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A B S T R A C T

In this contribution, we propose a novel continuum mechanical concept to determine the
homogenised mechanical response of random fibre networks. Their free energy is calculated
as an average of the fibre free energy over the distribution of stretch, which forms the core
of the new theory. The fibre-scale kinematic information contained in this distribution is
intrinsic to the model and available for any state of macroscopic deformation in addition to the
homogenised macroscopic response. In contrast to the various approaches that use directional
averaging over the unit sphere, the presented model does not rely on a relation between fibre
deformation and orientation, and therefore applies to highly non-affine networks as well as
affine ones. In the present Part I of the work, the new concept is formally introduced, put into
perspective with current approaches, and elaborated for the case of networks of elastic fibres
with uniform orientation distribution, which generate a macroscopically isotropic hyperelastic
response. The essential constitutive assumption of the theory establishes a relation between
the macroscopic deformation of the network and the microscopic stretch distribution within. A
phenomenological approach is used to illustrate the new concept, expressing statistical moments
of the stretch distribution in terms of the macroscopic principal strain invariants. Application of
the concept to 2D and 3D Voronoi networks with fibres of different properties finally exemplifies
the accurate agreement of the model with discrete network simulations in terms of both the
macroscopic and microscopic response. While the here presented phenomenological variant of
the approach therefore represents an advance in the analytical multiscale modelling of network
materials itself, the work also provides the basis for further developments, where the relation
between the stretch distribution and macroscopic strain is derived from alternative principles.

. Introduction

Fibrillar or fibrous structures connected into random networks of nano- to micrometer scale are one of the most abundant
rchitectures in natural materials and, in many aspects, represent ‘‘life’s structure of choice" (Pritchard et al., 2014) to achieve
aterials systems with tailored properties. This building principle was carried over to a great many of technical materials from
aper and board to various non-woven fabrics and textiles. With a broad understanding of the term ‘fibril’ to include long segments
f macromolecules, these networks also include the large group of rubber-like materials and polymer gels.

Unravelling the mechanisms of load sharing within the networks by mathematical and computational modelling helps under-
tanding extraordinary features of natural and man-made materials such as outstanding defect tolerance, extreme Poisson ratios or
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other unusual characteristics (e.g. Conti and MacKintosh, 2009; Ehret et al., 2017; Bircher et al., 2019; Domaschke et al., 2019b).
Together with the control over fibre and network characteristics in technical processes, modelling can thus provide guidance for
the development of new materials with designed properties. The small-scale properties, i.e. fibre properties, network topology and,
if present, interstitial matrix material, predefine the characteristics of the macro-scale material system. Even if these properties are
known, reliable predictions of the network behaviour at all relevant length scales are complex, and require computationally intensive
multiscale simulations, in which the single fibres are discretised to form representative volume elements of the network that can be
subjected to the macroscopic boundary conditions (Stylianopoulos and Barocas, 2007; Picu, 2011). Physically motivated continuum
mechanical models could provide an efficient alternative. They typically replace the transition between the scales by assumptions
that relate the kinematics of the single fibres with the macroscopic deformations of the network. While this operation drastically
reduces the computational costs, it represents a potentially large source of error. In particular, a misconception in this macro–micro
transition leads to wrong conclusions on the mechanics at the microscopic scale drawn from the states of stress and strain at the
macroscopic one (Stracuzzi et al., 2022).

The affine assumption is the most commonly employed continuum mechanical micro–macro relation, and assumes that fibres
ransform like infinitesimal vectorial line elements in a continuous body. It is at the basis of fundamental concepts such as the
ull network model in rubber elasticity (Treloar et al., 1979; Wu and Van Der Giessen, 1993) or the structural approach in soft
issue biomechanics (Lanir, 1979; Billiar and Sacks, 2000; Lanir, 2017). Stretch averaging over the unit sphere is a convenient
eans to break with affinity, and in most models that rely on this concept, all fibres are assumed to experience the same stretch,
hich is equated with an average of the affine stretch over ‘all directions’. This average can be a simple one (Puso, 2003), the root
ean square (Beatty, 2003) or a generalised power mean (Miehe et al., 2004). It can be formed over fibres with initially uniform

rientation distribution densities, or over anisotropic ones. The former and special cases of the latter lead to compact representations
f the root mean square stretch in terms of strain invariants, and several common hyperelastic models for rubber-like materials and
oft biological tissues that can be interpreted as average stretch models, including the neo-Hookean model (Rivlin and Taylor, 1948),
he eight-chain model (Arruda and Boyce, 1993; Beatty, 2003), and the generalised structure tensor approach (Gasser et al., 2006;
olzapfel et al., 2015). There are a few other approaches, such as models that account for a distribution in the fibres’ geometrical
roperties (Rizvi and Pal, 2014) or concepts that prescribe the stretch of fibres with certain orientation in terms of the deformation
radient, and some of the latter will be reviewed in Section 2.5. Nonetheless, the very successful affine and common average stretch
odels are ideal examples to illustrate the break-up between micro- and macromechanics when applied to networks. The discrepancy

an be identified in the distributions of stretch among the fibres in the network: While the Dirac-type distribution predicted by the
verage stretch models, that concentrates all stretches at a single value, is evidently unrealistic, the mismatch of the affine model
ecomes apparent when compared with the results of discrete computational models (e.g. Chandran and Barocas, 2006; Sander
t al., 2009; Mauri et al., 2015; Domaschke et al., 2019b).

If one is interested only in the macroscopic response, one might accept this mismatch in the micromechanics of the network.
owever, the discrepancy becomes pathological if one aims at predicting the macroscopic response from microscopic structure and
roperties. Probably even more problematic is the case when – vice versa – the microscopic information inferred by the macroscopic
esponse is interpreted in terms of physical or biological processes, e.g. if the computed ‘collagen fibre’ stretches or stresses in models
f biological tissues are considered as cues for mechanobiological processes, e.g. in models of growth and remodelling (Lanir, 2017;
ia and Nguyen, 2019; Gierig et al., 2021), see also Stracuzzi et al. (2022). While the question whether the fibre kinematics in these
etwork materials is affine or non-affine is still under debate (Lee et al., 2015; Chandran and Barocas, 2006), the significance of these
imulations stands or falls with the assumed fibre kinematics. Although only few among many, the latter examples in biomechanics
howcase the need for truly multiscale approaches to model materials with network microstructures, able to capture the microscopic
fibre scale) and macroscopic behaviour. Here, we suggest to quantify the former in terms of the distribution of stretch within the
etwork, and to compute the latter as an effective average over this distribution.

An averaging concept which is appropriate for the affine and other directionality-based scale transitioning assumptions, and that
as extensively been used by nearly all material modelling communities, is based on integration over the unit sphere. Briefly, a
onstitutive equation valid for a line or surface element oriented in one direction is generalised by averaging over the set of all
irections in 2D or 3D, conveniently represented by the 𝑑-dimensional unit spheres in 2D and 3D. The approach is very intuitive,
nd both continuous and discrete averaging of structure, strain, stress or energy over the sphere have provided great advances
n modelling. Despite its success, this ‘orientational’ averaging is by far not the only possibility to compute averaged quantities
n a network and, in fact, it comes with problems: Inaccuracy, high numerical cost, and induced anisotropy (cf. e.g. Ehret et al.,
010; Verron, 2015; Itskov, 2016). Here we propose another method to calculate the averaged energy, based on the just mentioned
istribution of stretch in the network. As a basic step we represent the free energy of a network as an integral in strain-space,
hich for rod-like fibres in central force networks reduces to a one-dimensional integral over fibre stretch. This is in contrast to the

ommonly employed average over the sphere, i.e. a closed curve or surface in space. The new constitutive modelling concept for
aterials with network microstructure breaks with affinity, even though it includes this case, and provides access to both the micro-

nd macromechanics of random fibre networks. In the present work, we develop and illustrate this concept for macroscopically
sotropic networks that have a uniform fibre orientation distribution. The ground truth to calibrate and validate the model is
stablished through discrete network simulations.
2
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2. Preliminaries

2.1. Continuum mechanical fundamentals

The stress and strain states in an isotropic hyperelastic material body undergoing finite deformations in 2D or 3D space are
escribed in the common framework of rational continuum mechanics (see e.g. Truesdell and Noll, 2004), where 𝝋(𝑿, 𝑡) at fixed

time 𝑡 is a deformation that maps the position vectors 𝑿 and 𝒙 of a material point in the reference and current configuration, 0 and
𝑡, respectively. 𝐅 = 𝜕𝝋∕𝜕𝑿 is the corresponding deformation gradient with determinant 𝐽 = det(𝐅) > 0. To formulate materially
objective constitutive equations we consider the right Cauchy–Green tensor 𝐂 = 𝐅T𝐅 and define the Helmholtz free energy density
𝛹 = �̂� (𝐂), i.e. the free energy per unit referential volume as a function of the former. Based on the classical representation theorems
for isotropic tensor functions (Truesdell and Noll, 2004, Sec. 10), 𝛹 can be expressed as a function 𝛹 = �̃� (𝐼1,… , 𝐼𝑑 ) of the principal
invariants of 𝐂

𝐼1 = tr𝐂 = 𝛬1 + 𝛬2 , 𝐼2 = det𝐂 = 𝛬1𝛬2 (1)

in 2D space (𝑑 = 2) and

𝐼1 = tr𝐂 = 𝛬1 + 𝛬2 + 𝛬3,

𝐼2 =
1
2
(

𝐼21 − tr𝐂2) = 𝛬1𝛬2 + 𝛬2𝛬3 + 𝛬3𝛬1,

𝐼3 = det𝐂 = 𝛬1𝛬2𝛬3

(2)

in 3D space (𝑑 = 3), where 𝛬1, 𝛬2 (and 𝛬3) are the eigenvalues of 𝐂, i.e. the squared principal stretches.
For a hyperelastic unconstrained material the second Piola–Kirchhoff stress 𝐒, the first Piola–Kirchhoff stress 𝐏, and the Cauchy

stress 𝝈 are given as

𝐒 = 2
𝜕�̂� (𝐂)
𝜕𝐂

= 2
𝜕�̃� (𝐼1,… , 𝐼𝑑 )

𝜕𝐼𝑗

𝜕𝐼𝑗
𝜕𝐂

, 𝐏 = 𝐅𝐒 , 𝝈 = 𝐽−1𝐅𝐒𝐅T , (3)

where the Einstein summation convention applies over repeating indices. We assume that the material is in an energy- and stress-free
state in the reference configuration, i.e. 𝛹 and 𝐒 evaluated at 𝐂 = 𝐈 are equal to zero.

.2. Fibres and associated concepts in modelling

The physical fibre and the notion of a ‘‘fibre" in modelling can be very different. The former is a typically slender structure
ormed by one or several material bodies of potentially high material and geometric complexity.

A fibre network is a set of effectively connected fibres in 2D or 3D space (cf. Flory, 1944), as exemplified in Fig. 1a. Fibres in
etwork models are typically represented by relatively simple geometrical objects with reduced dimensionality, e.g. a straight line.
ccordingly, their mechanical properties are lumped into structural elements like strings, trusses, beams or columns. In appreciation
f this, the usage of the term fibre and associated terms are defined in what follows.

Let us at first interpret a fibre as a curve  of arc length 𝐺 in 2D or 3D space, that represents the abstract schematic of a physical
ibre. In line with the reduction of a physical fibre to a curve, the coupling that forms a connection between one or more of them
s associated with a reference point on the curve, that defines a cross-link. These cross-links partition the fibres into fibre segments
 ⊆ . We introduce the end-to-end vector 𝑹 = 𝐿𝑵 of a segment between two cross-links, or between a cross-link and a fibre end,
as a straight link  of length 𝐿 (Fig. 1b). The graph resulting from the assembly of the links represents the network graph (Harary,
2019). For reasons that will become clear later, we introduce the terms fibre element d and link element d for the infinitesimal
ieces that constitute a fibre and a link, respectively, so that

𝐺 = || = ∫
d||, 𝐿 = || = ∫

d||. (4)

A central force network is a network (graph) in which the links can only transmit longitudinal forces (Ostoja-Starzewski, 2007;
icu, 2011). Central force networks are often used as an approximation of real fibre networks, particularly if the fibres have high
spect ratio and are highly pliable. The fibre mechanical behaviour is then typically modelled at the link level, i.e. the (curved)
ibres’ response to deformation is lumped into the (straight) links’ response to length change.

Similar to the states of a macroscopic body, the ensemble of fibres and links of a deforming network can be captured through
onfigurations that reflect the position of the fibre and (hypothetical) link material points at time 𝑡. We therefore introduce the
eference and current configurations of the network, 0 and 𝑡, respectively, as the corresponding ensemble configurations of all
ibres or links. When describing the network in terms of links, the cumulative total length of all links is thus obtained as

𝐿tot = |0| = ∫0
d|0| (5)

nd

𝑙tot = |𝑡| = ∫𝑡
d|𝑡| (6)

n the reference and current configuration, respectively.
3
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Fig. 1. Sketch of fibre network (a) and corresponding network graph (b). In the network graph a generally curved fibre segment (grey) between two cross-links
(blue) is replaced by a straight line that forms a link.

Since for the present work neither the whole curve that represents the fibre, nor its curved segments play a particular role, in
what follows we will not distinguish between fibres and links. Without loss of generality, we will speak of fibres even if we mean
the straight links that connect the ends of a fibre segment. We emphasise, however, that in general, these terms are not equivalent,
and particular care is needed when the results of network models are transferred to networks of physical fibres.

2.3. Fundamental aspects of probability theory

Next we introduce concepts and notations adapted from the fundamentals of probability theory (see e.g. Durrett, 2019).
Let 𝛺 be a sample space,  a family of events (a family of subsets of 𝛺) and 𝑃 a probability measure. The probability measure

is normalised such that ∫𝛺 d𝑃 (𝜔) = 1, where 𝜔 is an elementary event. The probability of an event 𝐴 ∈  is 𝑃 (𝐴) = ∫𝐴 d𝑃 (𝜔) and
takes a value in [0, 1]. Let us for example assume that we randomly draw one of 2 straws of different lengths that form the sample
space 𝛺. Each of the 2 choices would represent an elementary event 𝜔, while  would also comprise the empty and complete sets,
i.e. any or none of the straws. 𝑃 (𝐴) thus tells us the probability of the event 𝐴, e.g., of drawing the short straw.

Let 𝑍 be a real valued random variable associated with an elementary event 𝜔. In our example, we might associate this with
the length of the straws. The 𝑘th moment of the random variable 𝑍 with respect to a reference point 𝑍0 is

𝜇𝑍0 ,𝑘 = E
[

(𝑍 −𝑍0)𝑘
]

= ∫𝛺
(𝑍(𝜔) −𝑍0)𝑘 d𝑃 (𝜔) , (7)

where E is the expectation operator. The moment 𝜇𝑍0 ,0 = 1 reflects the normalisation of the probability measure. The moment
𝜇0,1 = E[𝑍] = �̄� is known as the expectation of 𝑍 which is the average of 𝑍 evaluated over the whole sample space 𝛺. Further
moments are equivalent to the variance (𝜇�̄�,2 = Var(𝑍)), skewness (𝜇�̄�,3) and kurtosis (𝜇�̄�,4) to name a few, which are frequently
used to describe the shape of a probability distribution.

The (probability) distribution of 𝑍 denoted by 𝑃𝑍 satisfies

𝑃𝑍 (𝐵) = 𝑃 ({𝜔 ∶ 𝑍(𝜔) ∈ 𝐵}) (8)

or, equivalently in integral notation

∫𝐵
d𝑃𝑍 = ∫{𝜔∶𝑍(𝜔)∈𝐵}

d𝑃 (𝜔) , (9)

for any interval 𝐵 ⊆ R. In our example, 𝐵 contains the lengths of one, both or none of the straws, and correspondingly, 𝑃𝑍 (𝐵) stands
for the probability of drawing a straw of any length in 𝐵.

The cumulative distribution function can be expressed as CDF(𝑧) = 𝑃𝑍 (𝑍 ≤ 𝑧). If 𝑍 has a regular distribution, i.e. CDF(𝑧) is
absolutely continuous,

∫𝐵
d𝑃𝑍 = ∫𝐵

𝑝𝑍 (𝑧)d𝑧 , (10)

where 𝑝𝑍 = dCDF∕d𝑧 (almost everywhere) is the probability density function of the distribution 𝑃𝑍 . To complete our example, the
CDF(𝑧) provides the probability to draw a straw shorter than or equal to length 𝑧.
4
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2.4. Homogenisation of a fibre network

A homogenised fibre network is a continuous material whose behaviour at each material point mirrors the averaged response
f a representative elementary volume (RVE)1 comprising the microstructure of the fibre network (Ostoja-Starzewski, 2006; Hill,

1963; Stylianopoulos and Barocas, 2007). This definition embodies a scale transition from the micro- to the macro-scale. At each
macroscopic material point the macroscopic state is characterised by one elementary state of deformation and stress. The former
is characterised by the deformation gradient, and potentially higher-order gradients (e.g. Berkache et al., 2017). For simplicity we
assume in the following that the RVE is identically subjected to the corresponding affine boundary conditions prescribed by the first
order deformation gradient 𝐅.

The RVE serves as a ‘container’ of the microstructure, and for fibre network RVEs, it is not continuously filled with material.
herefore, it is reasonable to distinguish between the reference and current configurations 0 and 𝑡 of the RVE, and the reference
nd current configurations 0 and 𝑡 of the material or fibres it contains. The corresponding 𝑑-dimensional volumes are denoted
y |0| or |𝑡|, and |0| or |𝑡|, respectively. They refer to area in 2D, the common volume in 3D and, since we consider fibres as
ne-dimensional objects, the fibre ‘volume’ is given by the fibre length as introduced in Section 2.2.

.4.1. Free energy
The (generalised) Hill–Mandel condition (Liu and Reina, 2016; Blanco et al., 2016; Roca et al., 2018) requires energetic

quivalence between the scales. The equivalence of the (total) Helmholtz free energy ℱ of a homogenised material point and the
underlying RVE, i.e. the fibre network within this RVE, reads

ℱ = |0|𝛹 = ∫0
dℱ = ∫0

𝜓 d|0| , (11)

where 𝛹 is the (homogenised) Helmholtz free energy defined per unit referential RVE volume |0| and 𝜓 is the free energy defined
er unit referential fibre volume (i.e. length) |0|.

In what follows we focus on the total fibre length |0| of a network RVE and not the volume |0| of its spatial 2D/3D container,
ven if we emphasise that the two are directly related by a scalar factor that reflects how much fibre material is contained in the
VE. Therefore, in view of Eq. (11), the free energy

ℱ = |0|𝛹 = |0|�̄� (12)

is expressed in terms of the average

�̄� = 1
|0| ∫0

𝜓 d|0| (13)

and this �̄� is identified as the expectation of 𝜓 within the RVE, i.e.

�̄� = E[𝜓] . (14)

Here and henceforth the expectation and other statistical quantities at a later stage are always evaluated over the RVE. We will
henceforth assume that the fibre free energy is levelled to zero in the reference state. Therefore, if the network is not prestrained,
all fibre elements are energy-free, i.e. 𝜓 = 0, and therefore �̄� = 0.

2.4.2. Stress
Let 𝐅 represent the effective macroscopic deformation gradient and thus describe the affine RVE boundary conditions. Consid-

eration of Eq. (12) in Eq. (3) then yields the effective macroscopic Cauchy stress

𝝈 = 2𝐽−1𝐅 𝜕𝛹
𝜕𝐂

𝐅T = 2
|0|
|𝑡|

𝐅 𝜕�̄�
𝜕𝐂

𝐅T , (15)

where we have used that 𝐽 |0| = |𝑡|. Eq. (15) thus establishes a relation between the expression for the averaged free energy �̄�
and the macroscopic stress 𝝈 corresponding to the macroscopic deformation determined by 𝝋 at fixed time 𝑡.

For a direct determination of the homogenised stress from within the RVE the energetic equivalence expressed in Eq. (11) is key.
t implies that the virtual work of the RVE equals the pointwise virtual work on the macro-scale (Blanco et al., 2016; Roca et al.,
018), and thus gives rise to two ways of computing the homogenised stress from the discretised values of force and position of the
etwork RVE, as shown in the next two paragraphs. The first one applies to networks in equilibrium, the second one to networks
hose fibres are subject to forced deformations that lead to non-vanishing forces at their cross-links.

1 In view of the often statistical nature of an RVE, this is sometimes also called statistical volume element (SVE), see e.g. (Ostoja-Starzewski, 2006).
5
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2.4.3. RVEs in equilibrium
If the RVE is in equilibrium, its virtual work equals the virtual work done by the external forces acting on the RVE boundary.

onsequently, this case requires (cf. Blanco et al., 2016)

∫𝜕𝑡
(d𝒇 ⋅ 𝛿𝒙) = |0|𝛿𝛹 , (16)

where d𝒇 denotes a differential force vector and 𝛿𝒙 an arbitrary virtual displacement. Since the RVE is subjected to affine boundary
conditions 𝐅, 𝛿𝒙 = 𝛿𝐅𝑿 and thus

∫𝜕0
(d𝒇 ⊗𝑿) ∶ 𝛿𝐅 = |0|𝛿𝛹 . (17)

Since the 1st Piola–Kirchhoff stress tensor 𝐏 satisfies 𝐏 ∶ 𝛿𝐅 = 𝛿𝛹 , and 𝝈 = 𝐽−1𝐏𝐅T, one finds

𝐏 = 1
|0| ∫𝜕0

(d𝒇 ⊗𝑿) , 𝝈 = 1
|𝑡| ∫𝜕𝑡

(d𝒇 ⊗ 𝒙) . (18)

For discrete networks, the RVE boundary reduces to a finite set of points  at which the fibres cross the RVE boundary. Hence (18)
can be evaluated according to the well known result (see e.g. Alamé and Brassart, 2020)

𝝈 = 1
|𝑡|

∑

𝑖∈
𝒇 𝑖 ⊗ 𝒙𝑖 , (19)

as typically applied in discrete modelling approaches (e.g. Stylianopoulos and Barocas, 2007; Zündel et al., 2017).

2.4.4. RVEs in non-equilibrium
Giving up the internal equilibrium requirement, the scale equivalence of the virtual work resulting from Eq. (11) reads (cp.

Blanco et al., 2016)

∫0
𝛿𝜓 d|0| = |0|𝛿𝛹 . (20)

This approach is particularly relevant for the extraction of the homogenised stresses in network RVEs whose fibres were enforced to
deform affinely (cf. Chandran and Barocas, 2006). In this case the fibre deformation, and therefore the length-specific fibre energy
𝜓 is completely defined in terms of the deformation gradient. The chain rule thus implies 𝛿𝜓 = 𝜕𝜓∕𝜕𝐅 ∶ 𝛿𝐅 and 𝛿𝛹 = 𝐏 ∶ 𝛿𝐅 so that

𝐏 = 1
|0| ∫0

𝜕𝜓
𝜕𝐅

d|0| , 𝝈 = 1
|𝑡| ∫0

𝜕𝜓
𝜕𝐅

𝐅T d|0| , (21)

where the relation 𝝈 = 𝐽−1𝐏𝐅T was used. Finally, for a central force network the fibre free energy can be expressed as a function
𝜓𝜆 such that 𝜓 = 𝜓𝜆◦𝜆, in terms of the axial stretch 𝜆, which is in turn equated with the affine stretch ‖𝐅𝑵‖ of the link elements.
Application of the chain rule of differentiation therefore yields

𝝈 = 1
|𝑡| ∫0

𝜕𝜓𝜆
𝜕𝜆

𝒏⊗ 𝒏 𝜆 d|0| , (22)

where 𝒏 denotes the current orientation unit vector of a fibre. In the discrete case Eq. (22) reduces to

𝝈 = 1
|𝑡|

∑

f∈F
𝜓 ′
𝜆(𝜆f )𝒏f ⊗ 𝒏f 𝜆f𝐿f , (23)

hich coincides with the well known discrete forms of the structural or affine microsphere models (cf. Lanir, 1979; Miehe et al.,
004).

.5. Unified representation of common continuum models for fibre networks

The vast majority of common existing continuum models for homogenised fibre networks are based on directional averaging
ithin the RVE. Accordingly, the averaged free energy of a central force network with 𝜓 = 𝜓𝜆◦𝜆𝑵 can be written in the form

Hashlamoun and Federico, 2017)

�̄� = ∫
𝜓𝜆

(

𝜆𝑵 (𝒛)
)

d𝑃𝑵 (𝒛) , (24)

here 𝑃𝑵 is the fibre orientation distribution2 and  denotes the unit sphere. In the 3D case the direction 𝑵 can be parametrised
ith two spherical angles 𝜙 ∈ [0, 2𝜋) and 𝜃 ∈ [0, 𝜋] and thus, assuming a fibre orientation probability density 𝜌(𝜙, 𝜃), ∫ d𝑃𝑵 =
∕(4𝜋) ∫ 𝜋0 ∫ 2𝜋

0 𝜌(𝜙, 𝜃) sin(𝜃) d𝜙 d𝜃. The fundamental assumption of this approach is that the fibre element stretch 𝜆𝑵 is uniquely
etermined in terms of the initial orientation of the fibre and the macroscopic deformation. In general, this relation (𝐅,𝑵) ↦ 𝜆𝑵

2 Here 𝑵 can be understood as a generalisation of the standard real valued random variable introduced in Section 2.3.
6
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can establish an affine or non-affine relation between 𝑵 and 𝜆𝑵 . To highlight the extent to which the representation (24) of the
free energy in terms of the orientational average has impacted the modelling of fibre networks and similar fibrous materials, we
briefly review a selection of recent models which can be stated in this form. The discussion of applicability and limitations of these
models is beyond the scope of this work.

2.5.1. Structural approach and affine microsphere
The particular choice of the affine model with element stretch

𝜆𝑵 = 𝜆aff (𝑵) ∶=
√

𝑵 ⋅ 𝐂𝑵 (25)

rings Eq. (24) in line with the concepts of structural, full network and affine microsphere models (e.g. Lanir, 1979, 1983; Treloar
t al., 1979; Oosterwyck et al., 2013). Eq. (25) represents the most common and fundamental assumption in a variety of fields.

.5.2. Tension–compression switches
A suitable choice of 𝜓𝜆 allows establishing a ‘tension–compression switch’ (Holzapfel and Ogden, 2015): One sets 𝜓𝜆 to zero

or 𝜆𝑵 < 1. It is obvious from Eq. (24) that, when switching off fibres under compression, care must be taken to account for the
mount of fibres that are still contributing to the free energy. The domain of integration therefore changes to only a subdomain of
he unit sphere corresponding to those 𝑵 for which 𝜆𝑵 ≥ 1 (cp. Li et al., 2016). However, for fibre free energy functions that satisfy
𝜓𝜆(1) = 0, the switch is energetically equivalent to a piecewise redefinition of 𝜆𝑵 as

𝜆𝑵 =

{

𝜆aff (𝑵) =
√

𝑵 ⋅ 𝐂𝑵 if
√

𝑵 ⋅ 𝐂𝑵 ≥ 1 ,
1 else.

(26)

.5.3. Power series representations
Hashlamoun et al. (2016) studied different approaches to evaluate or approximate the contribution of statistically oriented fibres

o the mechanical response of reinforced materials formulated in the form (24). We resume one of their representations (cf. Section
.3 in Hashlamoun et al., 2016) that we here interpret as a special choice of 𝜆𝑵 , where

𝜆𝑵 =
𝑛
∑

𝑘=0

⟨

Q𝑘(𝐂),𝑵⊗2𝑘⟩ . (27)

Therein ⟨⋅, ⋅⟩ denotes a suitable scalar product between two tensors of arbitrary but equal order, Q𝑘 are 2𝑘-th order tensor-valued
tensor functions of 𝐂 (Q0 is scalar-valued) and

A⊗𝑘 = A⊗⋯⊗ A
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑘 times

, 𝑘 ≥ 1, A⊗0 = 1 ∈ R, (28)

for any tensor A of arbitrary order, including also vectors as in Eq. (27). For convenience, we have used the same symbol ‘⊗’ to
denote a tensor product between tensors of arbitrary order. Hashlamoun et al. (2016) also discuss the case where Q𝑘 has a special
form, so that 𝜆𝑵 becomes an 𝑛th order polynomial of the affine square stretch

𝜆𝑵 =
𝑛
∑

𝑘=0

⟨

𝑞𝑘(𝐂)𝐂⊗𝑘,𝑵⊗2𝑘⟩ =
𝑛
∑

𝑘=0
𝑞𝑘(𝐂)𝜆2𝑘aff (𝑵) . (29)

They showed that, if also 𝜓𝜆 is a polynomial 𝑚 of degree 𝑚, insertion of the composition 𝜓𝜆◦𝜆𝑵 into the integral (24) leads to an
exact result of the form

�̄� =
𝑚𝑛
∑

𝑘=0
𝑐𝑘(𝐂)∫

(𝒛 ⋅ 𝐂𝒛)𝑘 d𝑃𝑵 (𝒛) =
𝑚𝑛
∑

𝑘=0
𝑐𝑘(𝐂)

⟨

𝐂⊗𝑘,H𝑘
⟩

, (30)

where

H𝑘 = ∫
𝒛⊗2𝑘 d𝑃𝑵 (𝒛) (31)

are even order structure or ‘fabric’ tensors (Kanatani, 1984; Advani and Tucker, 1987).

2.5.4. Non-affine reorientation
Raina and Linder (2014) aimed at modelling non-affine reorientation of fibres in a network towards the direction of ‘maximum

loading’. To this end, they introduced a function

𝑵∗ = 𝜒𝑵 (𝑵 ;𝐂) , (32)

which represents an evolved referential direction 𝑵∗, from which the fibre stretch 𝜆𝑵 in Eq. (24) follows as

𝜆𝑵 =
√

𝑵∗ ⋅ 𝐂𝑵∗ . (33)

The theory is presented for 2D in Raina and Linder (2014), and 𝜒𝑵 is specified by an evolution equation that drives the evolved
referential fibre direction 𝑵∗ to the direction of the maximal principal stretch, i.e. the eigenvector associated with the maximum
eigenvalue of 𝐂.
7
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2.5.5. Average stretch models
Average stretch models are obtained by setting 𝜆𝑵 equal to an arbitrary average stretch for all directions 𝑵 . Accordingly, 𝜓𝜆(𝜆𝑵 )

becomes independent of fibre orientation so that the integration over  in (24) becomes trivial. The average can, e.g., be expressed
in terms of a 𝑝-root average (cf. Miehe et al., 2004)

𝜆𝑵 = E
[

(𝑵 ⋅ 𝐂𝑵)𝑝∕2
]1∕𝑝 =

(

∫
[𝒛 ⋅ 𝐂𝒛]𝑝∕2 d𝑃𝑵 (𝒛)

)1∕𝑝
. (34)

For generally non-uniform fibre distributions, the particular choice 𝑝 = 2 comprises the ‘‘splay’’ or ‘‘dispersion" tensor con-
cepts (Driessen et al., 2003; Freed et al., 2005; Gasser et al., 2006; Holzapfel et al., 2015), for which

𝜆𝑵 =
√

E[𝑵 ⋅ 𝐂𝑵] =
(

𝐂 ∶ ∫
𝒛⊗ 𝒛 d𝑃𝑵 (𝒛)

)1∕2
=
√

𝐂 ∶ H1 . (35)

The special case of a uniform distribution leads to isotropic material properties and provides the well-known results of the eight-chain
model (Arruda and Boyce, 1993; Beatty, 2003) in 3D (𝑑 = 3) and the planar four-chain counterpart (Jerry Qi et al., 2006) in 2D
(𝑑 = 2) that (see also Ehret, 2015)

𝜆𝑵 =
√

E[𝑵 ⋅ 𝐂𝑵] =
√

𝐼1
𝑑
. (36)

.5.6. The maximal advance path concept
Tkachuk and Linder (2012) used constrained minimisation to compute the fibre stretch

𝜆𝑵 =
√

𝒚(𝑵) ⋅ 𝒚(𝑵) = ‖𝒚(𝑵)‖ (37)

as the length of the current fibre stretch vector 𝒚. In particular the averaged free energy (24) was minimised under the constraint
that sufficiently long ‘paths’ in the network, formed by those fibres which provide the maximum advance in a certain macroscopic
direction aligned with 𝑵 , follow the affine deformation of vectorial line elements. The approach bears on a number of assumptions,
but elaborating the model for the special case of isotropic tetrafunctional networks (networks with coordination number 𝑧 = 4 at
each cross-link) Tkachuk and Linder (2012) suggested the formulation of the problem as follows

minimise
𝒚 ∫

𝜓𝜆
(

‖𝒚(𝒛)‖
)

d𝑃𝑵 (𝒛)

subject to ∫
𝒚(𝒛)⊗ 𝒛 d𝑃𝑵 (𝒛) = 𝐅 ,

(38)

where 𝑃𝑵 is uniform, and their result has been expressed in terms of the notation used in the present work.

3. A novel continuum approach — the distribution of stretch

The energy averaging over the unit sphere in the common approach (24) requires a functional relationship between the initial
orientation 𝑵 of a fibre element and its current stretch 𝜆, which does generally not exist in random fibre networks as indicated by
computational studies (Chandran and Barocas, 2006; Stracuzzi et al., 2022). As will be shown in what follows such a relation is not
required for the calculation of the averaged energy in general, and its necessity in the common approach is merely a consequence
of the specific sample space. In the present section, we therefore present an alternative way of forming this average, which gives
rise to a new approach for developing constitutive models of random fibre network materials.

3.1. Expectation of the free energy

Let the free energy of a fibre network be entirely contained in the deformed fibres. The free energy of a fibre network RVE is
therefore the expectation of the free energy of a (deformed) fibre element (Eq. (14)). The expectation, in turn, is the simple average
of the free energies of all the fibre elements within the RVE. Differentiating between different states of deformed fibre elements,
each one corresponding to an elementary event 𝜔, one can express Eq. (14) as

�̄� = E[𝜓] = ∫𝛺
𝜓(𝜔) d𝑃 (𝜔) , (39)

where 𝛺 contains all the different states of deformed fibre elements and 𝑃 is the probability measure reflecting the probability that
certain states of deformed fibre elements (in a subset of 𝛺) occur.

Since the total free energy of the network RVE is exclusively determined by the history of deformation of the contained fibre
material, it stands to reason to associate the elementary event 𝜔 with random variables that characterise this history. In general
these can be different quantities associated with the kinematic state of a fibre including, e.g. its curvature or twist. In a central force
network, however, the state of deformation that leads to elastically stored energy is completely defined in terms of the (elastic) fibre
element stretches 𝜆 within the network, i.e. 𝜓 = 𝜓𝜆◦𝜆. A relation between 𝜆 and 𝑵 as in Eq. (24), however, is unnecessary, and as
a direct consequence of Eq. (39) the expectation can be expressed as

�̄� = E[𝜓] = ∫R
𝜓𝜆(𝑧) d𝑃𝜆(𝑧) , (40)
8
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where the distribution 𝑃𝜆 is defined by 𝑃𝜆((0, 𝑧]) = 𝑃 [{𝜔 ∶ 𝜆(𝜔) ≤ 𝑧}] (see e.g. Durrett, 2019), which represents the probability
f finding deformed fibre elements with a stretch smaller than 𝑧. It is emphasised that 𝑃𝜆 describes the probability distribution of
tretches associated with fibre elements, i.e. fibre material, which is in general different from the distribution of stretches among
he fibres. This subtlety is important since it gives different weight to fibres of different lengths stretched by the same amount 𝜆.
oncomitant with the use of the element stretch 𝜆 as the random variable, the corresponding sample space becomes the stretch
pace, that generally coincides with the set of positive reals R>0, unless additional constraints apply that limit the stretches to a
ubset of R>0.

It is worth noting that Eq. (40) is a universal relation for a central force network. This is in contrast to Eq. (24), that only applies to
subclass of central force networks for which a function (𝐅,𝑵) ↦ 𝜆𝑵 exists. The simplification that comes with the omission of this

elation and the reduced dimension of the integration domain is not without cost: While the dependence on macroscopic deformation
s entirely contained in 𝜆𝑵 and the distribution 𝑃𝑵 represents the initial fibre orientations in Eq. (24), it is the probability measure
𝜆 that changes with macroscopic deformation in Eq. (40). The description of a specific material behaviour thus not only requires to
efine the free energy 𝜓𝜆 per unit reference length of the fibre, but also an additional constitutive assumption 𝐅 ↦ 𝑃𝜆 that determines
he distribution of element stretch in terms of 𝐅 or related measures of strain. We will see in the course of this paper, however, that
or reasonable choices of 𝜓𝜆, E[𝜓] can be calculated exactly, or at least with high accuracy, with only limited information on 𝑃𝜆.
efore this problem is addressed in Section 4, an intermediate example illustrates the concept in Section 3.2.

emark 1 (Probability Density Function). If the cumulative distribution function of 𝜆, i.e. CDF𝜆(𝑧) = 𝑃𝜆(𝜆 ≤ 𝑧) is absolutely continuous
t can be characterised by the probability density (cf. Section 2.3)

𝑝𝜆(𝑧) =
dCDF𝜆
d𝑧

(𝑧) . (41)

In this case, Eq. (40) can be expressed as

�̄� = E[𝜓] = ∫R>0
𝜓𝜆(𝑧) 𝑝𝜆(𝑧) d𝑧 (42)

following basic arguments of probability theory (e.g. Durrett, 2019).

Remark 2 (Piece-Wise Defined Energy Functions). In case of piece-wise defined energy functions 𝜓𝜆 on intervals ℐ , e.g. ℐ =
{(0, 𝑎1], (𝑎1, 𝑎2],… , (𝑎𝑛,∞)} for arbitrary 0 < 𝑎1 < 𝑎2 <… < 𝑎𝑛 < ∞, which together without overlaps represent R>0, the linearity of
the integral allows to write

�̄� = E[𝜓] =
∑

𝐵∈ℐ
∫𝐵

𝜓𝜆(𝑧) d𝑃𝜆(𝑧) . (43)

An important special case concerns the neglect of the energetic contribution of fibres under compression, which is a typical
assumption in the mechanics of soft biological tissues, where the slender collagen fibres are assumed to bear load only under tension
(see e.g. the discussion in Holzapfel and Ogden, 2015). Hence, with the intervals ℐ = {(0, 1], (1,∞)} and by setting 𝜓𝜆(𝑧) = 0 on
(0, 1], one finds from (43)

�̄� = E[𝜓] = ∫(1,∞)
𝜓𝜆(𝑧) d𝑃𝜆(𝑧) , (44)

and it turns out that such ‘tension–compression switches’ merely change the domain of integration from R>0 to (1,∞).

Remark 3 (Affine Distribution as a Special Case). Eq. (40) includes the affine case, which is characterised by the affine stretch
distribution 𝑃 aff

𝜆 , that satisfies

∫R>0
𝜓𝜆(𝑧) d𝑃 aff

𝜆 (𝑧) = ∫
𝜓𝜆

(

𝜆aff (𝒛)
)

d𝑃𝑵 (𝒛), (45)

where 𝜆aff (𝒛) =
√

𝒛 ⋅ 𝐂𝒛 was chosen according to (25). We note that d𝑃 aff
𝜆 (𝑧) assigns non-zero weights only if 𝑧 falls within the

losed interval between the smallest (𝜆𝑑) and largest principal stretch (𝜆1). This reduces the integration domain of the left hand side
ntegral to [𝜆𝑑 , 𝜆1]. We omit a detailed discussion of this important special case, which will be addressed in Part II of this work.

emark 4 (Average Stretch Models as a Special Case). Eq. (40) includes the average stretch models, that can be characterised by the
irac distribution 𝜂, so that

�̄� = E[𝜓] = ∫R>0
𝜓𝜆(𝑧) d𝜂�̃�(𝑧) =∶ ∫R>0

𝜓𝜆(𝑧) 𝛿(𝑧 − �̃�) d𝑧 , (46)

here �̃� is an arbitrarily defined average stretch, e.g. based on the 𝑝-root average (34), at which all stretches are assumed to be
oncentrated. Understanding that the Dirac distribution has no density function (cf. Remark 1), the last equivalence in terms of the
irac impulse 𝛿 in Eq. (46) may be accepted only as a common abuse of notation. If 𝜓𝜆(𝜆) is convex and �̃� is the simple average,

.e. 𝑝 = 1 so that �̃� = E[𝜆], Jensen’s inequality (see e.g. Durrett, 2019, Eq. 46 therein) states
9
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Fig. 2. Undeformed (a) and deformed (b) DNM RVE and extracted true and affine element stretch histograms (c) as well as relationship between initial fibre
element orientation and stretch (d). The deformed state of deformation is characterised by the two principal stretches 𝜆1 and 𝜆2. The affine deformation is not
shown. The boundary points of the DNM RVE are highlighted in (a). The stretch orientation relationship (d) is indicated by points of different intensities, where
each point is associated with one fibre and has an intensity proportional to the fibre length.

Insertion of (46) provides equality in Eq. (47). Hence the Dirac-type stretch distribution (and the 𝑝 = 1 average stretch model)
provides a lower bound for the free energy of the network.

Remark 5 (Path-Dependent Networks). History and path-dependent mechanical behaviour of fibre networks can be due to inelastic
fibre properties, or result from local instabilities in networks of elastic fibres (cf. Gillman et al., 2018). Although this work focuses
on perfectly elastic central force fibre networks, Eq. (40) is not restricted to this case. In order to consider fibres with inelastic
properties, the energetically relevant quantity reduces to the elastic part of the fibre stretch 𝜆 and the free energy 𝜓𝜆 should be
interpreted accordingly, whereas network instabilities could be expressed in terms of a path-dependence of the distribution 𝑃𝜆.

3.2. An intermediate example

For illustration, we consider a discrete 2D network RVE as the one shown in Fig. 2a. Details of the RVE generation will follow
later in Section 5. Given that the fibres constitute a discrete central force network, the homogenised free energy of the RVE subject
10
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to homogeneous boundary conditions (Fig. 2b) follows from Eq. (14) as

�̄� = E[𝜓] =
∑

f∈F
𝜓f

𝐿f
𝐿tot

=
∑

f∈F
𝜓𝜆(𝜆f )

𝐿f
𝐿tot

, (48)

where F is the finite set of all fibres in the network, 𝜓f and 𝐿f are the energy and length of a certain member of that set and
tot represents the sum of all individual fibre lengths. The right-hand side of Eq. (48) is equivalent to a discrete evaluation of
q. (40), and one notes that all individual fibre free energy contributions are weighted proportionally to the fibre length. Clearly,
ividing these fibres into elements of equal (infinitesimal) length the contribution of each element has the same weight. Collecting
he stretches into bins the homogenised free energy (48) can be approximated as

�̄� ≈
∑

b∈B
𝜓𝜆(𝜆b)

𝐿b
𝐿tot

, (49)

where 𝜆b is the representative stretch of a certain bin in B and 𝐿b is the sum of lengths of fibres whose stretch falls into the interval
[𝜆b, 𝜆b + 𝛥𝜆) of that bin. The approximate nature of Eq. (49) is merely a consequence of the finite bin width; virtually, if the bin
width tends to zero the approximation error vanishes and the weights 𝐿b∕𝐿tot tend to d𝑃𝜆(𝜆b). Assigning to each bin its specific
weight 𝐿b∕𝐿tot , approximate stretch distributions can be extracted from DNM simulations, using

𝑃𝜆([𝜆b, 𝜆b + 𝛥𝜆)) =
𝐿b
𝐿tot

. (50)

Representing Eq. (50) in a normalised bin plot (Fig. 2c), where the cumulative bin area equates to 1, yields an approximate
distribution density (10) as 𝑝𝜆 ≈ 𝐿b∕(𝛥𝜆𝐿tot ) for each bin.

In addition to the extracted (approximate) true distribution density, Fig. 2c also shows the corresponding (approximate)
hypothetical distribution density that is obtained when subjecting the fibres to affine kinematics (cf. Chandran and Barocas, 2006;
Zündel et al., 2017; Stracuzzi et al., 2022). This reveals the large discrepancy between the true microkinematics within the DNM
and the affine assumption, and thus highlights the need for a refined approach.

Finally, Fig. 2d shows the relationship between the initial fibre orientation, in 2D uniquely specified by the angle 𝜙, and the
stretches. One observes that for each initial orientation there is not only one stretch but a whole set of stretches, characterised by
its own distribution (cf. Chandran and Barocas, 2006; Stracuzzi et al., 2022). The plot thus points at the intrinsic problem of the
directional approach (24) mentioned above, viz. that the relation 𝑵 ↦ 𝜆 is not unique. At the same time, Fig. 2c illustrates the
basic ingredient 𝑃𝜆, respectively d𝑃𝜆 = 𝑝𝜆 d𝜆, of the here proposed method.

Remark 6 (Stretch and Strain Distributions). We emphasise once again that several authors have presented histograms for the
distribution of axial stretch or strain among the fibres obtained in DNM simulations (e.g. Chandran and Barocas, 2006; Sander
et al., 2009; Mauri et al., 2015; Zündel et al., 2017; Domaschke et al., 2019b), which all indicate similar characteristics in terms
of clear deviations from the affine case. However, it is important to bear in mind that 𝑃𝜆, resp. d𝑃𝜆 = 𝑝𝜆 d𝜆, that defines �̄� in our
theory, and that is shown in the histogram of Fig. 2c, describes the distribution of fibre element stretch, i.e. each stretch is weighted
by the amount of fibre volume (length) that experiences this stretch (cf. Stracuzzi et al., 2022). This difference to the previously
reported distributions is key for the theory to hold. Moreover we remark that others have used the term ‘stretch distribution’ with
different meaning, e.g. Linder et al. (2011) in a transient network theory of rubber viscoelasticity.

4. Essential constitutive relation

Let us recall that the dependence of the averaged free energy (40) on macroscopic deformation is entirely contained in the
stretch distribution 𝑃𝜆. Physical restrictions typically imposed on the constitutive law for averaged free energy therefore translate
to the essential constitutive relation 𝐅 ↦ 𝑃𝜆 of the theory. More generally, in a path-dependent network (Remark 5), the principle of
determinism (Truesdell and Noll, 2004, Sec. 14) implies that the averaged free energy, and thus 𝑃𝜆 at time 𝑡, may depend on the
entire deformation history 𝐅(𝜏) for 𝜏 ≤ 𝑡, and the second law of thermodynamics may impose additional restrictions to guarantee
that the dissipation inequality is satisfied (Truesdell and Noll, 2004, Secs. 79, 96). At the same time, the principle of material frame
indifference (Truesdell and Noll, 2004, Sec. 14) suggests the use of reduced formulations, and to express the constitutive relations
in terms of materially objective measures of strain, such as the right Cauchy–Green tensor 𝐂 and its history 𝐂(𝜏), respectively.

Within the bounds of these basic restrictions the theory leaves wide freedom, and the problem becomes analogous to the common
task to identify the relation between strain and Helmholtz free energy {𝐂(𝜏); 𝜏 ≤ 𝑡} ↦ 𝛹 in a solid continuum. Essentially different,
however, is the meaning of these relations: While the latter defines the free energy of the continuum, i.e. a macroscopic energetic
(and thus kinetic) material characteristic, the new approach defines the kinematic macro–micro transition, and the kinetic properties
are inherited from the material properties of the fibres, which we assume to be known.

4.1. Strategies to define the macro–micro transition

For the development of this constitutive relation, we consider a network RVE whose response to a history of homogeneous
boundary conditions, given in terms of 𝐅, defines the material response at the macroscopic material point with referential position
𝑿 (Section 2.4).
11
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The stretch distribution of a fibre network RVE at current time 𝑡 is a result of the fibre law, i.e. fibre free energy function, the
etwork topology, i.e. the arrangement and connection of the individual fibres, and the boundary conditions of the RVE expressed
.g. through {𝐅(𝜏); 𝜏 ≤ 𝑡}. In DNM simulations, this distribution results from minimisation of the potential energy of the system

and the balance of forces at the cross-links. To replace such simulations, this distribution needs to be defined, which sets the new
playground for constitutive modelling. At least two strategies suggest themselves to address this problem:

Phenomenological models can be formulated, which define a functional relationship between the stretch distribution 𝑃𝜆( ⋅ ;𝑿, 𝑡) at
the macroscopic point 𝑿 at time 𝑡 and the deformation history expressed e.g. as

H ∶ 𝑿, {𝐂(𝑿, 𝜏); 𝜏 ≤ 𝑡} ↦ 𝑃𝜆( ⋅ ;𝑿, 𝑡) . (51)

his option is analogous to the phenomenological modelling of macroscopic continua, where the empiric behaviour of the material
s captured by a set of constitutive equations that satisfy the basic principles of thermodynamics and constitutive theory. In the
lastic case, Eq. (51) reduces to

ℎ ∶ 𝑿,𝐂(𝑿, 𝑡) ↦ 𝑃𝜆( ⋅ ;𝑿, 𝑡) . (52)

Clearly such approaches need calibration against a ground truth, i.e. the actual distributions in a ‘real’ deforming network.
Experimentally, such data is hardly accessible. Computer simulations of DNM, however, allow performing virtual experiments that
provide the required information. This approach will be elaborated later for elastic networks in Sections 5 and 4.4 to provide a
proof of concept.

Constrained minimisation, as used in many other fields of homogenisation (Castañeda and Suquet, 1997; Miehe et al., 2004)
appears as a promising strategy to avoid the costly generation of computational ground truth. Applied to the current problem, the
free energy (40) need be minimised, while one or several equations 𝛾eq or inequalities 𝛾ineq constrain the solution. These constraints
should depend on the network’s characteristics and the macroscopic boundary conditions and need to be formulated in terms of the
stretch distribution 𝑃𝜆, so that the problem reads

minimise
𝑃𝜆 ∫R>0

𝜓𝜆(𝑧) d𝑃𝜆(𝑧)

subject to 𝛾eq,𝑖(𝑃𝜆;𝐅) = 0 , 𝑖 = 1,… , 𝑚,

𝛾ineq,𝑗 (𝑃𝜆;𝐅) ≤ 0 , 𝑗 = 1,… , 𝑛.

(53)

Without such constraints, this minimisation problem yields the trivial solution that all stretches take a value of 1, so that 𝑃𝜆 = 𝜂1. The
key problem of defining the macro–micro transition in this approach is thus shifted to the problem of finding suitable constraints
that establish the connection between the macroscopic and microscopic worlds.

4.2. Representation of 𝑃𝜆: Microkinematic variables

Independent of the approach used to determine the distribution 𝑃𝜆 for a given macroscopic deformation 𝐅, it needs to be represented
in a suitable functional form. The ‘parameters’ of the distribution that carry the information on the macroscopic deformation 𝐅 and
possibly its history, represent microkinematic variables. For example, one may select a model distribution, and capture the deformation
dependence in its shape parameters. Alternatively, one may use a set of moments of the distribution (cf. Eq. (7)) as strain dependent
quantities, which progressively narrow down the characteristics of the distribution with increasing number. It will be shown in the
next section that the number of moments required to exactly capture the network free energy (40) depends on the form of the fibre
free energy function 𝜓𝜆.

4.3. Special representation for analytic fibre laws

If the fibre free energy function 𝜓𝜆 is analytic on the domain of 𝑃𝜆 (typically R>0), the averaged free energy �̄� can be represented
s a weighted sum of the Taylor series coefficients of 𝜓𝜆, where the weights are given by the moments of the stretch distribution.
o prove this, we expand the analytic function 𝜓𝜆 into its Taylor series around 𝜆0 and apply Fubini’s theorem to change the order

of summation and integration, i.e.

�̄� = E[𝜓] = E

[ ∞
∑

𝑘=0

1
𝑘!
𝜕𝑘𝜓𝜆
𝜕𝜆𝑘

|

|

|

|𝜆0
(𝜆 − 𝜆0)𝑘

]

=
∞
∑

𝑘=0

1
𝑘!
𝜕𝑘𝜓𝜆
𝜕𝜆𝑘

|

|

|

|𝜆0
𝜇𝜆0 ,𝑘 . (54)

Here 𝜇𝜆0 ,𝑘 is the 𝑘th moment of the random variable 𝜆 with respect to 𝜆0 as defined in Eq. (7). Therefore, for a polynomial fibre
free energy function of polynomial degree 𝑛, it is sufficient to know the first 𝑛 + 1 moments of the distribution to fully recover the
averaged energy. Moreover, if the range of probable stretches is sufficiently close to the value of 𝜆0, in particular if |𝜆 − 𝜆0| < 1 for
all 𝜆 with d𝑃𝜆 > 0 the contribution of the 𝑘th term tends to zero with increasing 𝑘. Consequently, it stands to reason to truncate the
series for an approximation of �̄� .

Specific forms of 𝜓𝜆 may favour a particular point 𝜆0 about which the series should be developed. Without further restrictions
on 𝜓𝜆, we choose 𝜆0 = �̄� = E[𝜆], so that {𝜇𝜆0 ,𝑘} represent central moments. Likewise, without loss of generality, we proceed with
the special case 𝑘 ≤ 2 and approximate Eq. (54) by

�̄� ≈ 𝜓 (�̄�) + 1𝜓 ′′(�̄�)Var(𝜆) , (55)
12
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Fig. 3. Undeformed 3D DNM RVE with boundary points highlighted in orange (a) and a comparison of the employed linear and non-linear fibre law (b).

which is exact if 𝜓𝜆 is a polynomial of degree 𝑛 ≤ 2, and a robust approximation for 𝑛 > 2 as long as the element stretches in the
network are sufficiently close to �̄�, i.e. |𝜆 − �̄�| < 1.

Remark 7 (Polynomials in Non-Linear Functions 𝑌 of 𝜆). If 𝜓 is a polynomial 𝜓𝑌 in another random variable 𝑌 that itself is a function
of 𝜆, it is convenient to work with the moments of 𝑌 instead of 𝜆 directly. Potential candidates for this random variable 𝑌 are, e.g., the
square stretch 𝜆2, generalised strains 𝑟−1(𝜆𝑟 − 1) for 𝑟 ∈ R≠0, the logarithmic strain log(𝜆) and the exponential strain exp(𝜆− 1). This
strategy allows capturing strongly non-linear behaviour of the network caused by the fibre strain energy function 𝜓 with a low
number of moments in the adjusted series (54). Moreover, such a change of variables may yield |𝑌 − 𝑌0| < 1 for all 𝑌 in a probable
range, and thus be beneficial for the convergence of the series.

4.4. Phenomenological models for elastic networks with analytic fibre law

To illustrate the new approach we present a phenomenological model for elastic networks with analytic fibre laws. In this case
the moment based representation of the stretch distribution (Section 4.3) allows to replace Eq. (52), i.e.

ℎ ∶ 𝐂 ↦ 𝑃𝜆 (56)

by the set of 𝑛 functions

ℎ𝑘 ∶ 𝐂 ↦ 𝜇𝜆0 ,𝑘 , 𝑘 = 1, 2,… , 𝑛, (57)

with an arbitrary expansion point 𝜆0, where we have omitted the potential dependence on position 𝑿 in writing. Moreover for
isotropic networks the fundamental representation theorems for isotropic tensor functions (Truesdell and Noll, 2004, Sec. 10) imply
that the averaged free energy, and consequently, in line with the argumentation above, the stretch distribution and its moments,
can be expressed in terms of the principal invariants of 𝐂. Applied to the truncated series about 𝜆0 = �̄� = E[𝜆] (55), this implies the
existence of the two constitutive functions

ℎE ∶ {𝐼1,… , 𝐼𝑑} ↦ �̄� , ℎVar ∶ {𝐼1,… , 𝐼𝑑} ↦ Var(𝜆) , (58)

that will be formulated in the next section and parametrised against the corresponding data obtained with DNM simulations.

5. Numerical examples

In order to exemplify the approach, 2D and 3D DNM RVEs were generated, assigned a function 𝜓𝜆, and subjected to boundary
conditions reflecting the macroscopic deformation 𝐅. The simulations were post-processed to obtain the stretch distribution in the
discrete network as well as the homogenised energy and stress. The stretch distributions were then used to calibrate the new
continuum approach, while energy and stress were used for validation.

5.1. Fibre constitutive models

Two different fibre constitutive laws were considered to define 𝜓𝜆: A linear force vs. strain response of the fibres was prescribed
by the quadratic free energy

𝜓 lin(𝜆) = 𝑐 (𝜆 − 1)2 (59)
13
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whereas the 7-th order polynomial

𝜓nlin
𝜆 (𝜆) = 𝑐

42
(

𝜆7 − 7𝜆 + 6
)

(60)

was used to exemplify strain-stiffening, non-linear behaviour. In both cases 𝑐 is a constant with dimension of a force. The
corresponding force–stretch relations 𝑓 = d𝜓𝜆∕d𝜆 are illustrated in Fig. 3b in units of 𝑐.

5.2. Generation of DNMs and RVE formulation

Voronoi graphs generated with Python (v3.7.2) were used to construct 2D and 3D fibre network RVEs: Sets of 𝑁P points were
seeded with the NumPy numpy.random.uniform tool (v1.21) to obtain random, uniform distributions of points in a 2D and 3D cube
(𝑑 = 2, 3) with edgelength 𝐿RVE, respectively, and were connected by the SciPy scipy.spatial.Voronoi algorithm (v1.7.1). Random
Voronoi graphs have (almost surely) coordination numbers of 𝑧 = 3 and 𝑧 = 4 in 2D and 3D, respectively, and are frequently used
to model the fibre networks in biological systems (Lake et al., 2012; Ban et al., 2016; Islam and Picu, 2018; Arzash et al., 2019).
Each edge in the Voronoi graph was associated with a link according to our strict definition in Section 2.2 used synonymously with
the term fibre, whose elastic response to length changes is described by the fibre free energy function 𝜓𝜆.

RVEs with an approximately spherical shape were chosen to reduce geometrical effects of the boundary as much as possible. To
this end, RVEs were defined by the network enclosed in a sphere of radius 𝐿RVE∕2, that defines the RVE size. In order to avoid the
creation of an artificial boundary that could compromise the statistical analysis of the network, (i) any link cut by the surface of the
sphere was deleted, and the remaining corresponding cross-link within the spherical domain was considered as a boundary point.
(ii) Subsequently, all fibres directly connecting boundary points were deleted. The first step prevents the generation of artificially
short links, and we note that a fibre’s length can have an effect on its deformation in a non-affine network. The second step excludes
fibres with prescribed affine kinematics on the boundary.

For the 2D and 3D case, one of the resulting DNM RVEs is shown in Fig. 2a and Fig. 3a, respectively. Altogether, 3 models were
considered: A 2D RVE with linear elastic fibres, as well as a 2D and a 3D RVE with non-linear elastic fibres. Within each network
the fibres were assumed to have the same material properties characterised by the functions (59) or (60).

Affine homogeneous boundary condition were imposed by prescribing the displacements of the boundary points in line with the
macroscopic deformation gradient 𝐅, and each boundary value problem was divided into smaller load steps.

A simple custom finite element-based code was used to compute the nodal displacements and forces in the equilibrium
configurations of the RVE. In each load step, the code uses an affine predictor for each of the link elements, which is subsequently
corrected iteratively by means of a Newton–Raphson scheme until a previously selected equilibrium criterion is reached in terms of
a maximal residual force 𝑓res. In all computations a minimum of 30 load steps was considered and the allowed residual force was set
proportional to the ‘fibre stiffness’ 𝑐 in Eqs. (59),(60) as 𝑓res = 10−6𝑐. The displacements of all cross-links were stored in each step
and provided the basis for the analysis of macroscopic stress and microscopic kinematics. In addition, for the sake of comparison,
the simulations were repeated with enforced affine deformations of all links.

To obtain representative characteristics, preliminary convergence analyses were used to determine appropriate sizes of the DNM
RVE and the statistical ensemble. Due to the Voronoi structure of the network, and since the fibre lengths are normalised by the total
fibre length 𝐿tot in the DNM during the analysis, enlarging the RVE length dimension has the same effect as increasing the number
of Voronoi cells, i.e. the number of seed points 𝑁P at constant DNM size 𝐿RVE. As a good compromise between computational effort
and accuracy our analysis revealed 𝑁P = 1000 for the 2D case and 𝑁P = 1500 for the 3D case to obtain a representative macroscopic
response of the network. Moreover using the average over 𝑛G = 5 statistical realisations showed only marginal differences in the
xpected value and variance of the stretch distribution within the thus sized RVE.

.3. Numeric ground truth: Data extraction from DNM

The initial length 𝐿f and stretch ratio 𝜆f of each link were calculated from the recorded displacements and referential positions
f the cross-links. From the latter the expectation �̄� = E[𝜆] and variance Var(𝜆) of the element stretch

�̄� =
∑

f∈F
𝜆f

𝐿f
𝐿tot

,

Var(𝜆) =
∑

f∈F
(𝜆f − �̄�)2

𝐿f
𝐿tot

(61)

were computed and the averaged free energy was obtained by use of Eq. (55). The homogenised stress was obtained according to
Section 2.4.3 in the non-affine, and Section 2.4.4 in the affine case, respectively.

5.4. Ansatz function for E[𝜆] and Var(𝜆)

The constitutive relations (58) that express the expectation and variance of the stretch distribution in terms of the macroscopic
train invariants were prescribed by the ansatz functions

E[𝜆] = ℎE(𝐼1,… , 𝐼𝑑 ) = (1 − 𝐴𝑑 )
[

(1 − 𝑝1)
(

𝐼1
𝑑

)𝑝2
+ 𝑝1

(

𝐼𝑑−1
𝑑 𝐼𝑑

)𝑝3]

+𝐴𝑑

[

𝑝4

(

𝐼1
)𝑝5

+ 𝑝6

(

𝐼𝑑−1
)𝑝7]

,
(62)
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Fig. 4. Load cases: Trajectories of the principal stretches {𝜆𝑖} in 2D (a) and in 3D (b).

and

Var(𝜆) = ℎVar (𝐼1,… , 𝐼𝑑 ) = 𝑞1(𝐼1 − 𝑑)1+𝑞2 + 𝑞3𝐴
1+𝑞4
𝑑 + 𝑞5𝐵

1+𝑞6
𝑑 , (63)

where 𝑑 ∈ {2, 3} is the dimensionality of the problem and

𝐴𝑑 =

⎧

⎪

⎨

⎪

⎩

𝐼21 − 4𝐼2 for 𝑑 = 2,

𝐼21 − 3𝐼2 for 𝑑 = 3,
𝐵𝑑 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐼21
𝐼42
𝐴2 for 𝑑 = 2,

(

𝐼1
𝐼3

− 3
)2

for 𝑑 = 3,
(64)

epresent dimension dependent ansatz terms. Although in general the here used ansatz functions are heuristic, we note that the
orm of 𝐴𝑑 is proportional to the variance of the affine square stretch in an isotropic network

Var(𝜆2aff ) = ∫

(

𝒛 ⋅ 𝐂𝒛 −
𝐼1
𝑑

)2
d𝑃𝑵 (𝒛) ≥ 0 , (65)

where 𝑃𝑵 is uniform, and therefore constitutes a non-negative measure for the difference of the principal stretches, viz.

𝐴2 = 8Var(𝜆2aff ) = (𝜆21 − 𝜆
2
2)

2 ,

𝐴3 =
45
4
Var(𝜆2aff ) = 𝜆41 + 𝜆

4
2 + 𝜆

4
3 − 𝜆

2
1𝜆

2
2 − 𝜆

2
2𝜆

2
3 − 𝜆

2
3𝜆

2
1 .

(66)

.5. Calibration of the phenomenological model

To calibrate the phenomenological models, the parameter sets {𝑝𝑖} and {𝑞𝑗} of the constitutive ansatz functions (62) and (63)
for E[𝜆] and Var(𝜆), respectively, were identified in comparison with RVE data extracted from dedicated DNM simulations.

All DNMs were subjected to sets of affine boundary conditions that represent a sequence of pure homogeneous deformations
ith deformation gradient

𝐅 =
𝑑
∑

𝑘=1
𝜆𝑘𝒆𝑘 ⊗ 𝒆𝑘 , (67)

where the vectors {𝒆𝑘} form a fixed orthonormal basis of the 𝑑-dimensional Euclidean space. The deformation of the vectors {𝑿𝑖},
specifying the positions of the boundary points, was thus given through the affine mapping

𝒙𝑖 = 𝐅𝑿𝑖 . (68)

Eq. (67) was specified by a relation of the principal stretches as

𝜆 = 2(𝜆 − 1)𝜆end + 1 , 𝑘 ∈ {2, 𝑑} , (69)
15
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Table 1
Final stretches {𝜆end

𝑘 } according to Eq. (69), that specify the homogeneous boundary conditions applied to the 2D and 3D DNMs
for calibration of the phenomenological model.
Dim. 𝑑 Direction 𝑘 Final stretches {𝜆end

𝑘 }

BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 BC10 BC11 BC12 BC13

2 2 1.5 1.3 1.15 1 0.85 0.7

3 2 1.5 1.5 1.5 1.3 1.5 1.3 1.15 1.3 1.15 1.15 1 1 0.85
3 1.5 1.22 1 1.18 0.78 1 1.15 0.82 1 0.85 1 0.85 0.85

Fig. 5. Linear 2D RVE: Stretch distribution data extracted from DNM simulations (solid) and fit (dotted). The extracted data represent the expectation (a) and
variance (b) of the distribution, corresponding to the load cases in Table 1.

where 𝜆1 was varied in 30 equidistant steps from 𝜆1 = 1 up to a final value of 𝜆1 = 1.5, thus leading to 𝑛D = 31 data points for each
of the 𝑛L load cases reported in Table 1. The corresponding trajectories in stretch space are illustrated in Fig. 4, where the light grey
lines indicate equivalent load paths that are obtained by permutations of the stretches {𝜆𝑖} and that are thus included inherently.

The invariants in the two ansatz functions Eqs. (62) and (63) can be expressed in terms of the principal stretches according to
Eqs. (1), (2) so that in view of Eq. (69) both of them can be uniquely expressed as functions of 𝜆1.

The 2D (linear) and both 3D (linear and non-linear) DNMs were subjected to 𝑛L = 6 and 𝑛L = 13 load cases (L), respectively,
and each RVE was defined as the average of 𝑛G = 5 DNMs (G). The ansatzes for expectation and variance of the stretch (Eq. (62),
(63)) were fitted to the corresponding extracted data by minimisation of the cost function

COST(𝜷) =
∑

G

∑

L

𝑛D
∑

𝑖=1

⎛

⎜

⎜

⎜

⎝

(

𝑦𝑖 − ℎ𝑖(𝜷)
)2

𝑦𝑛D
+

(

𝑦𝑖+ − 𝑦𝑖− − ℎ𝑖+ (𝜷) + ℎ𝑖− (𝜷)
)2

(𝑦𝑛D − 𝑦𝑛D−1)(𝑖+ − 𝑖−)

⎞

⎟

⎟

⎟

⎠

. (70)

This is composed of the sum of the squared differences between the normalised data values, and the squared differences between
the normalised difference quotients at the data points. In Eq. (70), {𝑦𝑖} and {ℎ𝑖} denote the considered data values and associated
ansatz function values evaluated with the parameters 𝜷 = {𝑝𝑖} for the expectation and 𝜷 = {𝑞𝑗} for the variance, and the notations
𝑖+ = min(𝑖 + 1, 𝑛D) and 𝑖− = max(𝑖 − 1, 1) are used. Eq. (70) was minimised with the Nelder–Mead algorithm implemented in SciPy
(v1.7.1, scipy.optimise.minimise).

The modelled expectation and variance were compared to the numeric ground truth in Figs. 5–7 for the linear 2D, linear 3D and
non-linear 3D case, respectively. The determined ansatz parameters are reported in Table 2.

5.6. Prediction of energy and stress

The parametrised ansatz functions were used to compute the homogenised free energy from (12) and (55) as

𝛹 =
𝐿tot
𝑉RVE

(

𝜓𝜆(ℎE) +
1
2
𝜓 ′′
𝜆 (ℎE)ℎVar

)

, (71)

and the Cauchy stress 𝝈 was obtained according to (15) as

𝝈 =
𝐿tot

[(

2𝜓 ′
𝜆(ℎE) + 𝜓

′′′
𝜆 (ℎE)ℎVar

)

𝜕ℎE + 𝜓 ′′
𝜆 (ℎE)

𝜕ℎVar
]

𝐅
𝜕𝐼𝑗 𝐅T . (72)
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Fig. 6. Linear 3D RVE: Stretch distribution data extracted from DNM simulations (solid) and fit (dotted). The extracted data represent the expectation (a,c) and
ariance (b,d) of the distribution, corresponding to the load cases in Table 1.

ince the truncated expression (55) is exact for the linear elastic fibres, and both expectation and variance are accurately captured
y the ansatz functions (Figs. 5 and 6), a match in the averaged free energy is evident, and the corresponding plots are omitted. For
he non-linear case Eq. (55) is only approximate. However, also in this case the truncated expression (55) matches the free energy
irectly obtained from the RVE closely (Fig. 8).

Finally, the comparison of the predicted homogenised stresses (72) with those extracted from the RVE shows excellent agreement,
s illustrated in Fig. 9 for all 2D cases, and for a representative selection of 6 3D load cases in Figs. 10 and 11, respectively. For
omparison, we also plot the corresponding stresses predicted by an affine model of fibre deformation, that increasingly deviates
rom the true network response with increasing applied stretch for all three DNM types.

. Towards predicting the stretch distribution

In the previous section it was shown that the proposed model, after calibration, is able to predict the macroscopic homogenised
nergy and stress response, based on a specified microscopic fibre free energy and a relation between the macroscopic deformation
nd the fibre stretch distribution. At first, this scale-separation suggests only a small advance over classical phenomenological models
hat define the averaged free energy 𝛹 directly in terms of macroscopic strain. The true gain of the method, however, lies in the
nformation about the microscopic stretch distribution, in the present example contained in the two moments E[𝜆] and Var(𝜆).

While, in a more general approach, one might include more moments, it will be shown in this section that together with a heuristic
assumption of the shape of the distribution, these two moments provide a remarkably good description of the true distributions
observed in the RVE.
17
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Fig. 7. Non-linear 3D RVE: Stretch distribution data extracted from DNM simulations (solid) and fit (dotted). The extracted data represent the expectation (a,c)
and variance (b,d) of the distribution, corresponding to the load cases in Table 1.

Table 2
The optimised ansatz parameters for the linear 2D as well as
linear and non-linear 3D RVE. The ansatz functions can be found
in Eq. (62) and Eq. (63).
Parameter Fibre law

Linear Non-linear

2D 3D 3D

𝑝1 0.13511 0.02814 0.04499
𝑝2 0.53654 0.49547 0.52303
𝑝3 0.30709 2.21906 1.63974
𝑝4 0.4943 0.5983 0.64864
𝑝5 0.81541 0.71561 0.69554
𝑝6 0.52134 0.41446 0.36363
𝑝7 0.07232 0.08908 0.11877
𝑞1 0.00545 0.00126 0.00048
𝑞2 0.54054 0.65763 0.05366
𝑞3 0.00385 0.0006 0.00051
𝑞4 0.20889 0.00039 0.0001
𝑞5 0.00013 0.00477 0.00425
𝑞6 0 0.1279 0.11463
18
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T

Fig. 8. Non-linear 3D RVE: Free energy extracted from DNM simulations (solid) and approximation from fit (dotted), corresponding to the load cases in Table 1.

he colours follow the logic of Figs. 6 and 7.

Fig. 9. Linear 2D RVE: Stress (normalised by 𝑐𝐿tot∕𝑉RVE) extracted from DNM simulation (solid) and model prediction (dotted) as well as the stress from affinely
deformed DNM RVE (dash-dotted). The load cases are listed in Table 1.
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Fig. 10. Linear 3D RVE: Stress (normalised by 𝑐𝐿tot∕𝑉RVE) extracted from DNM simulation (solid) and model prediction (dotted) as well as the stress from
affinely deformed DNM RVE (dash-dotted). The shown load cases represent a selection of those listed in Table 1.

6.1. Preliminary considerations

Considering once again the three RVE types, and the load cases from Section 5, the goal is to find a suitable model distribution that
closely matches the true stretch distributions from the DNM simulations. The free energy of an RVE may only differ insignificantly
when computed from either this model or the true distribution. For RVEs with linear fibre law, we have shown in Section 4.3
that only the expectation and variance of the distribution are relevant to determine the free energy, whereas for the case of the
non-linear law, the use of only these two moments still results in a good approximation (Eq. (55)). Therefore, we limited the search
to distributions that have the same expectation and variance as the true distribution.

6.2. Log-normal distribution

The inspection of the stretch histograms extracted from the DNM simulations (Section 5) suggests that the shape of the histograms
resembles the distribution density of the log-normal distribution  . Let us therefore assume that the element stretches are
log-normally distributed.

A (positive) random variable 𝑍 is log-normally distributed if and only if the logarithm of this random variable ln(𝑍) is normally
distributed so that (see e.g. Johnson et al., 1994)

2 2
20

𝑍 ∼  (𝜇, 𝜎 ) ⟺ ln(𝑍) ∼  (𝜇, 𝜎 ) , (73)
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d
p

Fig. 11. Non-linear 3D RVE: Stress (normalised by 𝑐𝐿tot∕𝑉RVE) extracted from DNM simulation (solid) and model prediction (dotted) as well as the stress from
affinely deformed DNM RVE (dash-dotted). The shown load cases represent a selection of those listed in Table 1.

where 𝜇 and 𝜎2 are the expectation and variance of ln(𝑍), and  stands for the normal distribution. Noteworthy, when the random
variable is the stretch 𝜆, log-normally distributed stretches are thus equivalent to normally distributed logarithmic strains. The
corresponding probability density function 𝑝𝜆 of the log-normal distribution is (Johnson et al., 1994)

𝑝𝜆(𝑧) =
1

𝑧
√

2𝜋𝜎2
exp

(

−
(ln(𝑧) − 𝜇)2

2𝜎2

)

. (74)

Since the parameters 𝜇 and 𝜎2 can be expressed in terms of the expectation and variance of the stretch �̄� = E[𝜆] and Var(𝜆) (cf.
Johnson et al., 1994)

𝜇 = ln(�̄�) − 1
2
𝜎2, 𝜎2 = ln

(

Var(𝜆)
�̄�2

+ 1
)

, (75)

the log-normal distribution is uniquely determined by the expectation and variance of the stretch. Therefore, the parametrised
ansatz functions (58) used in the previous section not only serve to predict the macroscopic energy and stress, but also to recover
the microscopic stretch distribution within the network, modelled as log-normal.

6.3. Predicted stretch distributions

Expressing �̄� = E[𝜆] and Var(𝜆) in terms of the parametrised ansatz functions (62) and (63), and considering (75) in (74), the
istribution of stretch can be predicted for any generic load case expressed in terms of the macroscopic principal invariants or
rincipal stretches.
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Fig. 12. Linear 2D RVE: Stretch distribution extracted from DNM simulation and log-normal model prediction as well as the stretch distribution from affinely
deformed DNM RVE. The DNM data is presented in form of bin plots.

The thus obtained distribution densities are shown in Figs. 12–14 for selected load cases and a maximum principal stretch of
𝜆1 = 1.5. For comparison, the bin plots obtained for the corresponding affine deformations are given as well. The obvious discrepancy
between the affine model and the non-affine distributions that mark the equilibrium configurations of the network has been discussed
herein before and in the literature (Section 3.2). What is new, however, is that the continuum mechanical approach presented in
this work can capture these distributions to a large extent both with respect to the width and peak position, with notable deviations
only for few of the studied load cases (e.g. Fig. 14c).

7. Discussion

By definition continuum models fail below the length-scale at which the continuum hypothesis applies. Still these models can
carry valid information about the mechanics at the lower length scales. In the present work, we propose the distribution of the
stretch of the fibre elements as this very piece of information, and we have shown that this distribution is sufficient to calculate the
macroscopic free energy and stress of an elastic fibre network, if the material behaviour of the fibres is known.

7.1. Novelty of the approach

The approach implies a change of paradigm from orientational statistics, that has governed fibre network modelling in the
last decades, to the statistics of microkinematic variables. Noteworthy, not only the statistics of orientation have been considered
22
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Fig. 13. Linear 3D RVE: Stretch distribution extracted from DNM simulation and log-normal model prediction as well as the stretch distribution from affinely
deformed DNM RVE. The DNM data is presented in form of bin plots.

before in models of networks at different length scales. Rizvi and Pal (2014), for example, considered the statistical distribution
of geometrical properties of the fibres in electrospun membranes, such as their length and diameter. Moreover, clearly the entire
theory of polymer dynamics (e.g. Doi et al., 1988), and hence both the foundations of rubber (visco-)elasticity (e.g. Treloar, 1975)
and the common theories of biopolymer networks (e.g. van der Maarel, 2007) build upon the principles of statistical mechanics.
Particular ingredients thereof are the distributions of the (mutual) orientation of the single links of long chains representing idealised
macromolecules, as well as their end-to-end vectors in a polymer network. The latter distribution, typically approximated in terms
of either Gaussian or ‘inverse Langevin’ statistics, gave rise to a variety of Gaussian and non-Gaussian chain network models,
and more recent developments included, e.g., the distributions of chain lengths (Itskov and Knyazeva, 2016; Verron and Gros,
2017). Nevertheless, the scale transition from single chains to network ensembles have largely led to averaging problems of the
traditional form (24), because the end-to-end vectors in reference and current configuration were constitutively coupled through
the deformation gradient. Directional averaging over uniformly distributed referential end-to-end vectors therefore represents the
final step of these models.

7.2. Potential use of the new concept

Information on the micromechanics of network materials is clearly relevant for their bottom-up (or micro-to-macro) de-
sign (Courtney et al., 2006) in the realm of engineered architectured materials with dedicated properties (Ashby, 2013). At the
same time top-down (or macro-to-micro) analyses allow explaining macroscopic features in terms of properties and mechanisms
at lower length scales, such as unusual kinematics (Janmey et al., 2007; Ehret et al., 2017; Domaschke et al., 2019a), particular
23
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Fig. 14. Non-linear 3D RVE: Stretch distribution extracted from DNM simulation and log-normal model prediction as well as the stretch distribution from affinely
deformed DNM RVE. The DNM data is presented in form of bin plots.

fracture properties (Koh and Oyen, 2012; Ridruejo et al., 2010; Bircher et al., 2019), or the compressive behaviour of entangled
fibre systems (Picu and Subramanian, 2011).

In recent years, many relevant research questions have arisen in the field of mechanobiology: The majority of animal cells are
embedded in a network of predominantly fibrous collagen and, moreover, their internal structure itself consists of networks of actin
and other filamentous proteins (Weitz and Janmey, 2008). Both these extra- and intracellular networks are essential for cellular
processes such as signalling, motion or reproduction (e.g. Theocharis et al., 2016). Evidently, for these processes the mechanics
at the cellular length scale of up to a few tens of micrometres will matter rather than the mechanical behaviour at millimetre to
centimetre tissue scale. To this end, various dedicated DNMs have been developed to study interactions of cells with their native or
bioengineered fibrous environments (e.g. Gyoneva et al., 2016; Zarei et al., 2017; Kim et al., 2018; Zündel et al., 2019; Alisafaei et al.,
2021; Eichinger et al., 2021). Given the need to both model efficiently the tissue scale and understand the cell scale behaviour at the
same time, not only DNMs but also characteristics derived from tissue scale continuum models have frequently been interpreted in
terms of cell scale mechanical triggers (e.g. Jia and Nguyen, 2019; Gierig et al., 2021). Although tissues may not be readily equated
with networks, and the continuum hypothesis may be valid in special cases, such interpretations ‘across the scales’ can generally be
risky and may lead to wrong conclusions (Stracuzzi et al., 2022). Therefore the emerging field of computational mechanobiology
is where we anticipate that the novel approach might be of particular use, since associated with any tissue scale deformation, the
new model not only yields the macroscopic response but also provides information on the spectrum of fibre stretches to which a
cell may be exposed.

Finally, the reformulation in terms of the proposed approach provides a new perspective on existing models such as the affine
network or average stretch models. This provides new methods for their analysis (cf. Remarks 3 and 4), but also their evaluation.
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7.3. Current limitations and further developments

The approach was introduced for networks with (statistically) uniform orientation distribution of the fibres, resulting in quasi
sotropic networks. Moreover, the networks were assumed to be hyperelastic. Although the corresponding extensions are beyond
he scope of this paper and potentially not free of challenges, we remark that inelasticity and anisotropy are in general not opposing
he new concept. The fibre free energy, and accordingly the stretch distribution, could clearly be formulated in terms of ‘elastic’
tretches. It would thus naturally become a function of the history of deformation (Eq. (51)), and the moments of the distribution
ould be considered as internal variables, following e.g. the arguments by Coleman and Gurtin (1967), determined through suitable
volution equations. A similar strategy could be used to account for path-dependent behaviour in elastic networks (cf. Gillman et al.,
018). The consideration of anisotropy would require the definition of principal directions of material symmetry, defined through a
on-uniform orientation distribution of fibre elements in the network. In this case, classical invariant theory (Spencer, 1984) would
rovide the basis to develop, e.g., models of the phenomenological type presented in Section 4.4.

In general, one may consider the use of a phenomenological relation between the macroscopic strain invariants and the moments
f the stretch distribution (Section 4.4) as a current limitation of the concept, in particular because costly numerical ground truth
s needed to calibrate this relation. However, a simplified or truncated moment representation (Eq. (54), (55)) implies that RVE
imulations need only provide an estimate for a certain number of moments. These moments may converge faster with RVE size
han the full distribution, thus allowing the use of smaller RVEs with correspondingly reduced computational cost. At the same time,
e note that the calibrated phenomenological model is an excellent replacement for the RVE (cf. Argento et al., 2012), and thus

acilitates very efficient multiscale simulations. In this aspect the proposed phenomenological model even bears advantages when
ompared to RVE simulations: It is continuously differentiable and, if the stretch distribution is reconstructed from the log-normal
ssumption (Section 6.2), this distribution is also continuous. This is in contrast to the DNM, where the latter is only available as a
iscrete estimate obtained by binning of the computed stretches. Generally, phenomenological models are accepted as a fair choice
hen deeper understanding of the physics is still lacking or in order to provide flexible, easy to adapt constitutive equations. They
ave served great purpose in rubber modelling, soft tissue biomechanics and various other fields of continuum mechanics. Notably,
n the present work, the empiric equation relates the deformation with the microscopic stretch distribution and not the macroscopic
ree energy. This relation sits in a key position that allows predictions on both macro- and micro-scale. This multiscale facility may
lso justify the potentially larger number of material parameters, compared to a hyperelastic model capturing only the homogenised
ree energy and stress of the RVE.

Nevertheless, the phenomenological representation merely served as a proof of concept in the present work. It is evident that
hysical principles restrict the admissible relations between the macro- and micro-scale deformations, and we have delineated the
se of constrained minimisation as an approach to enforce that these principles are satisfied. A suitable set of physical restrictions,
.g. laws of preservation and bounding inequalities, will allow predictions based on network topology and fibre properties, without
he need to calibrate against DNM simulations. The identification of such principles remains the main open challenge of this new
pproach.

. Summary and conclusions

In this contribution, we propose a new concept to model the multiscale mechanical response of materials with random fibre
etwork microstructure. The approach generally evolves around the distribution of energetically relevant microkinematic quantities
ithin the network, and particularly – focusing on central force networks – on the stretch distribution. If the mechanical properties
f the fibres are known, this distribution is sufficient to determine the averaged free energy of the network. The stretch distribution
herefore sits in a central position of the concept, and the essential constitutive relation of the theory links this microscopic
istribution with the macroscopic deformation. A simplified representation of the stretch distribution is discussed, and it is shown
hat a finite number of moments of the distribution suffice to represent, or at least closely approximate the network free energy, if
he fibre free energy is given in terms of an analytic function.

The approach was illustrated in application to discrete network simulations with 2D and 3D Voronoi network RVEs subjected to
inematic boundary conditions, which provide the numerical ground truth for calibration and comparison. In these examples, the
ssential constitutive relation between the moments of the stretch distribution and the macroscopic deformation was given in terms
f a phenomenological model. To this end, ansatz functions for the expectation and variance of the stretch distribution were defined
n terms of the macroscopic strain invariants and parametrised to fit the corresponding statistical moments obtained from the DNM
imulations. Although only two moments of the distribution were used in these examples, the model yields accurate agreement of
he predicted energy and stress even for a highly non-linear fibre law. What is more, we showed that, with the assumption that the
tretches are log-normal distributed, the microscopic stretch distributions within the RVE could be recovered remarkably well.

In this work, the new approach has been introduced and illustrated, and its general applicability to the mechanics of random
ibre networks has been proven. The new perspective, which identifies the distribution of stretch and other microkinematic variables
s the key characteristic to be defined constitutively, may disclose a promising new route for constitutive multiscale modelling of
aterials of fibre network microstructure.
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