFs correctly represent the higher toxicity of crystalline silica, but amorphous silica
and titanium dioxide, both considered low-toxicity materials, show a great difference
in potency, with the latter multiple orders of magnitude more toxic. Looking at the
EFs using mouse data, both particles show a similar low toxicity, though no data is
available to compare it with crystalline silica. This difference is explained by the fact
that titanium dioxide is reported in the data we collected as very inflammogenic for
rats in vivo, while the same effect was not observed for amorphous silica or for mice.
The higher susceptibility to inhaled nanomaterials of rats compared to mice due to a
faster lung overload and a stronger inflammatory response is well-known [48, 49].
This suggests that, despite being frequently used in animal studies, the rat might be
a precautionary choice rather than a representative one for particles’ lung effects on
humans.
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Table 5.2: The human toxicity EFs calculated from in vitro data, expressed as cases/(m2/g · kg intake), based on the in vitro-to-in vivo
extrapolation factors respectively obtained from rat and mouse data. The uncertainties k of the EF represent the combination of
the uncertainties of all extrapolation factors used to calculate the EF.

Nanomaterial type # data
points

median human
in vitro BMD20

EF extrapolated from
rat data

k rat
EF

EF extrapolated from
mouse data

k
mouse

EF

Crystalline SiO2 - 3 0.132 4.85 - 19.4 27.3 - -

Amorphous SiO2 - 25 0.954 4.60·10−5 - 1.84·10−4
38.5 4.07·10−3 - 1.63·10−2

14.7

TiO2 anatase +
rutile

13 0.160 1.30 - 5.18 12.6 2.76·10−4 - 1.10·10−3
12.8

TiO2 anatase 7 0.361 0.58 - 2.30 13 1.40·10−4 - 5.61·10−4
12.8

TiO2 rutile 6 0.430 0.48 - 1.93 12.6 1.09·10−4 - 4.35·10−4
12.8

TiO2 P25 1 0.0185 11.2 - 44.9 12.6 2.47·10−3 - 9.89·10−3
12.8
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5.4.4 Comparison between in vitro- and in vivo-based human toxicity effect factors

Table 5.3 shows the comparison between the in vitro-based EFs, the in vivo-based EFs
calculated from the same animal data used for the in vitro-to-in vivo extrapolation
factors (see also Table B.3), and the EFs available from the literature and obtained
from chronic or sub-chronic animal studies.

Table 5.3: The comparison between the in vitro-based EFs (highlighted in light blue), the in
vivo-based EFs calculated from our data set, and the EFs factors available from
the literature. All EFs are reported as cases/(m2/g · kg intake). When the EF was
not reported with respect to the particle surface area, a default specific surface
area of 48 m2/g was used, as in Buist et al. [50].

TiO2 Amorphous SiO2 Crystalline
SiO2

CeO2

In vitro-
based EF
extrapo-
lated from
rat data

1.30 - 5.18 4.60·10−5 - 1.84·10−4
4.85 - 19.4 -

In vitro-
based EF
extrapo-
lated from
mouse data

2.76·10−4 - 1.10·10−3
4.07·10−3 - 1.63·10−2 - -

In vivo-
based EF
from rat
data

0.181 - 0.723 1.05·10−3 - 4.22·10−3
0.630 - 2.52 0.646 - 2.58

In vivo-
based EF
from mouse
data

8.87·10−3 - 3.55·10−2
9.88·10−3 - 3.95·10−2 - -

EF from
published
studies

5.6·10−2 from [50] - - -

1.51·10−4 from [51] - - -

2.40·10−2 from [52] - - -

The results show a good agreement between the in vitro EFs and the in vivo EFs we
calculated; while these values are partially correlated, since the in vivo BMD20 values
are used to calculate the in vitro-to-in vivo extrapolation factors, it is also true that
the extrapolation factor depends also on the in vitro animal BMD20 values, and that
different extrapolation procedures are used for the two data sources to calculate the
EFs. When comparing also with the published EFs for titanium dioxide both our in
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vitro and in vivo EFs fall in the same range when mouse data is used, while the EFs
based on rat data confirm the strong response this species has to this nanomaterial.
No EFs have been published for the other materials, but the good correspondence
between our calculated in vitro and in vivo EFs for amorphous silica and titanium
dioxide from mouse data suggests this might be a representative result as well.

Another interesting point is that while our data was restricted to short-term
inflammation, published data referred to longer term studies looking at a variety of
effects such as alveolar epithelial cell hypertrophy, cell necrosis, histopathological
findings, neutrophil levels in BALF, and often considered the No Observed Adverse
Effect Level (NOAEL) or the Lowest Observed Adverse Effect Level (LOAEL) rather
than an ED50. This seems to suggest that short-term effects might be predictive of
more chronic effects (for which they are suggested to be necessary but not sufficient
precursors, see e.g. the proposed Adverse Outcome Pathway for lung fibrosis [53]),
even though more analyses are needed to confirm this hypothesis.

5.4.5 Are we ready for in vitro-based effect factors?

Published experimental studies suggest that inflammation might be a promising
predictive endpoint to be tested in vitro [21, 54–56]. Other studies point out that
the surface area better correlates with the lung effect of nanomaterials compared
to mass doses [23, 32, 57, 58]. Multiple studies address the importance of consid-
ering the deposited dose in vitro instead of the nanomaterial concentration for a
better characterization of the dose-response relationship [59–61]. We put together
these pieces of information in developing our EF calculation strategy, and tested it
with data collected from the literature. The goal was to calculate in vitro-to-in vivo
extrapolation factors, which can then be used similarly to any other extrapolation
factor for the estimate of human toxicity EFs. Ideally, once that an in vitro-to-in
vivo extrapolation factor has been estimated and its predictive power confirmed for
multiple nanomaterials, there would be no need for animal and animal in vitro data,
but only for the human in vitro data.

The comparison with published EFs can be used as a benchmark for the in vitro-
based EFs, to understand whether this new data pool provides comparable results.
This was the case for titanium dioxide when using the in vitro-to-in vivo extrapolation
factor based on mouse data, where the EF is in the same range as published values.
The good coverage of the in vivo and in vitro data used to calculate the extrapolation
factor for titanium dioxide makes the factor more robust, since the real distribution
of the BMD20 values is better approximated by our samples.

Despite this promising result, the difficulty in calculating the extrapolation factors
for the other nanomaterials shows the limitations of applying our approach with the
currently available data. The main challenge we face is the quality and consistency
of the toxicological data. For example, only few BMD20 values were available for
amorphous silica in vivo, which questions the reliability of the extrapolation factor;
even worse, for cerium oxide there were no corresponding in vivo and in vitro data,
preventing the calculation of any factor. The wide toxicity range of in vitro and in vivo
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data confirms that the particle properties and the experimental conditions can have
a huge impact on the results, hindering their comparison. Using a median BMD20
obtained from a large data set is a better choice than using a single value from a
specific study, and allows to keep track of the BMD20 uncertainty, but it can produce
skewed results when the data are scarce and are not a representative sample of the
BMD20 distribution.

For the in vitro-to-in vivo extrapolation factors, coupled in vitro and in vivo data (i.e.
obtained using similar particles and experimental conditions) for animals, animal
cells, and human cells are needed to verify the parallelogram approach and inves-
tigate whether a single extrapolation factor might be valid for multiple particles.
Moreover, removing the variability connected to the differences in experimental
conditions would reduce the amount of data required to describe the distribution of
the BMD20 values, as we would expect the values to be more precise.

In conclusion, we are not yet there for a consistent and systematic calculation of in
vitro-based EFs. However, we showed a promising method to calculate these factors
and identified which further improvements are needed. We believe that our work
can help direct future interdisciplinary efforts to tackle the critical aspects of the use
of in vitro data in LCIA, for example by identifying the conduction of fit-for-purpose
experiments as critical for the verification of the extrapolation factor calculation
procedure.
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6
C O N C L U S I O N S A N D O U T L O O K

This thesis investigated the possibility of calculating human toxicity effect factors for
NMs using in vitro toxicity data instead of animal toxicity data, which are needed by
the traditional LCIA methodology. Through the four chapters, the topic was brought
into focus and the research questions were addressed, as explained in section 1.6.
Overall, this work provides not only a way to calculate in vitro-based EF, but allows
also a wider analysis of where we stand, what we need from different fields, and
what is still unsolved for the novel, interdisciplinary challenge of predicting human
toxicity from in vitro data within the LCIA framework.

6.1 conclusions

The use of in vitro toxicity data for the calculation of human toxicity EFs has several
advantages compared to the use of animal toxicity data, such as the low ethical cost
and the possibility to use human cells, thus avoiding the extrapolation from animals
to humans. However, integrating this kind of data into LCIA requires to address
multiple issues.

The main one, which is as well an opportunity, is that the nanotoxicology field is a
dynamic field where new systems, improved methods, and standardized procedures
are continuously being developed. For this reason, any extrapolation strategy to
calculate in vitro-based EF cannot be static but needs to be adaptable to the new data
that will come in the future. At the same time, this means that the quality of the
available data will improve, as the systems become more physiologically relevant
and representative of long-term exposure conditions. Would it then not be better
for the LCIA field to wait for more advanced toxicological information? Clearly
not, as not having an EF would mean that in every LCA study NMs are assumed
to have no impact at all (due to lack of data), which is worse than having a very
uncertain estimate of such impact. Moreover, since the LCIA methodology itself has
constraints and requirements, starting a discussion with the nanotoxicology field
allows to align the respective goals and assures that the produced toxicological data
are as much as possible fit for use in LCIA, thus adding a further level of relevance
to nanotoxicological studies.

Another challenge of in vitro data is the lack of information about the toxicokinetics
of the particles, i.e. the fate of the NM in the human body, and the correspondence
between the intake fraction and the dose that reaches the organ for which the
toxicity is being tested in vitro. This can be addressed by in silico models, which are
a fundamental part of the extrapolation procedure developed in this thesis. In fact,
this strategy involves the refinement of the doses used in vitro via in vitro dosimetry
and the further application of lung dosimetry to estimate the air concentrations
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and intake doses corresponding to in vitro doses. This strategy was the result of
the analysis of multiple models and methods that are being used and developed in
various fields, with the goal of having a high potential coverage of NMs and being
applicable and testable with the existing data.

The CoDo model was developed and released to enable an easy application of the
strategy with big data sets, automatizing most steps and only requiring limited user
interaction. Using the model on a data set of in vitro data about titanium dioxide
and considering the Swiss Occupational Exposure Limits for this substance, it was
shown that in many cases the doses used in vitro exceed what can be considered a
realistic exposure level.

Based on a classification model, it was identified that not only the particle proper-
ties, such as the primary particle diameter, but also several experimental conditions
are predictive for the severity of the response. For example, the cell line used, the
addition of serum in the media, and the assay type chosen (when multiple exist to
test the same endpoint, e.g. cytotoxicity) are all factors not to be overlooked when
selecting and comparing studies, as their combination may affect the results by a
few orders of magnitude.

The procedure for the calculation of in vitro-based EFs is based on the parallelo-
gram approach, which states that the relationship between in vitro and in vivo data is
maintained for different species, e.g. rodents and humans. Through this approach it
is possible to calculate an in vitro-to-in vivo extrapolation factor, which can be used to
extrapolate human responses from in vitro data using human cells. With this method,
it is not necessary to extrapolate from animals to humans, but animal data and in
vitro data using animal cells are needed once to calculate the extrapolation factor.

The EF calculated with this new extrapolation factor are in good agreement with
the traditional EF for titanium dioxide and amorphous silica when using the mouse
as reference species, showing that our choice of endpoint (lung inflammation) and
our extrapolation strategy seems to be successful. At the same time, the results
confirmed our previous observations, i.e. that the high variability in experimental
conditions has a considerable impact on the toxicity, both in vitro and in vivo. This
shows that in vivo data is not necessarily more precise than in vitro data, at least for
short-term inflammatory endpoints. The lack of triads of animal and in vitro data
(using animal and human cells) with similar experimental conditions increases the
uncertainty of the results. However, compared to the traditional LCIA methodology,
where the EF is based on a single toxicity value (e.g. a single ED50), the new strategy
uses the whole data set of animal and in vitro data, thus resulting potentially more
robust.

Overall, this thesis demonstrated that it is possible to calculate in vitro-based
human EF for non-soluble nanoparticles, but that more data is needed to cover
additional NMs other than titanium dioxide and amorphous silica, and to verify
whether the extrapolation factors are nano-specific or can be predictive of unknown
NMs. The proposed strategy can be easily adapted to use the results of advanced in
vitro tests, and would benefit by ad hoc experiments, such as testing a nanoparticle in
parallel on animal and human cells.
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6.1.1 Additional applications

The work done in this thesis is not only an advancement for the LCIA methodology,
but provides as well a feedback loop for the nanotoxicology field, by highlighting
which minimal quality criteria exist for using the results of in vitro studies in LCIA.
An in vitro study should: 1) provide a good physico-chemical characterization of the
material as well as details of the experimental conditions; 2) use doses that represent
realistic conditions; 3) test endpoints representative and predictive for the onset of
an (ideally chronic) disease. The awareness of these requirements can thus help the
nanotoxicology field tailor its experiments for increased transferability.

This thesis focused on the integration of in vitro data into LCIA, but its contribution
can be extended to Risk Assessment (RA). In fact, the two methodologies rely on
the same kind of data to provide information about the toxicity of substances, even
though they differ in their scope and goals. LCA is a comparative method with a
global scope, focusing on products or processes, while RA is an absolute approach
focusing on a substance and/or a specific location [1].

RA has been tackling the reduction in animal studies by investigating how to
integrate new alternative methodologies, such as in silico models and in vitro testing,
to fill information gaps on the hazard of substances [2]. Both the model, the extrapo-
lation procedure, and the considerations done in this thesis can be applied to RA
and be of support to other approaches. Some minor adaptations would be needed,
which reflect the differences between LCA and RA. For example, while LCA uses
the Benchmark Dose as dose descriptor, RA applies a more conservative approach,
and thus considers the Benchmark Dose Low Confidence Limit (BMDL), i.e. the
dose at which, with a 95% confidence, the response is lower than the Benchmark
Response [3].

Overall, while it is necessary to focus on specific methodologies to capture their
peculiarities and develop a working procedure rather than general recommendations,
the prediction of the effects/toxicity of nanoparticles (and other substances as
well) on humans using alternative methods to animal testing is of interest to many
disciplines.

6.2 outlook

This thesis approached a quite unexplored topic, i.e. the use of in vitro data in LCIA,
which was recognized as a future opportunity for the field, but most often as a
wishful thinking rather than with a practical strategy. While this work represents
a step forward, the road is still long before a new consensus model for the use of
in vitro data emerges. There are multiple levels in which further improvements are
needed, encompassing the different disciplines connected to this topic: data quality,
approach refinement, and coverage.

The first point is a prerogative of the nanotoxicology field. The quality of the
available data sets the boundary for any further use of those data, including any
model and extrapolation procedure based on them. As seen in the previous chapters,
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the comparability of the data represented a challenge due to the large variety in
particle properties and exposure conditions, which resulted in very wide toxicity
ranges. More standardized tests where multiple NMs are tested using the same
exposure conditions will be a great asset to increase the reliability of the results. To
apply the parallelogram approach, the tests should be conducted on both animal
and human cells, to identify the inter-species differences in cellular responses. An
example of this kind of study is the impressive work by Farcal et al. [4], which tested
multiple endpoints on multiple cell lines, for a set of standardized materials (but
that unfortunately did not have a good coverage for inflammatory endpoints).

Once higher-quality data are available, the extrapolation strategy can be better
refined and validated, with the goal of answering the question: is the relationship
between in vitro and in vivo data maintained for different particles, and has therefore
a unique (or a group of) extrapolation factor(s) the predictive power to be applied to
new NMs? From our results this did not seem the case, but this might be attributable
to the limited coverage and quality of the available data. Verifying this point is of
uttermost importance, as well as, in case of a negative answer, understanding the
reasons and identifying which changes are needed, e.g. more representative in vitro
models, or even rejecting the use of this approach.

In this thesis the focus was on a specific subset of NMs and a single exposure
route: inhaled non soluble spherical particles. Other NMs (e.g. 2D materials such
as graphene) and the ingestion route are both relevant for LCIA, and should be
addressed in future works. This will require the adaptation of the strategy, for
example by substituting lung dosimetry with physiologically-based kinetic models
that simulate the fate of the NM in the body after ingestion. Even though this kind
of models are being developed and improved, work is still needed for these models
to be applied systematically [5].

Last, the collaboration between the Life Cycle Assessment, nanotoxicology, and
Risk Assessment disciplines, which was a fundamental prerequisite of this the-
sis, should continue, and even expand to benefit from the future achievements of
other sectors. Nonetheless, inspiration could be drawn from the study of chemicals,
since despite the differences with NMs, they could provide valuable insights about
predictive methods.



B I B L I O G R A P H Y

1. Owens, J. Life-cycle assessment in relation to risk assessment: An evolving
perspective. Risk Analysis 17, 359 (1997).

2. Kavlock, R. J., Bahadori, T., Barton-Maclaren, T. S., Gwinn, M. R., Rasenberg,
M. & Thomas, R. S. Accelerating the pace of chemical risk assessment. Chemical
research in toxicology 31, 287 (2018).

3. Vermeire, T., Stevenson, H., Pieters, M. N., Rennen, M., Slob, W. & Hakkert,
B. C. Assessment factors for human health risk assessment: A discussion paper.
Critical Reviews in Toxicology 29, 439 (1999).

4. Farcal, L., Torres Andón, F., Di Cristo, L., Rotoli, B. M., Bussolati, O., Bergam-
aschi, E., Mech, A., Hartmann, N. B., Rasmussen, K., Riego-Sintes, J., Ponti, J.,
Kinsner-Ovaskainen, A., Rossi, F., Oomen, A., Bos, P., Chen, R., Bai, R., Chen,
C., Rocks, L., Fulton, N., Ross, B., Hutchison, G., Tran, L., Mues, S., Ossig, R.,
Schnekenburger, J., Campagnolo, L., Vecchione, L., Pietroiusti, A. & Fadeel, B.
Comprehensive In Vitro Toxicity Testing of a Panel of Representative Oxide
Nanomaterials: First Steps towards an Intelligent Testing Strategy. Plos One 10
(ed Zhu, D.) e0127174 (2015).

5. Utembe, W., Clewell, H., Sanabria, N., Doganis, P. & Gulumian, M. Current
approaches and techniques in physiologically based pharmacokinetic (PBPK)
modelling of nanomaterials. Nanomaterials 10, 1267 (2020).

129



A
A P P E N D I X A : S U P P O RT I N G I N F O R M AT I O N F O R C H A P T E R 3

Demonstration of the equation for the calculation of the agglomerate effective density in air

The agglomerate in air is assumed to have the same agglomerate diameter as
measured in vitro, but the pores are empty instead of filled with air. Therefore:

Air agglomerate density =
agg_density − media density
pp_density − media density

· pp_density

=
mass_pp·x+mass_media·(1−x)

vol − mass_media
vol

mass_pp
vol − mass_media

vol

· pp_density

=
mass_pp · x + mass_media · (1 − x)− mass_media

mass_pp − mass_media
· pp_density

=
mass_pp · x + mass_media − mass_media · x − mass_media

mass_pp − mass_media
· pp_density

=
x · (mass_pp − mass_media)

mass_pp − mass_media
· pp_density

= x · pp_density

with “x” the fraction of the agglomerate filled by the particle (in volume), i.e. the
opposite of the porosity, “vol” the unitary volume, “pp”referring to the primary
particle.
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Figure A.1: The deposition in the lung regions per particle size; the red line representing
the pulmonary region. Plotted using the MPPD software [4] with the following
conditions: Human Yeh/Schum Symmetric model, particle density 1mg/m3,
constant exposure.
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Figure A.2: The distribution of the in vitro doses based on their extrapolated air concen-
trations over OEL ratio, considering 35 years of exposure on the workplace
and non-sticky conditions (a), and one year of exposure on the workplace and
sticky conditions (b). The y axis (“Number of points”) reports the absolute
number of data points, i.e. doses, while the percentage of doses belonging to
each range is indicated over each bar.
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Table A.1: The minimum required input parameters for CoDo, including those that, if not
reported, are automatically calculated by the model.

Parameter name Explanation

General parameters ID Unique ID used to identify
the entry

Substance Name of the particle

Lung dosimetry parameters Sex of person Either “male” or “female”
for the standard man or
woman

Type of particle in air Either “pp” or “agg” or
“aero” to choose the same di-
ameter as the primary par-
ticle, an agglomerate with
the same diameter as mea-
sured in vitro, or to indicate
the aerodynamic diameter
of the particle in air

Aerodynamic diameter of
agglomerate in air

in nm, needed if “aero” is
selected as type of particle
in air

100% deposition instead of
dosimetry

either "TRUE" or "FALSE". If
true it will be assumed that
100% of the inhaled particles
deposit in the lung, there-
fore the deposited amount
depends on the breathing
parameters and the expo-
sure time. The lung dosime-
try model will not be used
in this case.

In vitro media parameters Media viscosity in Pa· s

Media density in g/cm3

Particle parameters Primary particle diameter in nm

Primary particle density in g/cm3

Primary particle specific sur-
face area

in m2/g, can be calculated

Agglomerate diameter in nm, the average hydro-
dynamic diameter of the ag-
glomerates in media

Agglomerate effective den-
sity

in g/cm3, can be calculated
via Sterling equation [1], us-
ing a default fractal dimen-
sion of 2.1 [2, 3]

In vitro experimental param-
eters

Column height in mm, the height of the me-
dia in the plate

Initial particle concentration in mg/cm3, the concentra-
tion of the particles in the
media

Simulation time in hours, the exposure time
of the cells to the particles
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Figure A.3: The distribution of BMD values from in vitro data per particle type and assay.
Cytokine release groups all single cytokines (IL-6, IL-1 β, TNFα, IL-8) together.
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Figure A.4: The distribution of BMD values from in vivo data per particle type and assay.
Neutro percent: PMN percent; neutro: PMN amount; LDH: LDH in BALF.All
single cytokines (IL-6, IL-1 β, TNFα, IFNγ) are grouped together under the
cytokine BMD vivo.
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Figure A.6: The coefficients of the six features for the classification in the middle class
(10mg/m3 <=BMD-derived human exposure level < 50mg/m3) in the SVM
Linear classification model built on the in vitro data set for viability endpoint.
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Figure A.7: The coefficients of the six features for the classification in the highest class
(BMD-derived human exposure level >= 50mg/m3) in the SVM Linear classi-
fication model built on the in vitro data set for viability endpoint.
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Figure A.8: The coefficients of the six features for the classification in the lowest class
(BMD-derived human exposure level values considering a five days workplace
exposure < 10mg/m3) in the SVM Linear classification model built on the in
vitro data set for cytokine release.
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Figure A.9: The coefficients of the six features for the classification in the middle class
(10mg/m3 <=BMD-derived human exposure level < 50mg/m3) in the SVM
Linear classification model built on the in vitro data set for cytokine release.
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Figure A.10: The coefficients of the six features for the classification in the highest class
(BMD-derived human exposure level >= 50mg/m3) in the SVM Linear classi-
fication model built on the in vitro data set for cytokine release.
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Figure A.11: The coefficients of the three features for the classification in the lowest class
(BMD-derived human exposure level < 5mg/m3) in the SVM Linear classifi-
cation model built on the in vivo data set.
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Figure A.12: The coefficients of the three features for the classification in the middle class
(5mg/m3 <=BMD-derived human exposure level < 8mg/m3) in the SVM
Linear classification model built on the in vivo data set.
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Figure A.13: The coefficients of the three features for the classification in the highest
class (BMD-derived human exposure level >= 8mg/m3) in the SVM Linear
classification model built on the in vivo data set.
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b.1 dosimetry parameters

For the CoDo model, the following parameters were set as constant (i.e. did not
depend on the properties of the particles):

• Sex of person: male;

• Type of particle in air: primary particle;

• 100% lung deposition: False;

• Media temperature: 37
◦C;

• Fractal dimension: 2.1;

• Sticky bottom: True;

The agglomerate effective density, if not available from each study, was calculated
using the Sterling equation [1].

For lung dosimetry, the following options were selected:

• For rat, the asymmetric Sprague Dawley model. For mouse, either the BALB
mouse or the B6C3F1 mouse depending on the strain;

• The body weight was specified according to reported weights from each study;

• Constant exposure;

• Post-exposure time included;

• Clearance included.

b.2 result and discussion extra figures and tables
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Table B.1: The details of the BMD20 values calculated from the in vitro data.

Nanoparticle type cell species # data
points

BMD20
range
[cm2

particle

/cm2
cell culture]

primary
particle
diameter
range [nm]

agglomerates
diameter
range [nm]

Amorphous SiO2 human 25 0.003-21.6 6.2-35 32-576

Amorphous SiO2 rat 10 0.0008-494.8 6.2-369 48-531

Amorphous SiO2 mouse 27 0.002-23.7 10-879 35-2245

Crystalline SiO2 human 3 0.08-0.19 5217 5217

Crystalline SiO2 rat 3 0.0002-12.7 7.4-452 400-1200

Crystalline SiO2 mouse 5 0.00006-0.14 378-5217 1400-5217

CeO2 human 5 0.57-3.2 9.7-28.4 69.3-396

CeO2 mouse 2 0.03-0.06 23-88 220-432

TiO2 all human 14 0.0001-31.6 17-1000 89.8-4519

TiO2 all rat 4 0.001-3.0 5-30.5 89.8-348

TiO2 all mouse 11 0.0005-1.0 10-200 150-1562

TiO2 anatase human 7 0.002-31.6 17-190 254-1350

TiO2 anatase rat 2 2.4-3.0 5 348

TiO2 anatase mouse 9 0.0008-1.0 10-200 150-1562

TiO2 rutile human 6 0.0001-1.62 24.7-1000 89.8-4519

TiO2 rutile rat 1 0.21 30.5 89.8

TiO2 P25 human 1 0.02 25 281.8

TiO2 P25 rat 1 0.001 21 238

TiO2 P25 mouse 2 0.00050-
0.00053

21-35 350-485
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Figure B.1: The distribution of the BMD20 in particle surface area per lung surface area
calculated from in vivo data for the percentage of neutrophil in BALF endpoint,
for each particle and animal species.

Table B.2: The in vitro-to-in vivo extrapolation factors calculated for the PMN percentage
endpoint.

Nanoparticle species in vitro-to-in vivo extrapolation factor k

Crystalline SiO2 rat 9.7·10−4
2.4

Amorphous SiO2 rat 4.28·10−5
3.2

TiO2 rat 0.036 3.2

Amorphous SiO2 mouse 0.007 4.25

TiO2 mouse 39.9 1.5
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Figure B.2: The distribution of the ratios between in vivo and in vitro BMD20 values used
for the bootstrapping procedure, considering the amount of neutrophils as
endpoint.
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Figure B.3: The distribution of the ratios between in vivo and in vitro BMD20 values used
for the bootstrapping procedure, considering the percentage of neutrophils as
endpoint.
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Table B.3: The human toxicity effect factors calculated from the short-exposure in vivo data,
for the neutrophil influx endpoint, expressed as cases/(m2/g · kg intake).

Nanoparticle type # data points species median
in vivo
BMD20

EF k

Crystalline SiO2 - 6 rat 3.3·10−4
0.63-2.5 47

CeO2 5 rat 3.2·10−4
0.65-2.6 47

Amorphous SiO2 2 rat 0.20 1.1·10−3-
4.2·10−3

47

TiO2 any 22 rat 1.2·10−3
0.18-
0.72

47

TiO2 anatase 6 rat 5.0·10−3
0.05-
0.17

47

TiO2 rutile 7 rat 2.3·10−4
0.89-3.6 47

TiO2 P25 9 rat 1.56·10−3
0.13-
0.53

47

Amorphous SiO2 2 mouse 0.02 9.9·10−3-
4.0·10−2

47

TiO2 any 22 mouse 0.02 8.9·10−3-
3.6·10−2

47

TiO2 anatase 7 mouse 0.02 0.01-
0.04

47

TiO2 rutile 11 mouse 0.05 4.1·10−3-
1.6·10−2

TiO2 P25 4 mouse 1.3·10−3
0.16-
0.63

47



Table B.4: The details of the BMD20 values calculated from the in vivo data.

Nanoparticle type cell species # data points BMD20 range [cm2
particle

/cm2
alveoli]

primary particle diame-
ter range [nm]

average post-exposure
time [h]

Endpoint: Number of neutrophils in BALF

Amorphous SiO2 rat 2 0.20-0.20 14-15 19.5

Amorphous SiO2 mouse 2 0.011-0.031 14 36

Crystalline SiO2 rat 6 1.78·10−7-0.004 12-534 24

CeO2 rat 5 2.74·10−4-0.001 7.8-40 62.4

TiO2 all rat 22 5.26·10−6-0.015 5-440 42

TiO2 all mouse 22 3.68·10−5-0.27 3.5-300 24

TiO2 anatase rat 6 0.002-0.014 5-50 21

TiO2 anatase mouse 7 3.68·10−5-0.27 3.5-300 24

TiO2 rutile rat 7 1.94·10−5-0.002 24-440 21

TiO2 rutile mouse 11 0.003-0.13 10-20.6 45

TiO2 P25 rat 9 5.62·10−6-0.014 14-29 72

TiO2 P25 mouse 4 5.29·10−4-0.006 18-21 18

Endpoint: Percentage of neutrophils in BALF

Amorphous SiO2 rat 8 2.04·10−7-0.14 11-35 7.5

Amorphous SiO2 mouse 1 0.002 14 24

Crystalline SiO2 rat 6 1.59·10−7-0.026 12-534 24

CeO2 rat 4 0.001-0.1 7.8-40 60

TiO2 all rat 10 0.005-1.73 8-440 28.8

TiO2 all mouse 15 0.04-0.5 3.5-300 33.6
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Nanoparticle type cell species # data points BMD20 range [cm2
particle

/cm2
alveoli]

primary particle diame-
ter range [nm]

average post-exposure
time [h]

TiO2 anatase rat 1 1.73 8 24

TiO2 anatase mouse 5 0.04-0.5 3.5-300 24

TiO2 rutile rat 3 0.007-0.04 30.5-440 24

TiO2 rutile mouse 7 0.07-0.29 10-20.6 44.65

TiO2 P25 rat 6 0.005-0.27 14-29 32

TiO2 P25 mouse 3 0.04-0.13 18-21 24
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