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Abstract: Finite-element (FE) simulations that go beyond the linear elastic limit of materials can aid
the development of polymeric products such as stretch blow molded angioplasty balloons. The FE
model requires the input of an appropriate elastoplastic material model. Up to the onset of necking,
the identification of the hardening curve is well established. Subsequently, additional information
such as the cross-section and the triaxial stress state inside the specimen is required. The present
study aims to inversely identify the post-necking hardening behavior of the semi-crystalline polymer
polyamide 12 (PA12) at different temperatures. Our approach uses structural FE simulations of
a dog-bone tensile specimen in LS-DYNA with mesh sizes of 1 mm and 2 mm, respectively. The
FE simulations are coupled with an optimization routine defined in LS-OPT to identify material
properties matching the experimental behavior. A Von Mises yield criterion coupled with a user-
defined hardening curve (HC) were considered. Up to the beginning of necking, the Hockett–Sherby
hardening law achieved the best fit to the experimental HC. To fit the entire HC until fracture, an
extension of the Hockett–Sherby law with power-law functions achieved an excellent fit. Comparing
the simulation and the experiment, the following coefficient of determination R2 could be achieved:
Group I: R2 > 0.9743; Group II: R2 > 0.9653; Group III: R2 > 0.9927. Using an inverse approach,
we were able to determine the deformation behavior of PA12 under uniaxial tension for different
temperatures and mathematically describe the HC.

Keywords: PA12; mechanical properties; inverse identification; post-necking; modeling; plasticity

1. Introduction

Polymeric materials have become an integral part of many industrial fields and must
fulfill structural requirements. To avoid expensive trials in the design process phase of
polymeric products, structural simulations based on the finite-element (FE) method are
used. FE simulation tools require the input of appropriate mechanical material properties.
The linear elastic material model requires the input of the Young’s modulus as well as the
Poisson’s ratio. Both values are available for a broad range of materials. Due to the lack
of further data, many numerical simulations do not include plasticity and are limited to
linear elasticity. However, for example, the injection stretch blow molding of percutaneous
transluminal coronary angioplasty (PTCA) balloons requires the consideration of plasticity
as the stretching load during the manufacturing process goes over the elastic limit of the
material [1]. The plastic theory requires additional information, namely, a yield function, a
flow-rule, and the definition of a hardening curve. The extraction of the Young’s modulus,
the Poisson’s ratio, and the hardening curve up to the onset of necking is well established.
However, most of the available models have been developed for metals, which mostly
fracture after necking. Polymers, on the other hand, often show a neck propagation
followed by a strain hardening before fracture [2].

Polymers 2022, 14, 3476. https://doi.org/10.3390/polym14173476 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14173476
https://doi.org/10.3390/polym14173476
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-2755-8138
https://orcid.org/0000-0002-5267-5777
https://orcid.org/0000-0002-9283-0110
https://doi.org/10.3390/polym14173476
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14173476?type=check_update&version=1


Polymers 2022, 14, 3476 2 of 15

Post-necking or large strain information can either be obtained from extracting addi-
tional information from the uniaxial tensile tests or from different experimental tests such
as hydraulic bulge tests or cylinder or stacked compression [3–5]. Additional information
can be obtained from full-field strain measurements with digital image correlation (DIC) [6]
or from the measurement of the cross-section with video or clip-on extensometers during
the experiment. However, full-field DIC is often not available, and the measurement of the
cross-section requires the knowledge of the exact location where the neck forms. This is,
depending on the specimen geometry, not known prior to testing. Furthermore, neither of
these tests are able to account for the triaxial stress state inside the neck [7,8], and therefore
subsequent corrections are necessary.

In the past, large strain material behaviors have been studied extensively for semi-
crystalline polymers such as high-density polyethylene (HDPE), polyvinyl chloride (PVC),
and polycarbonate (PC) [8–12]. Most of those studies are based on the measurement of the
cross-sectional change during necking. Arriaga et al. [13] proposed a method that does not
rely on measurements of the cross-section but uses some general mathematical conversion
methods on the hardening curve obtained from simple uniaxial tensile tests.

Another possibility to obtain large strain material properties is the inverse identifi-
cation FE approach. This approach uses FE simulations coupled with an optimization
routine to identify the material properties that represent best the experimentally deter-
mined mechanical behavior of a specimen. Shin et al. [14] used an inverse finite-element
(FE) approach to fit the hardening law to the experimental data of fiber-reinforced polymers
without necking. Zhang et al. [15] proposed an inverse approach synchronized with a DIC
setup to identify the post-necking behavior of metallic sheets, without neck propagation.
To the authors’ best knowledge, no method is publicly available to obtain the hardening
curve for polymers with neck propagation and strain hardening based on experimental
force–displacement curves without manual trial and error methods. Furthermore, the
inverse identification approach on the post-necking properties of semi-crystalline polymers
has to our knowledge not been studied yet.

The semi-crystalline polymer Polyamide 12 (PA12) has good chemical and abrasion
resistance as well as a low coefficient of friction. In addition, its high strength combined
with high compliance [16] makes it a widely used polymer in many industrial sectors such
as automotive, electronics, packaging, and medical devices. The most common processing
techniques to manufacture PA12 are injection molding, pipe extrusion, film extrusion, and
blow-molding. PA12 was selected for this work due to its frequent use in the manufacturing
of PTCA balloons [17] and PTCA catheter shafts.

The present work inversely identifies the hardening curves post-necking for the
semi-crystalline polymer PA12 in a temperature range from 23 ◦C to 100 ◦C. The used
experimental data are based on uniaxial tensile tests on dog bone specimens published by
Amstutz et al. [18].

2. Materials and Methods

In [18], uniaxial tensile tests were performed on ambient (stored at 23 ◦C and 50% r. H.)
and conditioned (stored in water at 23 ◦C for 40 days) injection molded Grilamid®L25 PA12
dog bone specimens (ISO 527-2, Type 1A, EMS-CHEMIE AG, Domat/Ems, Switzerland).
The specimens had a cross-section of 10 × 4 mm2 and a total length of 170 mm and were
subjected to a tensile load with a constant cross-head velocity of 50 mm/min until fracture.
The tests were performed at 23 ◦C, 37 ◦C, 50 ◦C, 80 ◦C, and 100 ◦C. This temperature
range was adopted for the present work since it covers the temperatures used during the
manufacturing steps of PTCA balloons [1] and shafts.

The force–displacement curves, the identified Young’s modulus (E) and the Poisson’s
ratio (ν) were used from [18] for the present work.

The behavior of the force–displacement curves were divided in three groups:

• Necking followed by stable neck propagation until fracture (23 ◦C ambient, condi-
tioned) (Group I);
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• Necking followed by strain hardening (37 ◦C ambient and conditioned, 50 ◦C ambient)
(Group II);

• Without necking (50 ◦C conditioned, 80 ◦C ambient and conditioned, 100 ◦C) (Group III).

2.1. Stress and Strain Conversion

The engineering stress–strain curve (cf. Figure 1) depends on the applied force F and
the initial cross section A0. Therefore, the engineering stress σeng starts to decrease after the
sample starts to neck locally. Nevertheless, the true stress inside the specimen depends on
the actual cross-section A and increases after necking since the cross-section locally reduces.
Based on the assumptions that (a) the stress distribution along the gauge section of the
specimen is uniaxial and (b) uniform, and that (c) the material behaves in an incompressible
manner, σtrue and εtrue can be approximated by Equations (1) and (2), respectively.

σtrue =
F
A

= σeng·
(
1 + εeng

)
[MPa] (1)

εtrue =
∫ L

L0

∆L
L

= ln
(
1 + εeng

)
[−] (2)
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Figure 1. Exemplary engineering stress–strain and true stress–strain curve of a semi-crystalline
thermoplastic material. The point of necking is defined as the highest engineering stress followed
by a stress decline. εe marks the end of the elasticity and the true strain εn,true the beginning of
the necking.

While this approximation of σtrue and εtrue is valid until the specimen starts to neck
locally, the assumptions (a, b) are not fulfilled anymore after necking. As described in [3,4],
the stress distribution changes to a triaxial stress state in the region of the neck, and therefore
the stress is neither uniaxial nor uniform anymore. To identify the mechanical properties
after necking, an inverse identification approach was used and is explained in Section 2.2.2.

After reaching the elastic limit σe (εe) (cf. Figure 1), plastic effects must be consid-
ered. The effective plastic strain εpl can be obtained from the true stress–strain using
Equation (3).

εpl = εtrue −
σtrue

E
[−]. (3)

The hardening curve (HC) is defined by εpl and σtrue and goes from σe until failure.
Therefore, σe is the first true stress value of the HC, where εpl = 0.

To obtain a temperature-dependent Young’s modulus E and proportionality limit σe,
the model of Mahieux et al. (cf. Equation (4)) [19,20] was used. P represents either E or σe.

P(T) =
(

Pg − Pr
)
∗ e

−( T
Tg )

m

+ Pr ∗ e−( T
Td

)
n

[MPa]. (4)
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As a measure of how well the model fits the experimental data, the coefficient of
determination R2 was evaluated and rated as:

R2 = 0: no fit
R2 = 1: perfect fit
0 < R2 < 1: partial correct fit

2.2. Elastoplastic Constitutive Model and Inverse Identification Approach

The linear part of the stress–strain curve is described by Hook’s Law (cf. Equation (5)).

σ = E·εel [MPa]. (5)

To introduce plasticity to the material model, a yield criterion is required. In the
present work, an isotropic elastoplastic model was considered using the Von Mises yield
criterion Y (cf. Equation (6)), where J2 is the second invariant of the deviatoric stress tensor,
and σh is the yield strength defined by the isotropic hardening model. This criterion states
that a material starts yielding once the Von Mises stress σVM in the material exceeds σh.

Y(J2) =
√

3·J2︸ ︷︷ ︸
σVM

− σh

(
εpl

)
[MPa]. (6)

2.2.1. Hardening Model until Necking

Until the onset of necking, the HC is known and can be extracted directly from the
experiment using Equations (1)–(3). The following power-law (cf. Equations (7)–(9)) [21–23] and
exponential (cf. Equations (10) and (11)) [24,25] models are used to describe the isotropic
hardening σh prior to necking.

σLudwik = σe + k·εn
pl [MPa], (7)

σSwi f t = σe·
(

1 +
εpl

ε0

)n
[MPa], (8)

σGhosh = σe + k·
(

ε0 + εpl

)n
[MPa], (9)

σVoce = σe + σ∞·
(

1 − e−k·εpl
)
[MPa], (10)

σHockett−Sherby = σe + (σ∞ − σe)
(

1 − e−k·εn
pl
)
[MPa]. (11)

The specific material parameters σe, k, n, ε0, and σ∞ are derived from a least squares
curve fitted to the experimental HC. The quality of the fit is assessed by R2.

2.2.2. Hardening Model Post Necking

As mentioned above, after the onset of necking, the HC can no longer be extracted
from the experimental data. Therefore, the approach from Section 2.2.1 is not valid anymore,
and the HC is unknown. After the specimen starts to neck more information, the actual
cross-section of the specimen is needed. As Kwon et al. [8] showed, further conversion
of the data is required, since the stress is no longer uniaxial and uniform but triaxial and
localized in the neck. This triaxial stress state influences the Von Mises stress, since it is no
longer solely based on the stress in the tensile direction.

Since the HC was unknown, an inverse identification approach was used. This
approach used the optimization tool LS-OPT 6.0.0 (Livermore Software Technology Corpo-
ration, Livermore, CA, USA) to optimize the HC used in an FE simulation to match the
experimental force–displacement curve. The optimization routine is shown in Figure 2.
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Figure 2. Optimization routine in LS-OPT 6.0.0 using an FE simulation in LS-DYNA of the dog bone
tensile specimen and a user-defined HC σh to minimize the difference between the simulated and the
experimental force–displacement curve.

In the first step, the fitting parameters (x1, x2, . . . xi) are defined as variables.
Based on those variables, a user-defined HC σh is calculated using Python 3.8 with

either polynomial (cf. Equation (12)) or exponential (cf. Equation (13)) functions.

σh(x1, x2, x3) = x1·(ε − εi)
3 + x2·(ε − εi)

2 + x3·(ε − εi), (12)

σh(x1) = σi·ex1·(ε−εi)
x2 . (13)

Because of the tendency to oscillate (Runge’s phenomenon), higher order polynomials
were not considered. For the fitting parameters, ranges of 0 to 500 and 0 to 10 were used
for Equations (12) and (13), respectively. In these ranges, the experimental design space
was defined by a linear D-optimal metamodel [26] with 16 points. Due to the complexity of
the HC, it was not possible to fit the whole HC with only one polynomial or exponential
function. To avoid instability of the FE simulations in the large strain region due to a bad
fit, the HC was divided into various strain regions, which were then fitted successively.
Therefore, εi and σi defined the last point of the already-fitted region.

The HC σh was used in the piecewise linear plasticity material model (MAT024) of a
FE simulation of the dog bone specimen using the implicit solver of LS-DYNA (Livermore
Software Technology Corporation, Livermore, CA, USA) smp dR11.1.

The calculated force–displacement curve was then compared to the experimental
curve by curve mapping. An Adaptive Simulated Annealing (ASA) optimization algorithm
was used to minimize the difference between the curves [27,28]. Based on the result of the
optimization, the parameter range was reduced, and a new design space was defined. A
maximum of 20 optimization iterations was performed.

According to [26], after necking, the obtained HC depends on the mesh size (MS) [29].
Therefore, two 3-dimensional (3D) FE models with different mesh sizes (1 mm and 2 mm)
were generated (cf. Figure 3). To ensure that a mesh size of 1 mm could converge, one
additional simulation was performed with a mesh size of 0.5 mm. The results are shown in
Appendix A Figure A1. Both mesh sizes (0.5 mm and 1 mm) showed the same result.
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Figure 3. A 3D FE model of the dog bone specimen (ISO 527-2, Type 1A with a total length of
170 mm and a cross section of 10 × 4 mm2) using symmetry in the x-direction. The left-hand side
of the specimen (blue) is fixed, and the right-hand side (black) is subjected to a displacement with
kinematic coupling functionality. The red point, which is 35 mm from the symmetry plane, indicates
the point where local displacement is measured. (a) MS = 1 mm (1960 elements); (b) MS = 2 mm
(250 elements).

To reduce the computational effort, the symmetry of the specimen in the x-direction
was used. Further symmetries were not considered to avoid influences on the neck shape
and formation, respectively. On the symmetry plane of the model (blue line), the x-direction
as well as the rotations around x, y, and z-axes were fixed. A displacement in the x-direction
was applied on the right side (black line) using the kinematic coupling functionality (with
a reference node). In this model, the reaction force F was evaluated at the nodes on the
symmetry plane, and the displacement l was measured at the red point in the same place
as in the experiment (cf. Figure 3).

Based on the identified hardening curves, a single mathematical expression was
derived to express the entire HC.

3. Results
3.1. Linear Elastic Values

An overview of the linear elastic values can be found in Table 1.

Table 1. Linear elastic values. E and ν were taken from [18]. σe represents the first value of the HC.

Temp (◦C) E (MPa) σe (MPa) ν (-) E (MPa) σe (MPa) ν (-)
Ambient Conditioned

23 1553.5 29.76 0.37 882.0 11.38 0.31

37 1036.3 11.86 0.44 641.5 7.67 0.46

50 606.2 7.26 0.46 446.4 5.32 0.46

80 315.2 4.69 0.47 297.6 4.42 0.47

100 272.1 4.04 0.47 - - -

The resulting variables of the temperature-dependent linear elastic values fitted to
Equation (4) are shown in Table 2.

Table 2. Variables of the mathematical model to fit the linear elastic values in a temperature range of
23–100 ◦C or 296–373 K.

Variable
Fit of E (MPa) Fit of σe (MPa)

Ambient Conditioned Ambient Conditioned

Pg 1952 1103 5857 18.57

Pr 395 310.0 4.722 4.575

Td 401.3 411 408 408.8

Tg 312.8 312.7 200 302.1

m 21.17 19.13 4.328 15.96

n 12.8 18.16 21.2 22.84

R2 0.9994 0.9995 0.99958 1
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The results of the fit are depicted in Figure 4.
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3.2. Curve Fitting until Necking

The HC for Group I and II until necking was extracted using Equations (1)–(3). Overall,
the best fit for the HC until necking was achieved with the Hockett–Sherby model (cf.
Table 3). Only the variables of the best fit are shown. The results of the fit to Ludwik, Swift,
Ghosh, and Voce can be found in the Appendix B Table A1. Since this material model is
only applicable until necking starts, for each model the maximum valid Von Mises Stress
σVM is given in Table 3.

Table 3. Fitted variables of the Hockett–Sherby model until necking for 23 ◦C (Ambient and Condi-
tioned), 37 ◦C (Ambient and Conditioned), and 50 ◦C (Ambient) R2.

Temp. (◦C) Variable
σHockett−Sherby

Amb Cond

23 (valid up to σVM,amb = 47.5 MPa,
σVM,cond = 43 MPa)

k 195.6 4.149
n 0.8 0.4159

σ∞ 46.46 48.8
R2 0.996 0.9946

37 (valid up to σVM,amb = 41 MPa,
σVM,cond = 35 MPa)

k 2.539 4.56
n 0.3681 0.519

σ∞ 53.43 41.74
R2 0.9925 0.9997

50 (valid up to σVM,amb = 35 MPa)

k 4.646 -
n 0.5207 -

σ∞ 40.67 -
R2 0.9997 -

As mentioned before, Group III showed no necking. Therefore, the entire HC could
be extracted from the experimental data. However, the behavior of these curves was too
complex to be described with the available laws (Equations (7)–(11)). Since the Hockett–
Sherby law achieved the best fit overall until necking for Group I and II (cf. Table 3), it was
used as a basis for derivation of a new mathematical expression. An extension of this law
by power-law functions (cf. Equation (14)) showed a good fit to the experimental data of
Group III.

σextended Hockett−Sherby = σe + (σ∞ − σe)
(

1 − e−m·εn
pl
)

︸ ︷︷ ︸
Hockett–Sherby

+ o·εp
pl + q·εr

pl (14)
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During the least squares fit, no negative values for the parameters (σ∞, m, n, o, p, q,
r) were considered. The variables and the quality of the fit are shown in Table 4, and the
resulting force–displacement curve is depicted in Figure 5.

Table 4. Variables of the extended Hockett–Sherby model for Group III (50 ◦C Cond, 80 ◦C
Amb/Cond, and 100 ◦C). R2–HC is the goodness of the extended Hockett–Sherby model to the
experimental HC. R2–FD, MS = 1 mm is the goodness of the resulting force–displacement curve using
a mesh size of 1 mm; and R2–FD, MS = 2 mm is the quality of the resulting force–displacement curve
using a mesh size of 2 mm.

Variable 50 ◦C Cond 80 ◦C Amb 80 ◦C Cond 100 ◦C

σ∞ 30.98 24.52 25.08 20.66
m 7.389 6.309 4.429 6.088
n 0.5794 0.5784 0.5298 0.563
o 48.01 62.16 76.34 63.99
p 7.512 8.015 2.803 8.499
q 79.43 70.78 79.21 61.12
r 2.296 2.379 12.04 2.457

R2–HC 1 1 1 1
R2–FD, MS = 1 mm 0.994 0.9971 0.9961 0.9976
R2–FD, MS = 2 mm 0.9958 0.9929 0.9937 0.9927
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Figure 5. Comparison of the experimental data to the simulation of Group III for two mesh sizes. The
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50 ◦C (conditioned), 80 ◦C (ambient/conditioned), and 100 ◦C for an MS of 1 and 2 mm.
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3.3. Curve Fitting Post-Necking

For the fit of Group I (stable neck propagation) at 23 ◦C (ambient/conditioned), an
inverse identification with a successive fit with Equation (12) or (13) was applied. The
resulting force–displacement curves, the quality of the fit (R2), and the experimental data
are shown for the ambient and the conditioned samples in Figure 6a,b, respectively. For
each mesh size (MS = 1 mm and MS = 2 mm) an HC (HC = 1 mm and HC = 2 mm) could
be obtained (cf. Figure 6c) from the optimization routine. To show the impact on the result,
the HC obtained with an MS of 1 mm was used for the simulation with an MS of 2 mm
(MS = 1 mm, HC = 2 mm) and vice versa. Figure 6d shows the neck propagation, and the
effective plastic strain in LS-DYNA.
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The same method (successive fit) was applied to Group II (necking followed by strain
hardening) at 37 ◦C. However, no strain hardening could be achieved (cf. Figure 7a). Due
to the missing strain hardening, the obtained HC was only valid until σVM = 144 MPa .
Furthermore, the extended Hockett–Sherby model, derived in Section 3.2, was used during
the optimization to fit the entire force–displacement curve (cf. Figure 7b). The derived HCs
can be seen in Figure 7c).

Due to the restrictions with the successive fit, only the extended Hockett–Sherby
model was applied at 37 ◦C (conditioned) (cf. Figure 8a) and 50 ◦C (ambient) (cf. Figure 8b).
The obtained HC can be seen in Figure 8c).
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The obtained HCs were expressed by using the extended Hockett–Sherby model. The
variables are shown in Table 5. Due to the complex shape after the onset of necking till the
start of neck propagation, the HC at 23 ◦C ambient (cf. Figure 6a) could not be fitted by the
extended Hockett–Sherby model.

Polymers 2022, 14, x FOR PEER REVIEW 10 of 16 
 

 

 
 

(a) (b) 

  
(c) (d) 

Figure 6. Comparison of the experimental data to the simulation of Group I for two mesh sizes (MS 
= 1 mm and MS = 2 mm). HC = 1 mm: HC identified with MS = 1 mm, HC = 2 mm: HC identified 
with MS = 2 mm. The shaded area indicates a ±10% force region around the experimental curve. (a) 
Experimental and simulated force–displacement curves at 23 °C (ambient) including the resulting 𝑅 . (b) Experimental and simulated force–displacement curves at 23 °C (ambient) including the 
resulting 𝑅 . (c) HCs for 23 °C (ambient/conditioned) for an MS of 1 and 2 mm. (d) Neck forming 
and propagation in the FE model. 

The same method (successive fit) was applied to Group II (necking followed by strain 
hardening) at 37 °C. However, no strain hardening could be achieved (cf. Figure 7a). Due 
to the missing strain hardening, the obtained HC was only valid until 𝜎 = 144 MPa . 
Furthermore, the extended Hockett–Sherby model, derived in Section 3.2, was used 
during the optimization to fit the entire force–displacement curve (cf. Figure 7b). The 
derived HCs can be seen in Figure 7c). 

  

(a) (b) 

Polymers 2022, 14, x FOR PEER REVIEW 11 of 16 
 

 

 
(c) 

Figure 7. Comparison of the experimental data to the simulation of Group II for two mesh sizes (MS 
= 1 mm and MS = 2 mm). HC = 1 mm: HC identified with MS = 1 mm, HC = 2 mm: HC identified 
with MS = 2 mm. The shaded area indicates a ±10% force region around the experimental curve. (a) 
Experimental and simulated force–displacement curves at 37 °C (ambient) with the successive 
fitting of the HC including the resulting 𝑅 . (b) Experimental and simulated force–displacement 
curves at 37 °C (ambient) with the extended Hockett–Sherby model including the resulting 𝑅 . (c) 
HCs for the extended Hockett–Sherby model and the successive fit for an MS of 1 and 2 mm.  

Due to the restrictions with the successive fit, only the extended Hockett–Sherby 
model was applied at 37 °C (conditioned) (cf. Figure 8a) and 50 °C (ambient) (cf. Figure 
8b). The obtained HC can be seen in Figure 8c).  

 
 

(a) (b) 

 
(c) 

Figure 8. Comparison of the experimental data to the simulation of Group II for two mesh sizes (MS 
= 1 mm and MS = 2 mm). HC = 1 mm: HC identified with MS = 1 mm, HC = 2 mm: HC identified 
with MS = 2 mm. The shaded area indicates a ±10% force region around the experimental curve. (a) 
Experimental and simulated force–displacement curves at 37 °C (conditioned) with the extended 
Hockett–Sherby model including the resulting 𝑅 . (b) Experimental and simulated force–

Figure 7. Comparison of the experimental data to the simulation of Group II for two mesh sizes
(MS = 1 mm and MS = 2 mm). HC = 1 mm: HC identified with MS = 1 mm, HC = 2 mm: HC identified
with MS = 2 mm. The shaded area indicates a ±10% force region around the experimental curve.
(a) Experimental and simulated force–displacement curves at 37 ◦C (ambient) with the successive
fitting of the HC including the resulting R2. (b) Experimental and simulated force–displacement
curves at 37 ◦C (ambient) with the extended Hockett–Sherby model including the resulting R2.
(c) HCs for the extended Hockett–Sherby model and the successive fit for an MS of 1 and 2 mm.

Table 5. Variables of the extend Hockett–Sherby model for 23 ◦C (conditioned), 37 ◦C (ambi-
ent/conditioned), and 50 ◦C (ambient).

Variable 23 ◦C Cond 37 ◦C Amb 37 ◦C Cond 50 ◦C Amb
MS (mm) 1 2 1 (σVM,=144 MPa) 1 2 (σVM=144 MPa) 2 1 2 1 2

σ∞ 34.96 39.9 43.42 37.88 41.72 32.2 39.40 36.26 36.06 37.57
m 23.36 6.967 4.961 3.395 5.908 14.5 5.94 14.45 8.047 6.316
n 3.494 0.4335 0.4241 4.579 0.4479 0.7373 0.57 0.7913 0.6062 0.5632
o 10.16 3.494 52.94 30.76 2.184 8.742 36.98 38.38 0.8628 90.57
p 4.373 0.7256 1.719 4.015 6.024 0.031366 2.79 2.385 4.171 2.661
q 41.96 88 0.4477 44.26 51.04 71.01 49.30 51.83 84.64 0.8859
r 1.232 2.596 8.613 0.2106 1.588 2.172 2.79 2.694 2.469 15.07
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Figure 8. Comparison of the experimental data to the simulation of Group II for two mesh sizes
(MS = 1 mm and MS = 2 mm). HC = 1 mm: HC identified with MS = 1 mm, HC = 2 mm: HC identified
with MS = 2 mm. The shaded area indicates a ±10% force region around the experimental curve.
(a) Experimental and simulated force–displacement curves at 37 ◦C (conditioned) with the extended
Hockett–Sherby model including the resulting R2. (b) Experimental and simulated force–displacement
curves at 50 ◦C (ambient) with the extended Hockett–Sherby model including the resulting R2.
(c) HCs for the extended Hockett–Sherby model for an MS of 1 and 2 mm.

4. Discussion

The extraction of the HC until necking starts is state of the art, and many mathematical
models are available to describe the curve. Five different models were compared against
each other, and overall, the Hockett–Sherby model showed the best fit to the experimental
data of the semi-crystalline polymer PA12. It must be noted that this model is only valid
for a limited strain range.

By extending the Hockett–Sherby model with two power-law functions, a perfect fit
(R2 = 1) to the experimental HC of Group III (no necking) could be achieved. Despite the
perfect match to the experimental HC, a slight deviation to the experimental force–displacement
curve could be observed. The simulation with a mesh size of 1 mm usually resulted in a
slightly stiffer behavior, and a mesh size of 2 mm in a slightly less stiff behavior at fracture
compared to the experimental data. However, this deviation appears mainly in the large
strain region, where already a high mesh distortion is present. This in turn can lead to
differences in the experimental data. Overall, a good fit for Group III could be achieved
(R2 > 0.9927).

The inverse identification could be applied to specimens in Group I (stable neck
propagation) and Group II (necking followed by strain hardening).

For Group I, a successive fit to the experimental data could be applied, and a good fit
of R2 = 0.999 (MS = 1 mm, HC = 1 mm) and R2 = 0.9905 (MS = 1 mm, HC = 1 mm) could
be obtained at 23 ◦C ambient and 23 ◦C conditioned, respectively. This method was not
applicable for Group II, since no strain hardening could be obtained. At 37 ◦C (ambient) a
nice fit of the necking could be obtained (R2 = 0.9948, MS = 1 mm, HC = 1 mm). However,
this model is only valid until σVM = 144 MPa. A fit with the extended Hockett–Sherby
model over the whole strain region was able to model the strain hardening. However,
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the accuracy in the strain region where necking takes place was reduced (R2 = 0.9775).
A reason, therefore, could be that the extended Hockett–Sherby model is not yet able to
perfectly describe the complex behavior of the hardening curve, especially when strain
hardening, and a large drop ratio are present. For the further fitting of Group II (37 ◦C
conditioned (R2 = 0.9931, MS = 1 mm, HC = 1 mm) and 50 ◦C ambient (R2 = 0.9979,
MS = 1 mm, HC = 1 mm)), only the extended Hockett–Sherby model was applied. Since
both curves are similar, the obtained hardening curves are comparable. Comparing Group
II to Group III specimens, it can be seen that the necking depends on the shape of the
hardening curve. Although the same mathematical model was used for Group II and
Group III, Group II exhibited necking, and Group III did not.

By using two different mesh sizes, it could be shown that the mesh size influences the
outcome of the hardening curve. When using the identified material model, the mesh size
must be considered. By using a hardening curve that was identified with a different mesh
size, R2 was reduced by approximately 1%.

Since no measurement of the strain field on the specimen was available, the resulting
strain field in LS-DYNA could not be compared to the experimental one. Therefore, the
validation only relies on the force–displacement curve. DIC measurements could also aid in
finding a mathematical model to fit hardening curves where necking is followed by strain
hardening. During the experiment, the neck forms randomly along the parallel part of the
dog bone. Even though the neck forms at different locations for each specimen the resulting
force–displacement curves do not show increased scattering. Therefore, the location of the
neck does not influence the result. During the FE simulation, necking always occurred in
the middle part of the dog bone (cf. Figure 6d).

To obtain a temperature-dependent model for the linear–elastic material parameters,
the model of Mahieux et al. [19] was applied. Even though a good fit for the Young’s
modulus (R2 > 0.9994) and the yield point (R2 > 0.99958) could be achieved, and even
though this model has been developed specifically for polymers, limited data were available
for the fit. For a more reliable fit, more measurement points in the used temperature range
(296–373 K) would be required. The currently identified parameters for this model might
be correct for the measurement points at 23 ◦C, 37 ◦C, 50 ◦C, 80 ◦C, and 100 ◦C, but the
behavior in-between these points still remains unknown.

With the applied inverse identification approach, necking behavior can easily be
fitted. If the necking is followed by a stable neck propagation, a successive fit to the
experimental curve can be applied. Even though it is usually not recommended to fit
too many parameters at once, an overall model is required if the curve is followed by
strain hardening. Successive fits resulted in a stable neck propagation and not in the
desired strain hardening. Furthermore, a successive fit requires a steady curve to avoid
convergence issues.

The shown inverse identification approach was applied to injection molded dog bone
specimens since testing as well as simulation are already well established. In [18,30,31]
it was shown that the mechanical properties vary between the specimen size, applied
treatment, and the used manufacturing technology. This fact must be considered when
using the proposed material properties. However, in the present work, the necessary
methodology was developed and can be applied to different specimen types. Especially for
use in PTCA balloon catheters that are manufactured from small, extruded tubing and that
undergo various forming and heat treatment steps, this has to be considered.

In the future, a mathematical model that also takes the temperature dependence of the
plastic behavior into account would be favorable.

Most available material models have been developed for metals. The yielding behavior
of polymers may vary between tension and compression. Therefore, the Von Mises yield
criterion is not fulfilled. Therefore, an inverse identification based on various tests and an
appropriate yield criterion such as the Drucker–Prager criterion may be required. Further-
more, polymers often show a certain degree of anisotropy and no volume preservation in
plasticity [13].
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During this research, experimental data were available only for PA12. In the future,
other polymers should be considered for the inverse identification approach. Furthermore,
it would be of interest to see how well the extended Hockett–Sherby model represents the
hardening of other polymers.

5. Conclusions

Using a material model that goes beyond the linear elastic limit of materials can aid the
development of high-performance polymeric products. The inverse identification approach
shown in the present work can be helpful for the extraction of the appropriate material
parameters, especially if only experimental force–displacement curves are available. Fur-
thermore, the developed extended Hockett–Sherby model offers the possibility to use a
single mathematical equation to define the hardening curve of semicrystalline polymers
such as PA12. Finally, this works provides a set of material properties for the semicrystalline
polymer PA12 under uniaxial tension in a temperature range of 23 ◦C–100 ◦C.

Author Contributions: Conceptualization, C.A. and A.Z.; methodology, C.A.; validation, C.A.;
formal analysis, C.A.; writing—original draft preparation, C.A.; writing—review and editing, C.A,
B.W., A.H., A.Z, and J.B; supervision, A.Z. and J.B.; funding acquisition, A.Z. and J.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Innosuisse–Swiss Innovation Agency, grant number
32091.1 IP-LS. Open access funding was provided by the University of Bern and swissuniversities.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Acknowledgments: The authors would like to thank Bernd Hochholdinger for his help in defining
the user-defined hardening curve script in Python.

Conflicts of Interest: The authors declare no conflict of interest relevant to this work.

Appendix A

To evaluate the convergence of the FE simulation, the results of three models with
different mesh sizes (0.5 mm, 1 mm, and 2 mm) were compared using the material prop-
erties obtained from the experiment on dog bone specimens at 100 ◦C. In Figure A1, the
result with a mesh size of 2 mm varies from the those with mesh sizes of 1 mm and
0.5 mm, respectively. However, simulations with mesh sizes of 1 mm and 0.5 mm showed
the same results. From that it can be concluded that a mesh size of 1 mm is sufficient to
obtain convergence.
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Appendix B

The results of the fit to Ludwik, Swift, Ghosh, and Voce (cf. Equations (7)–(10)) are
shown in Table A1.

Table A1. Variables of fit to the Ludwik, Swift, and Ghosh models until necking for 23 ◦C (Ambient and
Conditioned), 37 ◦C (Ambient and Conditioned), and 50 ◦C (Ambient) including the resulting R2.

Temp. (◦C) Variable
σLudwik σSwift σGhosh σVoce

Amb Cond Amb Cond Amb Cond Amb Cond

23 (valid up to σVM,amb = 47.5 MPa,
σVM,cond = 43 MPa)

ε0 − − 1.155 × 10−4 2.92 × 10−5 2.34 × 10−14 2.34 × 10−14 − −
k 159.2 49.21 − − 159.2 49.21 902.9 69.34
n 0.426 0.2328 0.1149 0.1494 0.426 0.2328 − −

σ∞ − − − − − − 15.46 29.3
R2 0.9629 0.9760 0.992 0.9923 0.9629 0.9760 0.9881 0.8632

37 (valid up to σVM,amb = 41 MPa,
σVM,cond = 35 MPa)

σe − − 4.23 × 10−5 1.193 × 10−4 2.34 × 10−14 2.33 × 10−14 - −
k 47.82 49.94 − − 47.82 49.94 60.91 34.98
n 0.2467 0.3017 0.1515 0.2156 0.2467 0.3017 - -

σ∞ − − − − − − 27.36 27.31
R2 0.9852 0.9853 0.9959 0.9947 0.9852 0.9853 0.8319 0.9395

50 (valid up to σVM,amb = 35 MPa )

σe − − 1.059 × 10-4 − 2.34 × 10-14 − − −
k 48.86 − − − 48.85 − 34.9 −
n 0.2987 − 0.2163 − − − − −

σ∞ − − − − − − 27.04 −
R2 0.9844 − 0.9941 − 0.9844 − 0.9396 −
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