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The renaissance of interest in halide perovskites, triggered by their unprecedented performance in opto-
electronic applications, elicited worldwide efforts to uncover a variety of intriguing physical properties, with
a particular interest in spin-orbit effects. The current work presents the first magneto-optical experimental
evidence for anisotropic electron-hole interactions arising from bulk orthorhombic MAPbBr3. Magneto-
photoluminescence spectra, monitored along with several different crystallographic directions, were dominated
by dual exciton emission peaks, while each exhibited a highly nonlinear response to a magnetic field. Moreover,
these plots depicted asymmetry from −B0 to +B0, with a strong dependence on the axis of observations. A
theoretical model implementing anisotropy in the electron-hole interaction, Rashba effect, Landé g factors, and
a lesser contribution from an Overhauser effect, corroborated the experimental results. These research discov-
eries expand the possible applications of excitons in halide perovskites toward optoelectronic and information
devices.
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I. INTRODUCTION

Halide perovskites have been at the forefront of scien-
tific and technological interest for a decade, initiated with
the finding of their noteworthy performance in solar cells
[1,2], light sources [3,4], X/γ -ray detectors [5,6], and dis-
play devices [7–9]. Furthermore, the potential for exploiting
spin properties of the halide perovskites for applications in
spin-electronic and spin-optical devices has recently emerged
[10–14], based on the materials’ spin-orbit coupling [15,16],
Rashba/Dresselhaus effects [15–19], optically induced spin
polarization [17,20,21], and relatively long spin-coherence
time compared to classic semiconductors [13,22–25]. Those
properties are further elaborated below.

The halide perovskites are interconnected metal halides
units, forming a network with octahedral voids filled by
organic or inorganic counterions, with a benchmark mate-
rial bearing the chemical formula AMX 3 (A = counterions
[methylammonium, formamidinium, Cs]; M = Pb, Sn; X =
I, Cl, Br) [26–29]. The dynamic motion of the loosely
bound counterions, the low stiffness of the inorganic network,
as well as heterogeneity in dielectric screening endow the
halide perovskites with intriguing physical properties such as
long diffusion length [30–33], high emission quantum yield
[26,34], and tolerance to defects [35–39]. Bulk crystals, as
well as a variety of nanoscaled crystals of halide perovskites
with different dimensionality, can be feasibly synthesized by
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cheap colloidal chemical procedures [9,26,36,40,41] exhibit-
ing a tetragonal or orthorhombic crystallographic structure at
ambient and lower temperatures [42]. The electronic band
structure of APbX3 is based on the inorganic network,
wherein the valence band has a Pb s-orbital character with a
minor contribution from a halide p-orbital, while the conduc-
tion band has a Pb p-orbital character. The major contribution
of a heavy metal to the conduction band results in a spin-orbit
coupling, lifting the p-orbital energy degeneracy, thus leaving
both the conduction and valence band edges with an angular
momentum of Je = Sh = 1/2 (and projection of Sz = ±1/2).
Although band-edge electronic properties are dictated by the
inorganic network, the dynamic motion of the A-site ions
has a substantial influence on the physical properties of the
materials [15,43–45] by inducing a local distortion into the
inorganic network, with a plausible breakage of inversion of
symmetry [15–17,46–48] and creation of strong anharmonic-
ity [39,43,49–53]. Of note, nonuniform faceting termination
at grain boundaries of nanocrystal surfaces (either by PbX2

or organic chemical groups) induces static polarization and
a subsequent inversion symmetry breaking [54–57]. The de-
scribed dynamic or static distortion, in combination with the
poor dielectric screening by the organic moiety, brings about
other physical phenomena: the exciton-polaron formation at
room temperature [58–61]; strong Fröhlich and anharmonic
electron-optical phonon coupling [58,59,62–65]; low cou-
pling to acoustic phonons due to reduced elastic stiffness,
slow hot carrier cooling [62,66]; ferroelectricity [64,67–69]; a
continual self-healing, and the tolerance to defects [39,70,71].

While isotropic exchange splitting was predicted to al-
ways result in an unusual ordering of exciton fine structure
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with a triplet-bright state situated below a dark singlet state
in methylammonium/Cs-based halide perovskites [55,72],
magneto-optical spectroscopy of formamidinium lead bro-
mide (FAPbBr3) nanocrystals has shown the opposite or-
dering [112]. The weaker crystal field splitting of FAPbBr3

compared to CsPbBr3, or inhomogeneities present in bulk
but not nanocrystalline samples, could account for differ-
ences between these systems. Anisotropy can potentially
reorder and mix these energy levels, depending on its
strengths and symmetries. These anisotropies can arise from
bulk crystalline anisotropies, noncrystallinities such as grain
boundaries, static or dynamic structural distortions arising
from interfacial effects, or thermal fluctuations. When in-
version symmetric breaking is combined with spin-orbit
coupling, Rashba/Dresselhaus effects become active (an ex-
planation on the effect of Rashba/Dresselhaus splitting on the
electron-hole interaction can be found in Sec. V in the Supple-
mental Material (SM) [73]); see also Refs. [24,74–87]. Rashba
splitting was observed at zero and higher magnetic fields in a
single CsPbBr3 nanocube [17,88–91], while fast recombina-
tion times (<ns) at low temperatures suggest low-lying bright
excitons (in contrast to the existence of dark excitons in most
common semiconductor quantum dots, such as II-VI, III-V,
and IV-VI compounds) [55,92]. Dual recombination emission
has been attributed to direct band edges and to the Rashba
split indirect transitions [93,94]. Of particular importance is
a recent theoretical work which considered the combined
contribution of Rashba and Dresselhaus effects on the op-
tical properties [85]. Additionally, spin-coherence studies in
APbX3 have probed carrier dephasing times [21–23,25,95,96],
anisotropy in g-factor values, and effective masses [97]. These
studies have suggested spin decoherence mechanisms such
as the �g mechanism [21], scattering by grain boundaries,
inversion symmetry breaking, or by heavy doping [24]. Over-
all, the discovery of Rashba/Dresselhaus effects in perovskite
materials created new horizons to investigate spin proper-
ties in these materials and to consider halide perovskites as
building blocks in spin-electronic [10,13,89,98] and quantum
information devices [23,99,100].

Additionally, the Overhauser effect should be mentioned
due to the existence of magnetic neutral abundance isotopes
in halide perovskites. The Overhauser effect is initiated when
a photogenerated carrier applies a local field on nuclear spins
via hyperfine interactions and induces their mutual alignment.
The effective magnetic field created by the nuclei (known also
as the Overhauser field) reacts on the charge carrier, affecting
its polarization and the helicity of a recombination emission.
The effective nuclear field may enhance or suppress the Zee-
man or Rashba fields [22,101–107]. These spin explorations
indicate that spin behavior is a prominent issue in the optical
properties of halide perovskite materials; however, they will
be dealt here in a minor way, although the topic requires
further investigation, particularly exploring the influence of
intrinsic anisotropic effects.

The current work reports magneto-photoluminescence
measurements of bulk MAPbBr3 that reveal anisotropic
electron-hole interactions. The mentioned effects along with a
Zeeman field modify the ordering of the exciton fine-structure
and the relaxation processes within it. This is manifested in the
magneto-photoluminescence intensities, which revealed turn-

ing points at ±0.2 Tesla, mainly due to the multicomponent
(nonaxial) nature of the electron-hole interaction. Besides
these effects, we also discuss a minor contribution from the
Overhauser effect detected in magnetic photoluminescence
(MPL) and electron spin resonance (ESR) measurements. The
following section summarizes the experimental results, sup-
ported by a theoretical model and concluding discussion.

II. RESULTS AND DISCUSSION

MAPbBr3 crystals (typical size of ∼2 mm) were prepared
via a procedure reported previously in the literature [26].
The crystal structures produced and their faceting were char-
acterized by x-ray diffraction, confirming an orthorhombic
structure <100 K. The photoluminescence (PL) and magneto-
PL (MPL) spectra at low temperatures were obtained by
mounting the samples onto a confocal microscope immersed
into a liquid He-free cryosystem equipped with an external
magnetic field (B0) operating up to 6 Tesla. For a magnetic
resonance measurement, the sample was mounted inside a mi-
crowave cavity integrated within the confocal microscope, and
a microwave radiation within the cavity was induced through
an antenna [17,108,109]. The excitation beam was aligned
along the direction of a magnetic field (Faraday configuration)
when the sample’s crystallographic axis [001] was oriented
either parallel or perpendicular to B0. A nonresonant excita-
tion beam was focused into a <0.5-μm spot via an objective
and was scanned across the sample surface, thereby observing
different domains. The synthesis and additional experimental
details are reported in Appendix A.

Figure 1 depicts representative unpolarized PL spectra,
covering the 2.235–2.250-eV spectral window, which were
recorded at 4 K. The spectra are associated with emission
events from different spots across a single crystal, with ori-
entation of B0 and the excitation beam (k) either parallel or
perpendicular to the crystal facet [001], as shown by cartoons
next to each panel. The spectra in Fig. 1 encompass two
emission bands, fitted by the blue and red Gaussians. The
narrow bands’ FWHM and the small energy shift (∼8 meV)
with respect to the electronic band edge [42] (inset, spot 1)
suggest their involvement with excitonic processes. The dual
exciton emission peaks have been attributed before to the co-
existence of direct and indirect band-edge recombination [93],
with the indirect transitions resulting from the presence of an
unequal Rashba splitting in the conduction and valence bands
[16,17,42,54]. Alternatively, dual emission may be related to
a free and bound (or charged) exciton emission processes.

It is important to note that examination of a wider spectral
range occasionally exposed an asymmetric tail as well as
an additional band ∼40 meV below the exciton region. An
illustrative case is shown in the inset of spot 4 in Fig. 1,
and other results are available in the SM, Fig. S1 [73]. The
asymmetric tail is compatible with longitudinal optical replica
[59,93,110], while the wide band at low energies may be
related to a self-trap recombination [111–113]. The intensity
of the deep luminescence is strongly dependent on the spot of
observation and angle with respect to crystal symmetry axis
(not shown here). The mentioned nonexcitonic recombination
processes are not elaborated any further.

Further on, the PL spectra of spots 1–4 were recorded
under the presence of an external magnetic field (B0) from
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FIG. 1. Photoluminescence (PL) spectra of a few different spots on the sample surface, all fitted by two Gaussian curves (blue and red). The
spectra were recorded at 4 K and B0 = 0 Tesla, with optical alignment as given by cartoons at the margins. (Insets) Spot 1: PL and reflection
spectra around the exciton spectral region. Spot 4: A PL spectrum of a wide spectral range.

zero to ±6.0 Tesla [referred hereon as MPL(B0) curves]. Plots
of the PL integrated intensity of the red or blue components
of the mentioned spots versus the strength of B0 between
±2.0 Tesla are shown in Figs. 2(a)–2(d). Those MPL(B0)

curves possess a nonlinear dependence on B0, encompassing
rich information that will be thoroughly elaborated in the fol-
lowing discussion. Similar plots complementing the MPL(B0)
dependence >2.0 Tesla are given in the SM, Fig. S2 [73],

FIG. 2. Magneto-PL plots vs strength of an external magnetic field (B0). (a) to (d) are the MPL(B0) curves of spots 1 to 4 in Fig. 1,
respectively. Cartoons above illustrate the excitation and magnetic field orientation with respect to the [001] crystal plane. The Gaussian
curves refer to the detected spectral regimes. The top panels display the integrated intensity of the PL band collected upon a scan of the
magnetic field from the negative to the positive side or vice versa (see colored arrows). The bottom panels (e–h) illustrate averaging traces of
MPL(B0) curves above them.
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revealing a Zeeman behavior at the high field limit, in agree-
ment with observations found in a single CsPbBr3 nanocube
[17].

The panels in Fig. 2 display a few scans from negative
(positive) to positive (negative) magnetic field values (see
directing arrows). These plots show qualitatively reproducible
features around B0 = 0 Tesla; however, their relative inten-
sities attenuate according to the direction of the scan. To
emphasize the meaningful features, a mean plot for each spot
is displayed in Figs. 2(e)–2(h), where the intensity at B0 = 0
Tesla was normalized to a value of 1. For the purpose of
the coming theoretical simulation, the central MPL peaks in
Fig. 2(b) were aligned to the B0 = 0 Tesla point, and their
averaging is illustrated in Fig. 2(f).

The MPL(B0) plots of spots 1 and 2 are associated with
two different locations on the sample surface, monitored at
the same alignment of B0 ||k|| [001]. These plots exhibit a few
similar phenomena, including dominating negative extrema at
±0.2 or ±0.4 Tesla and additional weak ones at ±1.2 Tesla,
being particularly pronounced at spot 2. The intensity changes
are about 1% compared to the value at B0 = 0 Tesla (see scale
bars).

Beyond the extreme points, the MPL intensity deflects to-
ward positive values and gradually increases up to ± 2.0 Tesla
in a nonlinear fashion. The scans in Figs. 2(a) and 2(b) also
show an asymmetric evolution when comparing the negative
and positive field branches, accompanied by a shift of a central
feature at B0 = 0 Tesla (mainly in spot 2), together suggesting
the occurrence of stray magnetic fields, probable originating
from an Overhauser effect. To probe a possible stray mag-
netization, we perform a control experiment utilizing ESR
spectroscopy, Fig. S4 [73], in which irradiation created ESR
features which surprisingly remained unchanged for a couple
of hours after turning off the exposure to light. The result im-
plies that a photogenerated carrier may have been trapped at a
defect site [114], while its prolonged decay time is associated
with a coupling to nuclear spins (the so-called Overhauser
effect).

Figure 2(c) displays the MPL(B0) plot of spot 3, which
was monitored with an alignment of B0 ||k ⊥ [001], i.e., on
a different facet than spots 1, 2, and 4. MPL(B0) of spot 3
exhibits positive extrema surrounding B0 = 0 Tesla and cen-
tering at ±0.2 Tesla. At stronger fields, MPL(B0) decreases in
a nonlinear fashion. This is in contrast to the typical behavior
seen in spots 1 and 2. Additionally, there is strong asymmetry
between the negative and positive magnetic field branches.
The pronounced asymmetry is correlated with the lack of
a mirror plane normal to the direction of B0, as discussed
below. Representative circularly polarized PL spectra of spots
2 and 3 and their degree of circular polarization (DCP) versus
magnetic field strength are depicted in Fig. S3 [73]. Overall,
the DCP observations reveal obvious asymmetry at higher
magnetic fields for spot 3, consistent with the behavior seen
in Fig. 2(c).

Figure 2(d) illustrates MPL(B0) plots of the red PL band of
spot 4, with alignment of B0 ||k|| [001]. This plot substantially
deviates from that of spots 1 and 2, possessing a strong asym-
metry between positive and negative B0 directions, as well as
having extrema away from B0 = 0 Tesla, diverging in their
intensity depending on the scanning direction. These features

could be due to recombination either at a misaligned grain or
a new recombination feature, like shallow trap-to-band or a
trion emission [22,42,115,116]. The observation here can be
correlated with previous transient PL decays measured on the
same samples examined in this study, which exposed double
components, one with a typical lifetime < ns associated with
the neutral exciton emission and a second one with a lifetime
of ∼12 ns, presumably related to a lower-energy component
(the red band in Fig. 1) [42]. We note that a recent publication
uncovered a long lifetime of a trion beyond that of a neutral
exciton [117].

In the following theoretical section, we solely focus on the
reproducible MPL(B0) features (Fig. 2), namely, the turning
points at low magnetic fields B0 < 1 Tesla, and the opposite
trends of spots 1,2 compared to spot 3, focusing on the blue
PL band. It will be shown that these are the consequences of
anisotropic electron-hole interactions and anisotropic g fac-
tors.

III. THEORETICAL SIMULATION AND DISCUSSION

The low-lying excitonic levels are made up of electron-hole
pairs of S = 1/2 valence bands, (|↑h〉, |↓h〉), and J = 1/2
conduction bands, (|↑e〉, |↓e〉). In the lowest approximation,
the excitonic levels are fourfold degenerate at zero magnetic
field:

|�0,0〉 = 1√
2

(|↓e↑h〉 − |↑e↓h〉), (1a)

|�1,0〉 = 1√
2

(|↓e↑h〉 + |↑e↓h〉), (1b)

|�1,1〉 = |↑e↑h〉, (1c)

|�1,−1〉 = |↓e↓h〉. (1d)

The triplets |�1,m〉 [Eqs. (1c)–(1d)] are bright emitting
states, while the singlet |�0,0〉 [Eq. (1a)] is a dark state [55].
In the high-B0-field limit, the excitonic levels are split by the
Zeeman field and are separated into the levels |↓e↑h〉, |↑e↓h〉,
|↑e↑h〉, |↓e↓h〉 [Fig. 3(a), dashed black lines].

Anisotropic electron-hole interactions lift the degeneracy
at B0 = 0 Tesla and change the character of excitonic states
in the low-B0-field limit. We include these effects and an
additional Zeeman effect in the Hamiltonian:

H = �σe ·
↔
V · �σh + 1

2 geμB �B · �σe + 1
2 ghμB �B · �σh. (2)

Here
↔
V is a real 3×3 matrix representing an effective

electron-hole interaction, which includes anisotropy [55], and
�B is the total magnetic field, which is dominated by the ap-
plied field �B0, besides having a small Overhauser component.

At the measured temperatures, MAPbBr3 has a centrosym-
metric crystal structure. However, bulk noncrystallinities such
as grain boundaries and local strains break inversion sym-
metry, leading to MPL(B0) dependence on the detected spot

and its faceting. In Eq. (2), the term �σe ·
↔
V · �σh is a generic

electron-hole interaction that preserves time-reversal sym-
metry while allowing for anisotropy [118]. Contributions
from the isotropic parts of the exchange interaction, and the
isotropic part of Rashba/Dresselhaus effects [55], determine
the identity part of

↔
V ∝ I (I being the unit matrix). As the
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FIG. 3. (a)–(c) Exciton energy-level diagrams under the influence of anisotropic electron-hole interactions and the Zeeman effects,
corresponding to the high-energy exciton along the following directions: (a) k||B0||[001] in spot 1; (b) k||B0||[001] in spot 2; (c) k||B0⊥[001]
in spot 3. The transition dipole intensities are designated according to the color scale, and the population of each excitonic state is represented
by the marker size. Annotations of the exciton wave functions in a high-field limit are shown in (a). Exciton energy levels without spin-orbit
couplings are depicted by the black dashed lines in (a).

magnetic field is increased from the low-field limit (where
Zeeman effect is small) to high-field limit (where the Zee-
man effect is more important), both the transition dipoles and
excitonic level energy splitting change. The evolution of the
excitonic populations and consequently, the MPL integrated
intensity, is a result of the crossover between low and high
Zeeman limits. In the following, we discuss the consequences
of these effects on the energy-level population and on the MPL
of excitonic states. Excitonic populations are obtained from a
quantum master equation approach (details in Appendix B).

Figure 4(a) shows the measured MPL(B0) curve and the
theoretical fit for spot 1, the case with k || B || [001]. There
are small dips in that MPL(B0) plot at low magnetic fields,
followed by an increase in PL intensity at higher fields. To
explain these features, we find that it is sufficient to use a
simplified model where

�σe ·
↔
V · �σh = Vaσ

(e)
a σ (h)

a + Vbσ
(e)
b σ

(h)
b + Vcσ

(e)
c σ (h)

c , (3)

which has a major axis (a) for the electron-hole coupling, and
two minor (orthogonal) components (b, c). For spot 1, we find
that Va = −38.9 μeV, Vb = 7.22 μeV, Vc = 8.64 μeV, with
the major axis tilted at 72.8◦ relative to the magnetic field.
This multicomponent nature of the coupling with three sepa-
rate axes of interaction is important to explain the MPL dips
at low magnetic fields. In the SM, Fig. S5 [73], we show that a
model with only the major electron-hole component is unable
to explain these features. Furthermore, the depths of the dips
are dependent on the angle between the major component and
the magnetic field axis. Taken together, these observations
provide support for the influence of anisotropic structure in
the bulk of the material, which produces an electron-hole
coupling primarily oriented along a single axis, and with some
secondary components.

We predict strong reordering and intermixing of singlet
and triplet energy levels from these electron-hole couplings.
As a result, transition dipoles change with magnetic fields
(Fig. 3). At these magnetic fields, all four levels have

FIG. 4. A Comparison between the MPL experimental data, obtained along different crystal orientations, with the anisotropic electron-hole
interaction QME model: (a) k||B0||[001], high-energy exciton in spot 1; (b) k||B0||[001], high-energy exciton in spot 2; and (c) k||B0⊥[001],
high-energy exciton in spot 3.
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significant population because the level splitting is the same
order of magnitude as the thermal energy scale, and also
because of the effect of optical pumping.

A similar overall trend is seen on spot 2, k ||B0|| [001]
[Fig. 4(b)]. We obtain electron-hole coupling components
Va = −19.6 μeV, Vb = 8.69 μeV, and Vc = 9.35 μeV, with
the major axis tilted at 73.6◦ relative to the magnetic field.
These parameters are similar to those for spot 1 and similarly
describe the MPL(B0) dips at low magnetic field as well as the
overall increasing MPL trend, which is expected since both
spots are on the same facet. However, the experimental MPL
of spot 2 contains additional shoulders at B0 = 1.5 Tesla. It is
possible that they are an additional contribution from multiple
grain boundaries in the same spot area, which are not captured
by this model, that treats only a single four-band manifold of
states.

The opposite MPL trend of spot 3 [Fig. 4(c)] compared
to spots 1 and 2 is explained by g-factor anisotropy. We
use the electron and hole g factors as fitting parameters in
the quantum master equation (QME) model for these spots
and find that the values of ge and gh fitted to the QME
model are similar for spot 1 (ge = 1.555, gh = −0.270)
and spot 2 (ge = 1.589, gh = −0.2017), and different for
spot 3 (ge = 1.931, gh = −0.7278), see Sec. IV, Table I
in the SM [73]. Due to crystalline anisotropy, we expect
different g factors when the magnetic field is parallel or
normal to [001] [88,97,119]. Consistent with pervious liter-
ature [97,119], we find that ge and gh have different signs,
with ge being of larger magnitude. In Sec. IV A in the
SM [73], we show that the effect of the g factors on the
MPL trends is rather general and independent of the exact
values of the electron-hole couplings used in the model; as
the magnitudes of |ge| and |gh| are increased, the MPL(B0)
curves switch from a trend of increasing with B0 to decreasing
with B0. The g factors affect the MPL(B0) trends by con-
trolling the excitonic populations through the excitonic level
splitting.

In the case of k || B0 � [001] [spot 3, Fig. 4(c)], we find
an asymmetric dependence of PL at positive and negative
fields, unlike the other orientations. The introduction of the
incoherent processes of recombination and thermal relaxation
(details in Appendix B) breaks the time-reversal symmetry of
the system. Therefore, under a change in direction of mag-
netic field from +�B0 to −�B0, the MPL(B0) curve exposes a
deviation from a perfect symmetry. Nevertheless, there are
features which appear approximately symmetrically on +�B0

and −�B0 wings of the MPL(B0) curves, such as the dips and
shoulders in Figs. 4(a) and 4(b). The symmetrical features are
associated with exciton levels or transition dipoles, occurring
at +�B0 as well as at −�B0. The asymmetrical features, such
as the unequal magnitudes of the dips at +�B0 and −�B0, can
be rationalized as arising from different excitonic populations
at +�B0 and −�B0. In our simulations, we predict popula-
tion asymmetries of less than 1% between +�B0 and −�B0.
While small, these asymmetries are nonetheless observable
in the measured PL spectra. The observation of asymmetry
in +�B0 and −�B0 is evidence for the lack of a mirror plane
normal to �B0. The lack of this mirror plane results from non-
crystallinities such as grain boundaries, even if the perfectly

crystalline lattice does have mirror symmetry. In order to fit
the large asymmetry of spot 3, we use the general form of

the electron-hole coupling
↔
V instead of the simplified form in

Eq. (3). The magnitudes of the fitted electron-hole couplings
are also larger on this facet (see Sec. IV, Table I, in the
SM [73]).

In general, anisotropic electron-hole interactions cause in-
termixing between singlet and triplet states, resulting in four
excitonic levels each with some oscillator strength. The na-
ture of this intermixing depends on the symmetries of the
electron-hole interaction. On spots 1 and 2, the interaction
has approximate axial symmetry, as shown above. The singlet
|�0,0〉 and triplet states |�1,m〉 are therefore eigenvectors at
zero magnetic field and show up as dark and bright states in
the transition dipole diagram [Figs. 3(a) and 3(b)]. On spot
3, however, the electron-hole interaction is not as strongly
dominated by a single contribution, and intermixing between
singlet and triplet occurs even at zero magnetic field. These re-
sults suggest that, besides crystalline anisotropic contributions
which would be present in the bulk, there are also facet-
dependent anisotropic contributions, possibly arising from
Rashba effects (Sec. V in the SM [73]).

In these bulk samples, the crossover between low and high
Zeeman limits typically occur in the range of B0 < 0.5 Tesla,
as seen in Fig. 3, where the changes in color signify changes in
transition dipoles and hence the excitonic character between
these limits. In comparison, halide perovskite nanocrystals
have a larger crossover magnetic field of B0 = 2.0 Tesla [17].
This is likely due to strong Rashba effects being present at the
surfaces of nanocrystals, which have a significant surface area
to volume ratio.

The hysteresis and the shifts of the central MPL features
in Fig. 2 can be understood as arising from nuclear magnetic
fields. To estimate the magnitude of the Overhauser effect
in our system, we compute excitonic spin polarizations as
predicted by the QME model, 〈�S〉 = Tr[(�Se + �Sh)ρ], where
�Se and �Sh are the electron and hole spin operators. Because
unpolarized light has been used, exitonic spin polarizations
arise not from absorption of circularly polarized photons but
from separation of the excitonic energy levels. Following [22],
we solve nuclear spin polarization and Overhauser fields in-
duced by hyperfine coupling of the electronic and nuclear spin
systems. The Overhauser field is �BN = A �IN/(gμB), where
the nuclear spin polarization �IN at steady state is given by
d
dt

�IN = 〈�S〉
Th f

− �IN
TN

= 0 [120], with Th f and TN being the hy-
perfine interaction time and nuclear spin relaxation times,
respectively. We use a hyperfine coupling of A = 20 μeV
from 207Pb at natural abundance [22]. We find that Overhauser
fields are small compared to the external magnetic fields,
ranging from BN ≈ −0.02 B0 at Th f

TN
≈ 1, to BN ≈ −0.10 B0

at Th f

TN
≈ 5.

The direction of the Overhauser field is opposite to the
external magnetic field. This explains the hysteretic behav-
ior that is observed in the magneto-PL data. When the
direction of the magnetic field sweep is reversed, the magneto-
PL features are consistently shifted so that they appear at
more negative fields when doing a negative-to-positive sweep
after a positive-to-negative one, and at more positive fields

035303-6



IMPACT OF ANISOTROPY IN SPIN-ORBIT COUPLING … PHYSICAL REVIEW B 106, 035303 (2022)

when doing the opposite. This behavior is present in all
spots and is especially apparent in the movement of the
central peak in spot 2, as a result of the persistence of the
Overhauser field over the course of the measurements. The
Overhauser field opposes the external field and tends to lag
behind the changes in the external field. In our fitting to
the QME model, we separate these nuclear spin hysteretic
effects from the purely excitonic effects by taking an average
of positive-to-negative and negative-to-positive sweeps, shift-
ing the magneto-PL data so that the central peak occurs at
B0 = 0 Tesla.

IV. CONCLUSIONS

In conclusion, we have shown that anisotropic electron-
hole interactions are present in the bulk of halide perovskites,
via magneto-optical spectroscopy and quantum master equa-
tion modeling. Even though these anisotropies vary from
location to location, they show reproducible features in the
MPL(B0) plots at low magnetic fields and facet-dependent
MPL trends at high magnetic fields. We show that these are
consequences of a multicomponent electron-hole coupling
and g-factor anisotropy. Besides bulk crystalline anisotropy,
a possible contributor to these anisotropic couplings is the
Rashba effect, which is facet dependent and affected by differ-
ent nanocrystallinities within the bulk of halide perovskites,
such as grain boundaries. These results show that symmetry
breaking in halide perovskites have measurable consequences
on the excitonic level structure of these materials, which must
be considered during the materials engineering process.
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APPENDIX A: SYNTHESIS AND EXPERIMENTAL SETUP

The bulk single crystal of MAPbBr3 with dimensions of
3×3×2 mm was prepared using a procedure described in
Ref. [42]. The PL and MPL spectra of the crystal were
recorded using a fiber-based confocal microscope with NA =
0.65. The spatial resolution of the excitation was ∼0.5 μm,

and immersion took place in a cryogenic system. All the
measurements were performed in a temperature range from
4.0 to 4.5 K. The sample was excited with a 405-nm CW
laser diode. The PL and MPL signals were recorded with
an electrically cooled EM CCD camera (Andor, NewtonTM
EM CCD) with spectral resolution of the detection system
of ∼300 μeV.

APPENDIX B: QUANTUM MASTER
EQUATION SIMULATION

We perform modeling of excitonic populations using a
quantum master equation approach. Exciton populations are
determined by the balance between optical pumping into
bright excitonic levels, incoherent relaxation into low-energy
excitonic levels, and radiative recombination. The evolution
of the density matrix ρ of these excitonic levels is given by
the QME [97]:

dρ

dt
= − i

h̄
[H, ρ] +

(
dρ

dt

)
F

+
(

dρ

dt

)
R

+
(

dρ

dt

)
T

. (B1)

The terms ( dρ

dt )
F

, ( dρ

dt )
R
, and ( dρ

dt )
T

represent optical pump-
ing, radiative recombination, and thermal relaxation of the
excitonic levels, which add, remove, and redistribute, respec-
tively, the population among the four excitonic states. We
solve Eq. (B1) for steady-state excitonic populations as a

function of magnetic field, finding
↔
V values which explain the

experimental MPL(B0).
In our model, the optical pumping term is given by

( dρii

dt )
F

= Fi, with Fi describing the rate of pumping into
state i. In our case of nonresonant optical pumping (405
nm), excitonic population results from carrier relaxation from
higher-energy states instead of direct optical pumping, and we
approximate Fi to be a constant over the four excitonic levels.
Radiative recombination is given by ( dρii

dt )
R

= τ−1ρii, for i
being to one of the three bright triplets �1,1, �1,0, and �1,−1.
Thermal relaxation among the excitonic levels is given by
( dρaa

dt )
T

= ∑
b(kabρbb − kbaρaa), with the rate constants kab =

τ−1
ph eβEa/

∑
c eβEc representing the population relaxation rate

between the excitonic eigenstates a and b, chosen so that a
Boltzmann distribution is achieved in the absence of optical
pumping and recombination effects. The magneto-PL is ob-
tained by computing Tr[	ρ], where 	ii are nonzero solely for
the bright states under a given detector configuration (consid-
ering the J = 1/2 and S = 1/2 conduction and valence bands
only). Here we detect unpolarized PL along the same axis as
the optical pump; that is, 	ii is nonzero only for the bright
triplets �1,1 and �1,−1.

In these simulations we fix the simulation temperature at
the experimental value of 4 K, the recombination time con-
stant at τ = 200 ps, and the thermalization time constant at

τph = 20 fs. The elements of the electron-hole coupling
↔
V

and the g factors are taken as fitting parameters.
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