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The power law in terms of stretch, the truncated series
representation and the Valanis–Landel hypothesis
are distinguished features of Ogden’s strain-energy
density function. While they represent a set of
special constitutive choices, they have also been
shown recently to allow a particular molecular
statistical interpretation of the model, where each
of these ingredients can be associated with a step
in the development of the strain-energy density of
the polymer network from the statistical mechanics
of long-chain molecules. The schematic of this
perspective brings us into a position to vary these
steps individually. By this means, Ogden’s theory can
be embedded in a certain family of models within
the large class of isotropic hyperelastic materials,
whose members can be identified as close and distant
‘relatives’.

This article is part of the theme issue ‘The Ogden
model of rubber mechanics: Fifty years of impact on
nonlinear elasticity’.

1. Introduction
In 1972, R. W. Ogden proposed a new class of
strain-energy density functions for incompressible and
compressible rubber-like materials [1,2], the first of
which has become probably one of the most used
constitutive equations for highly deformable, isotropic
hyperelastic materials to date. The proposed form
differed from the common approaches at that time,
and even nowadays its development in terms of
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the principal stretches stands out from the majority of phenomenological hyperelastic models,
which are formulated in terms of the principal strain invariants. Clearly, the invariants can be
expressed as quadratic functions of the principal stretches (see e.g. [3]), whereas the squared
principal stretches are the roots of the characteristic polynomial in terms of the principal
invariants [4,5]. Accordingly, any invariant-based strain-energy density function can generally
be expressed in terms of the principal stretches and vice versa. However, the corresponding
reformulation generally leads to more complicated mathematical expressions, which can become
particularly cumbersome in the analysis of stress and stiffness. In fact, simplicity of mathematical
analysis was an explicit argument for the development of Ogden’s incompressible model [1]

Ψ =
R∑

r=1

μr

αr
(λαr

1 + λ
αr
2 + λ

αr
3 − 3) =

3∑
i=1

R∑
r=1

μr

αr
(λαr

i − 1), λ1λ2λ3 = 1, (1.1)

with μrαr > 0 (no sum) for each r. Indeed, given that stress and strain share the same principal
directions in isotropic hyperelastic materials, the form (1.1) leads to particularly lean expressions
for the principal stresses, which facilitate comparison of the model response under ideal
homogeneous loading conditions with standardized tests for mechanical characterization, such
as simple tension, equibiaxial extension and pure shear. Ogden’s model shares this beneficial
property with earlier developments of principal stretch-based formulations of the strain-energy
density functions, such as those by Carmichael & Holdaway [6] and Valanis & Landel [7].
The latter proposed a strain-energy density function for incompressible isotropic hyperelastic
materials as the sum of a single scalar function evaluated at the three principal stretches, a
representation that has become known as the Valanis–Landel hypothesis. Ogden’s model (1.1)
hence belongs to the group of Valanis–Landel-type materials.

The argument of simplicity may have lost significance relative to the argument of robust
numerical implementation with the advent of computational finite element techniques. In fact, it
is well known that the computation of derivatives of the eigenvalues with respect to strain tensors
and thus the determination of tangent tensors pose their own challenges under generic non-
homogeneous loading conditions when the principal stretches change order and travel through
coalescing values. However, algorithmic solutions (see e.g. [8], §5.6), closed-form expressions for
the tangent tensors [9–12] and invariant-based reformulations [13,14] or approximations [15] have
helped to overcome these problems so that Ogden’s model can efficiently be used with finite
elements and is available in various software packages for mechanical analysis.

In addition to the advantage of compact mathematical form, the use of principal stretches in
general and the Valanis–Landel hypothesis in particular allows an interpretation of the model
in terms of the molecular statistical theory of rubber elasticity, which was not in the scope of the
developments by Ogden [1]. To this end, the three eigenvectors of the right stretch tensor and their
corresponding eigenvalues can be understood as the referential direction and elongation of the
end-to-end vectors of three ideal representative chains, respectively. In fact, this link to the three-
chain model was already highlighted in [7] and later elaborated in [16,17]. Along these lines, it was
shown that Ogden’s phenomenological model can be reinterpreted in terms of a non-affine three-
chain model of non-Gaussian chains [16], based on a specific completion of four essential steps:
(i) postulation of a generally nonlinear relation between the deformation of the chain end-to-end
vector and the macroscopic deformation; (ii) a suitable representation of the free energy of a single
chain with fixed end-to-end length; (iii) complementation of the free energy through contributions
from topological constraints; and (iv) averaging of the chains’ free energy to obtain the energy
of the network. Adopting this idea, we show in the present work that, by accomplishing these
steps in a different way, one both recovers other well-known models of rubber elasticity and
easily discovers new forms that could turn out to be suitable for describing the behaviour of
hyperelastic rubber-like materials. The schematic view furthermore allows Ogden’s model to be
categorized and located within the large group of isotropic hyperelastic constitutive models of
finite elasticity. Finally, by changing each of the four individual steps, we derive ‘variations’ on
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Ogden’s model and illustrate the performance of these ‘close relatives’ through application to
Treloar’s experimental data on vulcanized rubber [18].

2. A route from statistical to continuummechanical models
The free energy ψ = e −Θs of a single polymer chain in a rubber-like network at constant
temperatureΘ depends on the chain’s end-to-end distance r. Since changes of the internal energy
e with r are assumed to be small relative to changes of the configurational entropy s, e is typically
considered constant (see e.g. [19]) and hence does not contribute to the change in free energy due
to network deformation, so that the relevant result isψ ∝ −Θs. The entropy is affected not only by
the end-to-end distance r of a test chain itself but also by the constraining effect of the other chains
in the neighbourhood, which restrict the number of conformations that the test chain can take; see
e.g. the review by Dal et al. [20]. A convenient, albeit clearly not exclusive, way of accounting for
the latter effect is to visualize a constraining ‘tube’ [21–24] whose cross-section area scales with
d2. With respect to a reference state, the geometric quantities

r = λrr0 and d2 = d2
0
νr

(2.1)

can be expressed through their referential values r0 and d0 in terms of two microkinematic
variables [25], viz. the chain stretch λr and a ‘tube contraction’ factor νr that relates to the change
in cross-section area of the tube. Accordingly, the change in free energy �ψ of the test chain due
to changes in the end-to-end length and tube diameter with respect to a fixed reference state can
be represented as a function of the two microkinematic variables in the additive form

�ψ = −Θ�s = ψ̂λ(λr) + ψ̂ν (νr), (2.2)

which defines the contributions to the change in free energy from a reference state to a current
state characterized through λr and νr, due to entropy changes caused by ‘chain stretching’ ψλ =
ψ̂λ(λr) and ‘tube contraction’ψν = ψ̂ν (νr), respectively [25]. The free energy per unit volume of the
cross-linked chain network, i.e. the rubber-like material, is thus obtained as an average 〈·〉 over a
suitable representative set of chains, multiplied by the chain density n, so that (cf. e.g. [25])

Ψ =Ψλ + Ψν = n(〈ψλ〉 + 〈ψν〉), (2.3)

where the network has been considered to be ideal, i.e. imperfections or loose-end effects [26]
have been neglected.

Assuming that the chain network under consideration is large enough to obey the laws of
continuum mechanics, its current state of deformation is related to the motion χ(X, t) at time t
and is locally defined (to the first order) through the deformation gradient F(X, t) = Grad χ(X, t)
at referential position X, where the arguments of F will be omitted in writing for the sake of
brevity.

The free-energy equivalence (2.3) embodies a relation between the microscopic statistical
realm and the macroscopic continuum mechanical world, which manifests itself in the averaging
operation. To close the problem, further relations between microscopic and macroscopic scales are
required which relate the kinematics on the two length scales. With the chosen microkinematic
variables in (2.1), and restricting to elastic behaviour, this poses the problem of defining relations

F �→ λr and F �→ νr (2.4)

for each single chain considered. Once these relations are established, their consideration in
equation (2.3) allows the free energy per unit reference volume of the network to be rewritten in
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terms of F, and the arguments of material objectivity finally lead to the reduced representations
in terms of the right stretch or Cauchy–Green tensors U and C, respectively [3,27], so that

Ψ = Ψ̂ (F) = Ψ̌ (U) = Ψ̂ (C), (2.5)

where additional constraints may apply, in particular incompressibility, expressed for
instance through the constraint function Γ (C) = det C − 1 = 0 [28].

Equations (2.2)–(2.4) contain all four steps proposed in the introduction. Step (i) is contained
in equation (2.4)1, step (ii) in equation (2.2), step (iii) in equations (2.4)2 and (2.2), and step (iv) in
the average (2.3). In the next section, we briefly review the particular realizations of these steps
that lead to Ogden’s model, as suggested in [16].

3. Four steps from long-chain molecules to Ogden’s model
We consider a set of N rigid links of length 
 forming a freely jointed chain with fully extended
length L = N
 between two cross-links in the network that forms a rubber-like material, which
contains a number n of such chains per unit reference volume.

(a) Power laws as the concept of non-affinity (i)
Let R = r0M denote the end-to-end vector of a chain, where M is a unit vector. When the network
deforms, R changes to r = rm, with |m| = 1. Under the affine assumption, the transformation
results from the linear mapping R �→ FR so that

λr = r
r0

= |FM| =
√

M · FTFM =
√

M · CM = λM (3.1)

equals the affine stretch λM = |FM|. Typically, however, the end-to-end vector cannot be
regarded as a material line element of the continuum but rather as a member of a network
whose current configuration is a result of minimizing the potential energy under the given
kinematic constraints and boundary conditions [29–31]. Nowadays, computational models
allow computation of the chain deformations and the statistics of their end-to-end vectors
for large ensembles of chain models; see e.g. [30]. Notwithstanding, the affine assumption
has also been replaced by more general formulations in continuum models, which may serve
as better approximations of the chain deformation than the affine mapping. Fried [32], for
example, considered mappings of the form R �→ K(F)R, with det(K(F))> 0 for all F with positive
determinant. These mappings can generally represent nonlinear tensor-valued functions of F,
and a particular choice is K(F) = RUβ [16], where β is a real number and R = FU−1 is a
(proper) orthogonal tensor resulting from the polar decomposition. The chain stretch thus
becomes

λr = r
r0

= r0|RUβM|
r0

= |RUβM| =
√

M · U2βM (3.2)

and includes the affine approach (3.1) for β = 1. An alternative relaxation of the affine assumption
is obtained by assuming the chain stretch to be a real power of the affine stretch (3.1) (e.g. [33,34]),

λr = λ
β
M =

(√
M · CM

)β
. (3.3)

Amores et al. [35] recently proposed to define the chain stretch by the projection of the right stretch
tensor as λr = M · UM, and the ad hoc generalization, which contains the original relation [35] as

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

29
 S

ep
te

m
be

r 
20

22
 



5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210322

...............................................................

120

180

240 300

60

0

300

240

60

120

180

N2

N1

N3

N2

1

2

3

0.5

1.0

f

q0

(b)(a)

b = 1, r = 2 (affine)

b = 0.7, r = 2
b = r = 1 [35]

b = 0.7, r = 2/b
b = 0.7, r = 1

Figure 1. Spherical plots of the chain stretch for each reference orientation in the N1–N2 plane (a) andN2–N3 plane (b).
The angle variable θ̄ is an extension of θ to the interval 0<φ ≤ 2π , in order to uniquely represent all unit vectors in the
φ = π/2 planewith a single variable. Note that the scale in (b) is three times larger than that in (a). (Online version in colour.)

a special case (β = 1), reads
λr = M · UβM. (3.4)

Moreover, introducing a r-norm-like operation with r ≥ 1 a real number, the latter expressions can
be unified as

λr = (M · UβrM)1/r. (3.5)

In fact, relation (3.5) includes the models (3.2)–(3.4) and the one in [35] for r = 2, r = 2/β, r = 1
and r = β = 1, respectively, which differ in the general case of arbitrary M. However, for chains
oriented along the Lagrangian principal directions, i.e. for M = Nk with k = 1, 2, 3 referring to the
eigenvectors of U, the relations (3.2)–(3.5) coincide independently of the values of β and r, and
give

λr �→ λ
β

k = |FNk|β (3.6)

for any of the three directions Nk. Any of these four non-affine definitions of the chain stretch
could thus form the basis of a molecular statistical interpretation of Ogden’s model provided in
[16]. In figure 1, we illustrate the dependence of the predicted non-affine stretch for some values of
β and r in relation (3.5). Expressing the unit vector M in terms of spherical coordinates 0 ≤ φ < 2π
and 0 ≤ θ < π , i.e.

M = cosφ sin θN1 + sinφ sin θN2 + cos θN3, (3.7)

λr can be represented in a spherical plot, whose cross-sections for θ = π/2 and φ = π/2 are shown
in figure 1 for uniaxial extension by a factor of 3 along N1 with volume-preserving lateral
contraction. As stated before, along the principal directions (identified by φ and θ equal to {0,π/2}
in the plots), the stretch value depends only on β and is independent of r.

(b) Power series as the representation of non-Gaussian chain statistics (ii)
Next, we consider the free-energy contribution ψλ due to the configurational entropy s of a chain.
Given the force f acting at the ends of a chain separated by a distance r, the corresponding change
in free energy from a reference state (λ= r/(

√
N
) = 1) in terms of the chain stretch reads (cf. e.g.

§3.8 in [19])

ψλ =
∫λr

1
f (λ)

√
N 
dλ. (3.8)

Even if only an approximation of the exact solution itself, the non-Gaussian statistical models
based on the inverse Langevin function L −1(x) for 0 ≤ x< 1 [19] are most commonly used. For
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these models, the force reads f (λ) = kBΘ/
L −1(λ/
√

N) (cf. eqn 6.10 in [19]), and equation (3.8)
becomes

ψλ =
√

N kBΘ

∫λr

1
L −1

(
λ√
N

)
dλ, (3.9)

where kB and Θ denote Boltzmann’s constant and the absolute temperature, respectively. Since
the inverse Langevin function cannot be given in closed form, it is typically approximated
through either Taylor series or rational approximants (see §4), the latter of which are able to
preserve the asymptotic behaviour of the inverse Langevin function L −1(x) at the extensibility
limit x = 1 [36,37]. While Taylor expansions lack this property [36,37], they can provide very
accurate approximations within the stretch range covered by the convergence radius [38].

Moreover, it has been shown in [16] that remarkably close approximations of L −1(x) in the
range of x values most relevant for modelling, i.e. distant from x = 0 and x = 1, can also be
obtained through a weighted sum of power functions with R+ terms of the form

L −1(x) ≈ GR(x) =
R+∑
i=1

mi xai (3.10)

with all positive coefficients mi > 0 and powers ai > 0, already for the R+ = 2 and R+ = 3 terms.
Insertion of this ‘generalized power series’ into (3.9) leads to the chain free energy

ψλ(λr) = kBΘ

R+∑
i=1

Mi

Ai
(λAi

r − 1) (3.11)

with coefficients and powers

Mi = N(1−ai)/2mi and Ai = ai + 1, (3.12)

respectively. Although from a formal point of view one might prefer using Taylor series or
rational approximants to capture the characteristics of the inverse Langevin function for either
small x or values close to x = 1, respectively, the formal similarity of (3.11) to the strain-energy
density function of Ogden’s model (1.1) obtained through use of the approximation (3.10)
is evident.

(c) Power series expression for the tube contraction (iii)
Different constraints have been considered that restrict the configurations of a test chain in
the network and reflect the mutual interaction and entanglements between the chains as well
as effects of excluded volume; see e.g. [39]. In particular, the tube model [21,22] has been
successfully included in various applied models of rubber elasticity, such as those in [25,40–42].
An implementation of the tube constraint by Miehe [25] postulates the free-energy change ψν of a
chain due to the spatial constraints as a linear function of the tube contraction. With slight changes
in notation, this reads (cf. [25])

ψ̂ν (νr) = kBΘwν�νr = kBΘwν (νr − 1), (3.13)

where the parameter wν takes into account the size and geometry of the chain and tube [16,22,25].
Kinematic considerations suggest that the tube diameter changes with the change in area ζM

of surface elements perpendicular to the chain’s end-to-end vector, which is expressed through
Nanson’s formula

ζM = |cof F M| =
√

M · (det C)C−1M (3.14)

and can be understood as the tube contraction according to the affine model. A general, albeit
phenomenological, relation between the area change (3.14) and the tube contraction νr is obtained
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through a sum of power functions of the form [16]

νr =
R−∑
j=1

m̄j

āj
ζ

āj

M , (3.15)

which generalizes the power-law expression suggested in [25]. The definition of the tube
contraction (2.1)2 suggests that the powers āj and coefficients m̄j are positive throughout to
reflect the increasing tube diameter with decreasing surface area [25]. Moreover, defining the
reference state through νr = 1, which implies the normalization condition

∑R−
j=1 m̄j/āj = 1, equation

(3.15) specifies (3.13) to

ψ̂ν (νr) = kBΘwν
R−∑
j=1

m̄j

āj
(ζ

āj

M − 1). (3.16)

It is worth noting that if M is aligned with one of the three principal directions of strain, i.e.
M = Nk for k = 1, 2, 3, the areal stretch results in ζNk = λiλj for k �= i �= j �= k, which reduces to λ−1

k
in the incompressible case. In this case, the one-term model (R− = 1) of (3.16) complies with the
theory developed by Heinrich and co-authors [33,40,43].

(d) Valanis–Landel hypothesis as the averaging operation (iv)
Any of the relations (3.2)–(3.5) or a more general relation (2.4)1 inserted into (3.11), together with
(3.16), allows formulation of a model of the single chain’s change in entropy, and thus the free
energy �ψ , as a result of a macroscopic network deformation F, so that �ψ = ω̃(F, M). In order
to obtain the corresponding free-energy density for a network with n chains per unit reference
volume that contributes to the strain-energy density of the rubber-like material, a suitable average
needs to be formulated according to (2.3), such as the arithmetic mean over a number M of
representative chains with directions Mi (cf. e.g. [16,25,44]),

Ψ = n
1
M

M∑
i=1

ω̃(F, Mi). (3.17)

The average over M = 3 chains aligned with the three principal directions of strain Nk may
be seen as one particular realization of this average and has implicitly been used in the early
developments of rubber-elasticity theory [45]. It has been noted [16,35] that this choice is in
agreement with the additive decomposition suggested by Valanis & Landel [7],

Ψ = Ψ̂ (C) = Ψ̃ (λ1, λ2, λ3) =ω(λ1) + ω(λ2) + ω(λ3), (3.18)

and similar arguments can be found in the original work [7]. In fact, this agreement holds
if and only if the free energy of a chain aligned with Nk is completely defined through the
principal stretch λk so that ω̃(F, Nk) ∝ω(λk), and ω= n�ψ/3 in this case, in view of the relations
(2.2) and (2.3).

(e) Statistical representation of Ogden’s material parameters
The Valanis–Landel-type ‘average’ (3.18) over the three principal directions applied to the
additive representation of the free energy (2.2), the non-affine chain stretch (3.5) considered in
(3.11) and the constraint contribution (3.16) yields the reconciliated form of Ogden’s model [16]

Ψ = nkBΘ

3

3∑
k=1

⎡⎣ R+∑
i=1

Mi

Ai
(λβAi

k − 1) +
R−∑
j=1

wνm̄j

āj
(λ

−āj

k − 1)

⎤⎦ , (3.19)

which coincides with the original model (1.1) formulated by Ogden [1] through the
definitions [16]

μr = nkBΘ

3
N(1−ar)/2mrβ and αr = β(ar + 1) (3.20)
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Figure 2. Graphical scheme of the steps (i)–(iv) in the route to deriving Ogden’s model. (Online version in colour.)

for 1< r ≤ R+, associated with the terms that have positive powers and coefficients, and

μr = −nkBΘ

3
wνm̄r−R+ and αr = −ār−R+ (3.21)

for R+ < r ≤ (R = R+ + R−), i.e. the negative terms. Note that mr and ar, r = 1, 2, . . . , R+, are not
free material parameters but predefined ‘constants’, as they define the ‘power series’ GR in (3.10)
which approximates the inverse Langevin function [16].

4. Modelling scheme: examples
The interest spanning more than one century in modelling the mechanical behaviour of
rubber-like materials has resulted in a wealth of constitutive models based both on statistical
considerations and on empirical observations of the stress–strain behaviour of rubber parts and
specimens under mechanical loads. A large amount of this work has focused on the large-
strain elastic behaviour of these materials expressed in terms of the theory of hyperelasticity
(see e.g. [3], §79), and comprehensive reviews can be found in [20,46–48]. Although the four
steps [16] restated above to reconcile Ogden’s model with the molecular statistical theory may
admittedly seem simplistic in view of the great body of work on the statistical mechanics of
polymers, they nevertheless serve as a recipe to establish such a link for several other seemingly
phenomenological models of rubber elasticity as well. To this end, the scheme shown in figure 2
is considered, which illustrates the steps performed in §3 to obtain Ogden’s model, together with
alternatives to each of these steps.

The alternatives displayed in figure 2 reflect a representative choice and are clearly not
exclusive. For step (i), for example, the scheme includes the affine stretch λ according to (3.1),
where the index M has been omitted for the sake of brevity, the (simple) average of the affine

stretch 〈λ〉 [49], the root mean of the affine square stretch
√〈
λ2
〉=√

tr C/3 [50,51], the p-root
averaged stretch [25], and the average stretch in the maximal advance path λMAP [52]. Examples
of other choices for approximating the inverse Langevin function (ii) include its linearization,
which agrees with the Gaussian chain model (see e.g. [19], §6), Taylor series expansions (e.g.
[53–55]), and Padé approximants and adjusted versions of them or other rational functions (e.g.
[17,19,36,37,56–58]). Noting that the inverse Langevin statistics represents an approximation to
non-Gaussian chains itself, the inverse Langevin function may be replaced by the corresponding
expressions for the force f that result from refined statistical approaches; see e.g. [59]. The tube
contraction (2.1)2 giving rise to constraint contributions to the free energy (iii) can be either
neglected or assumed to be related to the area change of surface elements ζ in (3.14) (e.g. [42]),
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powers thereof, i.e. ζ q [25,33,43,60], or the root mean square
√〈
ζ 2
〉

(cf. [16,59]), instead of the
generalized representation (3.15). Finally, instead of three chains used to accomplish step (iv),
four could be considered according to the tetrahedral model [61], the eight-chain concept could
be employed [62], or an arbitrary number of distinct directions on the unit sphere may be used as
an approximation of a full network with a continuous distribution of chains in all directions; see
e.g. [10,63,64].

The scheme in figure 2 serves as a ‘model generator’, providing a molecular statistically
motivated model for each combination of the four steps. An advantage of this approach to
developing hyperelastic models for rubber-like materials is the physical interpretability of the
associated material parameters, which are inherited from the assumptions within the different
steps. This property may turn out to be beneficial when identifying these parameters in
comparison with experimental data, since the physical meaning implies bounds and suggests
reasonable ranges for the values that these constants can take; see e.g. [46]. Before using the
scheme (figure 2) in §5 to analyse variations from the path indicated in figure 2, the next
section will review some known routes through the scheme and illustrate that, by combining
appropriately some of the alternative steps, one arrives at familiar hyperelastic models of
rubber elasticity.

(a) I1-based models
Several of the established phenomenological models based on the first principal invariant

I1 = tr C (4.1)

allow an interpretation in terms of statistical mechanics by comparison with the Arruda–Boyce
model [62], which was proposed in view of the statistical nature of rubber elasticity and thus
contains only constants with physical interpretations. The corresponding strain-energy density
[62] is obtained by starting from the affine stretch assumption, approximating the inverse
Langevin function through a truncated Taylor series [54], omitting contributions from topological
constraints, and choosing M = 8 chains that span from the centre to the corners of a regular cube
which deforms into a cuboid co-aligned with the principal axes of strain. A striking result of this
arrangement of chains is that they feature the same stretch [62]

λr =
√

I1

3
, (4.2)

which is uniquely expressed in terms of the first principal invariant I1 = tr C. Upon integration of
the Taylor series, the first three terms of the strain-energy function read [62]

ΨAB = nkBΘ

[
1
2

(I1 − 3) + 1
20N

(I2
1 − 9) + 11

1050N2 (I3
1 − 27) + . . .

]
(4.3)

and evidently recover Yeoh’s model [65]

ΨYeoh = C1(I1 − 3) + C2(I1 − 3)2 + C3(I1 − 3)3

= (C1 − 6C2 + 27C3)(I1 − 3) + (C2 − 9C3)(I2
1 − 9) + C3(I3

1 − 27), (4.4)

with a special choice of the parameters C1, C2 and C3 expressed in terms of the chain and network
parameters N, kB, Θ and n, and found by comparison of (4.4) with (4.3). Similar considerations
for the full series render the Arruda–Boyce model a special case of Rivlin’s generalized invariant
representation [66] with all terms dependent on the second principal invariant set to zero (C00 = 0
and Cij = 0 for all j �= 0), i.e.

ΨR =
∞∑

i=1

∞∑
j=1

Cij(I1 − 3)i(I2 − 3)j ≡
∞∑

i=1

Ci0(I1 − 3)i =
∞∑

i=1

C̄i0(Ii
1 − 3), (4.5)
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ur

f /    –1

Figure 3. Graphical scheme of the steps (i)–(iv) with indicated routes to deriving the Rivlin, Yeoh and Gent models. (Online
version in colour.)

which clearly includes (4.4) upon truncation of the series. Moreover, Beatty’s reinterpretation of

the Arruda–Boyce model as an average stretch model [51] with λr =
√〈
λ2
〉= √

I1/3, for which in
fact the number of representative chains M becomes irrelevant, implies that more than one ‘route’
within the proposed four-step scheme can lead to the same phenomenological model, as indicated
by the purple path in figure 3.

Apart from I1-polynomial-type free energies, known to be inadequate for describing the chain
extensibility limit [37], the same strategies highlighted in blue and purple in figure 3 yield Gent’s
model [67,68] with parameters μG and Jm,

ΨGent = −μGJm

2
ln
[

1 − I1 − 3
Jm

]
, (4.6)

if instead of a Taylor series the inverse Langevin function is approximated through a rational
expression of the form L −1(x) ≈ 3x/(1 − x2), in line with the approach of Warner [56]; see also
[58]. This is indicated by the green path in figure 3. Note that this rational function is not a
‘mathematically strict’ approximant, and in particular not a Padé approximant of L −1 [37].
However, it correctly reproduces the asymptotic behaviour as x → 1 [69], and it captures the
Gaussian limit L −1 ≈ 3x as x � 1. Integration of (3.9) yields

ψλ = kBΘ
√

N
∫√

I1/3

1

3λ/
√

N
1 − λ2/N

dλ= −3
2

kBΘN ln
[

1 − I1 − 3
3(N − 1)

]
, (4.7)

and without the contribution from topological constraints direct comparison of the remaining
network free energy Ψ = nψλ with (4.6) finally specifies the material parameters in Gent’s
model,

μG = nkBΘ
N

N − 1
and Jm = 3(N − 1), (4.8)

in terms of statistical parameters. This close relation between the Gent model and the molecular
statistical theory is well known and was discussed in [17,70] and also in [37] with a slightly
different interpretation of the factor N/(N − 1), which was associated with the approximation
of L −1(x) in [37], whereas in (4.8) it changes the meaning of the parameter μG in Gent’s model to
a modified shear modulus. Nevertheless, one notes that for large N the factor approaches 1 [37]
and this distinction is of little relevance. Other rational function approximations that capture the
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asymptotic behaviour as x → 1, as reviewed in [58] for example, may lead to other ‘limited elastic’
I1-materials [69] with similar behaviour.

(b) Models that include I2
Already early in the development of the continuum mechanical theories of rubber elasticity, the
deviations between the I1-dependent neo-Hookean model obtained from the Gaussian statistics
and experimental data [71–73] provided motivation to include terms that depend on the second
principal invariant,

I2 = tr(C−1 det C) = 1
2

[(tr C)2 − tr C2], (4.9)

in the strain-energy density function [74], such as in the Mooney–Rivlin model [75,76].
Explanations of I2-contributions in terms of molecular statistics were provided in terms of non-
Gaussian chain behaviour [72], as well as through restricting effects on the number of chain
configurations caused by neighbouring chains [73]. The latter effect was also associated with
non-affine deformation of the chains [77], and Fried [32] achieved I2-dependent terms by use
of a non-affine relaxation of the chain stretch, i.e. a particular choice of step (i).

The confining effect of neighbouring chains is also at the basis of the tube constraint (§2).
Similarly to how the unique expression of the chain stretch λr = √

I1/3 in the eight-chain (or
average stretch) approach (4.2) paves the way for statistical interpretations of models that
exclusively depend on the first principal invariant, consideration of Kearsley’s result [50,51]√〈
ζ 2
〉= √

I2/3 allows one to relate the tube contraction to macroscopic deformation, as discussed
in [16,78] and implemented, for instance, in [42,59]. By this choice, the affine chain stretch (i),
linearization of L −1(x) (ii), νr = ζ 2

M (iii) and choosing M = 8 chains along the diagonals of the
cuboid deforming with the principal directions (iv), as in the Arruda–Boyce approach, lead to

Ψ = nkBΘ

6
[3(I1 − 3) + 2wν (I2 − 3)] = c1(I1 − 3) + c2(I2 − 3), (4.10)

which is the Mooney–Rivlin model [75,76] with c1 = (nkBΘ)/2 and c2 = (nkBΘwν )/3 (cf. figure 4).
Moreover, a special form of the generalized series in step (iii) in figure 4 with āj = 2j and m̄j/āj =

cj leads to a power series, i.e.

νr =
∑
j=1

cj ζ
2j where

∑
j=1

cj = 1 (4.11)

with even powers and scalar coefficients cj for j = 1, 2, . . . . If (4.11) converges to the analytic
function g(ζ 2), the network free energy obtained through the M = 8 chains can be represented
in the Rivlin–Saunders form

ΨRS = c1(I1 − 3) + f (I2 − 3) = nkBΘ

2

[
(I1 − 3) + 2wν [g(I2) − 1]

]
(4.12)

and allows the interpretation of the f (I2 − 3)-contribution in the Rivlin–Saunders theory [79] as
an indicator of how the tube diameter changes with macroscopic deformation.

(c) A family of models
The scheme presented in figures 2–4 and, as a particular example, the relationship between many
invariant-based models, which is revealed in their interpretation in terms of ingredients from
the molecular statistical theory, serve to illustrate the idea of ‘close and distant relatives’ among
them. The four-step procedure establishes a family of models that can all be shown to originate
from the same ingredients of the statistical mechanics of long-chain molecules, regardless of
whether this was part of their original development or not. This makes them at least distant
relatives. It is evident that for all phenomenological members of this family this implies—
possibly strong—restrictions on the meaningful range of values that their parameters can take.
The representation of Yeoh’s model (4.4) exemplifies this, since n and N now become the only two
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Figure 4. Graphical scheme of the steps (i)–(iv) with the routes to derivingMooney–Rivlin and Rivlin–Saunders-typemodels.
(Online version in colour.)

‘degrees of freedom’ for fitting the model to experimental data, compared to the three parameters
C1, C2 and C3. However, one might argue that if the phenomenological constants provide an
acceptable match with experimental data on rubber, they should capture the underlying physics
and thus imply reasonable values for the statistical parameters. In fact, for Ogden’s model, it was
shown that the fitted parameters μr and αr indeed lead to favourable agreement between the
series (3.10) and the inverse Langevin function [16].

More members of this family may be identified by travelling new paths within the scheme,
or by increasing the length of each row that represents a step, where both existing approaches
not mentioned here and future developments may serve this purpose. The greatest potential in
this regard is associated with the contribution from topological effects, which was here restricted
only to a simple implementation of the confining tube concept [21,22], and even more limited
to relations between the change of surface elements (3.14) and the tube diameter d. Although
the elaboration of this concept already encompasses a broad spectrum of models, the ‘tube
contraction’ [25] itself (equation (2.1)2) would generally allow for a more general dependence
on F than is contained in (3.15), potentially giving rise to further expressions that comply
with those phenomenological models, and particularly to terms that include both I1 and I2.
Darabi & Itskov [34], for example, recently proposed a model for the constraint contribution
that combines ideas from the tube and slip-link [80] theories. The corresponding expression
for the free energy (eqn 27 in [34]) cannot be brought in the form (3.15) with only positive
constants.

In light of the previous considerations, the known proximity of the Arruda–Boyce and Gent
models is based on the fact that they differ only in the representation of the chain force, i.e. a
single variation within the four-step procedure, which allows them to be distinguished from each
other. Such single variations lead to what we will refer to as ‘close relatives’ and which we will
analyse in the next section with respect to Ogden’s model in a molecular statistical form (3.19) as
a basis.

5. Variations on Ogden’s model
The incompressible Ogden model [1] in its unaltered original form is indisputably one of the
most successful and versatile hyperelastic approaches to studying rubber elasticity, with many
uses even beyond this class of materials. Notwithstanding, a study of some of its close relatives
will provide a new perspective on this important milestone of phenomenological rubber-elasticity
theory, and moreover indicate a few other models with similar capacities to the original.
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(a) Variation 1: chain model
First, we will study the variation of step (ii), the expression that provides the force f at the ends
of a chain extended by a factor λk, and which finally defines the free energy ψλ, whereas all other
steps follow §3. By this means, the free energy of the chain network (2.3) takes the general form

Ψ = n
1
3

3∑
k=1

⎡⎣ψ̂λ(λβk ) + kBΘ

R−∑
j=1

m̄′
j

āj
(λ

−āj

k − 1)

⎤⎦ , (5.1)

where the abbreviation m̄′
q = wνm̄q has been introduced [16]. Exemplarily, we will derive the

non-affine three-chain models that are close relatives of the original model and are obtained by
consideration of Taylor series or rational approximants for the inverse Langevin function, as well
as an alternative representation of non-Gaussian chain statistics.

(i) Taylor series and Gaussian chains

Expressing the inverse Langevin function in terms of a Taylor series approximation [19,54] leads
to strain-energy functions of the Ogden-model family

ψ̂λ(λβk ) = kBΘ

(
3
2

(λ2β
k − 1) + 9

20N
(λ4β

k − 1) + 297
1050N2 (λ6β

k − 1) + · · ·
)

(5.2)

with interpretations of the parameters μi and αi, i = 1, 2, . . . , R+, as

μi = 3nkBΘ

6
,

9nkBΘ

60N
,

297nkBΘ

3150N2 , . . . and αi = 2β, 4β, 6β, . . . . (5.3)

For example, the Gaussian limit, i.e. the first term in (5.2), gives the free energy

Ψ = nkBΘ

3

3∑
k=1

⎡⎣3
2

(λ2β
k − 1) +

R−∑
j=1

m̄′
j

āj
(λ

−āj

k − 1)

⎤⎦ . (5.4)

In general, these expressions do not have any advantage over the more general representation
(3.20). Nevertheless, they have an interesting implication: in fact, they suggest that one could
approximate the inverse Langevin function L −1(x) within a range of interest in terms of a
weighted sum of powers which are odd multiples of 1/β, i.e.

∑
i wix(2i−1)/β , so as to obtain an

Ogden-type model with only integer powers. Such a model would bring advantages in terms
of the numerical treatment, since its strain-energy function could be represented in terms of
principal traces of C; see also [15].

(ii) Rational approximants ofL −1

Further close relatives are obtained by consideration of some of the various rational function
approximations proposed for L −1. For example, using Cohen’s rounded Padé approximant [81]

L −1(x) = x
3 − x2

1 − x2 (5.5)

yields the network free energy

Ψ = nkBΘ

3

3∑
k=1

⎡⎣λ2β
k − 1

2
− N ln

(
λ

2β
k − N

1 − N

)
+

R−∑
j=1

m̄′
j

āj
(λ

−āj

k − 1)

⎤⎦ , (5.6)

and for later use we also provide the corresponding principal nominal stresses

Pk = nkBΘ

3

⎡⎣βλ2β−1
k

3 − λ
2β
k /N

1 − λ
2β
k /N

−
R−∑
j=1

m̄′
jλ

−āj−1
k

⎤⎦− pλ−1
k , k = 1, 2, 3. (5.7)
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Using more recent rational approximations (see e.g. [58]) clearly leads to various alternative forms
of the strain-energy function.

(iii) Alternative approximation of non-Gaussian chains

Khiêm & Itskov [59] recently deviated from the Langevin statistical approach and used another
approximation to the non-Gaussian statistics of freely jointed chains, based on the model
proposed by Ilg [82]. In terms of the force f at the ends of a freely jointed chain with N links
of length 
, stretched by the factor λ, the model gives (cf. [59,82])

f = 9kBΘ


π2

(√
N
λ

− π cot
πλ√

N

)
. (5.8)

By integration, the free energy (3.8) follows as

Ψ = nkBΘ

3

3∑
k=1

⎡⎣9N
π2 ln

⎛⎝λβk sin
(
π/

√
N
)

sin
(
πλ

β

k /
√

N
)
⎞⎠+

R−∑
j=1

m̄′
j

āj
(λ

−āj

k − 1)

⎤⎦ , (5.9)

and the principal stresses read

Pk = nkBΘ

3

⎡⎣9
√

N
π2 βλ

β−1
k

[√
N

λ
β

k

− π cot

(
πλ

β

k√
N

)]
−

R−∑
j=1

m̄′
jλ

−āj−1
k

⎤⎦− pλ−1
k , (5.10)

where k = 1, 2, 3.

(b) Variation 2: representative chains
The second variation that we consider concerns the number of representative chains,
i.e. a modification of the three-chain concept, which is implicit in the Valanis–Landel
hypothesis.

(i) Full-network model

When considering a large number of chains with normalized end-to-end vectors Ml, l =
1, 2, . . . , M, suitably distributed on the unit sphere as a discrete approximation of the full-
network model (see e.g. [83]), the distinction between the non-affine relations (3.2)–(3.5) becomes
relevant, whereas they all agree for three chain vectors aligned with the principal directions. We
limit our study to the full-network analogue obtained from relation (3.5), which leads to the
simplest expressions for the stress tensor. Under consideration of incompressibility (det C = 1)
the microkinematic variables become, in this case,

λr �→ λ
β
Ml

= (
√

Ml · CMl)
β and νr �→ νMl =

√
Ml · C−1Ml (5.11)

for l = 1, 2, . . . , M, i.e. powers of the affine stretch λM and the affine change in area of surface
elements perpendicular to M. The corresponding discrete full-network model reads

Ψ = nkBΘ

M

M∑
l=1

⎡⎣ R+∑
r=1

Mr

Ar
(λβAr

Ml
− 1) +

R−∑
j=1

m̄′
j

āj
(ν

āj

Ml
− 1)

⎤⎦ (5.12)

and is distinguished from (3.19) only through the M directions considered. The first Piola–
Kirchhoff stresses in the principal directions can be obtained by means of the projections of
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S = 2∂Ψ/∂C − pC−1 onto Nk and multiplication with λk as

Pk = λk
nkBΘ

M

M∑
l=1

⎡⎣ R+∑
r=1

N(1−ar)/2mrβλ
β(ar+1)−2
Ml

(Nk · Ml)
2 −

R−∑
r=1

m̄′
jν

āj−2
Ml

(Nk · C−1Ml)
2

⎤⎦− pλ−1
k ,

(5.13)

where k = 1, 2, 3. We note that while ā1 > 1 was noted to be sufficient to guarantee material
stability of the model response for the three-chain representation (3.19), arguments of convex
composition (see e.g. Lemma B.9 in [84]) can be used to infer that ā1 > 2 guarantees convexity of
the strain energy with respect to Ml · (C−1 det C)Ml [84–86].

(ii) Eight-chain models

An eight-chain variant of Ogden’s model follows from a special case of (5.12) by consideration
of M = 8 chains with normalized end-to-end vectors that point to the eight corners of a cube that
deforms and aligns with the principal axes according to [62]. The stretches and tube contractions,
respectively, of all the eight directions coincide, and consideration of (5.11) yields

λr =
(

I1

3

)β/2
and νr =

(
I2

3

)1/2
, (5.14)

so that the network free energy reads

Ψ = nkBΘ

⎡⎣ R+∑
r=1

Mr

Ar

[(
I1

3

)βAr/2
− 1

]
+

R−∑
j=1

m̄′
j

āj

[(
I2

3

)āj/2
− 1

]⎤⎦ . (5.15)

Upon collecting and renaming the constants, (5.15) can be represented as

Ψ =
R+∑
i=1

Ci

[(
I1

3

)γi

− 1
]

+
R−∑
j=1

Dj

[(
I2

3

)δj

− 1

]
. (5.16)

Brought into this form, it is observed that this invariant-based neighbour of the Ogden-model
recovers the incompressible model proposed by Swanson (cf. eqn 13 in [87]) or, equivalently, the
generalization of the two-term model of Lopez-Pamies (cf. eqn 23 in [88]). The principal stresses
calculated from (5.15) are given by

Pk = nkBΘ

3

⎡⎣ R+∑
r=1

N(1−ar)/2mrβλk

(
I1

3

)β(ar+1)/2−1

+
R−∑
j=1

m̄′
j

(
I2

3

)āj/2−1
λk(I1 − λ2

k)

⎤⎦− pλ−1
k , k = 1, 2, 3. (5.17)

Another eight-chain model is obtained if the chain stretch is defined through the non-affine
mapping (3.2), which yields for each of the eight chains

λr =
(

Iβ
3

)1/2
and νr =

(
I2

3

)1/2
, (5.18)

where the notation
Iβ = U2β : I = Cβ : I = λ

2β
1 + λ

2β
2 + λ

2β
3 (5.19)

has been introduced. In this case, the free energy reads

Ψ = nkBΘ

⎡⎣ R+∑
r=1

Mr

Ar

[(
Iβ
3

)Ar/2
− 1

]
+

R−∑
j=1

m̄′
j

āj

[(
I2

3

)āj/2
− 1

]⎤⎦ (5.20)
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with corresponding principal stretches

Pk = nkBΘ

3

⎡⎣ R+∑
r=1

N(1−ar)/2mrβλ
2β−1
k

(
Iβ
3

)(ar+1)/2−1

+
R−∑
j=1

m̄′
j

(
I2

3

)āj/2−1
λk(I1 − λ2

k)

⎤⎦− pλ−1
k , (5.21)

where k runs from 1 to 3. Although the first sum in equation (5.20) shares some features of its
mathematical structure with a model proposed by Bechir [89] (see also [20]), it cannot be brought
in complete agreement with the latter unless one enforces that β and Ar/2 are positive integers,
most probably at the cost of either reduced capability to match experimental data or the need for
more terms in the series.

(c) Variation 3: non-affine chain deformation
The choice of ‘corotational’ chains implicit to the eight-chain or three-chain models here
considered, whose end-to-end vectors transform with the stretch tensors rather than the
deformation gradient, breaks with the concept of affine deformations per se. The same holds
for average stretch concepts [25,51,59], which generally circumvent the definition of vector
transformations. The power law (3.3), however, leads to a further relaxation of the affinity concept,
and allows deviations from the affine stretch even for line elements along the principal directions.

Clearly, the most straightforward variation of the power law as a non-affinity concept is given
by the choice β = 1. In this case, Ogden’s model in the form (3.19) becomes a non-Gaussian three-
chain model [45], albeit with a special representation of the non-Gaussian chain free energy so
that

Ψ = nkBΘ

3

3∑
k=1

⎡⎣ R+∑
i=1

Mi

Ai
(λAi

k − 1) +
R−∑
j=1

m̄′
j

āj
(λ

−āj

k − 1)

⎤⎦ . (5.22)

However, that β < 1 is needed to obtain favourable agreement with experimental data [16]
suggests that this model may be of little practical use. Alternatives to the power-law concept
for relaxing the affine stretch have been proposed, e.g. by Kroon [42] and Tkachuk & Linder [52].
Both approaches employ stationary principles to compute the non-affine stretch, and therefore
do not lead to closed-form expressions of the free energy in terms of measures of deformation.
A closed form of the free energy was obtained [90] by combining the idea of a maximal advance
path [52] in the network with the average stretch concept [51]. The combination results in a
non-affine stretch that scales with the functionality ϕ ≥ 3 of the cross-links, i.e. the coordination
number of the network, and provides the relation [90]

λr �→
√

C : HM . (5.23)

The second-order tensor HM therein is defined as

HM = (1 − 3κ)M ⊗ M + κI, κ = 2
ϕ − 1
ϕ(ϕ + 1)

, (5.24)

so that for any direction M the square stretch follows from a rule of mixture between the affine
stretch square and the average stretch square I1/3. In [90], this concept was applied to the full
network, but in order to keep the changes with respect to the original model (3.19) as small
as possible, the chain stretch is here evaluated for the three principal directions Nk, k = 1, 2, 3.
Replacing the chain stretch λβk in (3.19) with (5.23), the corresponding free energy reads

Ψ = nkBΘ

3

3∑
k=1

⎡⎣ R+∑
i=1

Mi

Ai
[((1 − 3κ)λ2

k + κI1)Ai/2 − 1] +
R−∑
j=1

m̄′
j

āj
(λ

−āj

k − 1)

⎤⎦ , (5.25)
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while the constraint part was left unchanged. The nominal stresses along the principal directions
read

Pk = nkBΘ

3

⎡⎣ R+∑
r=1

N(1−ar)/2mr((1 − 3κ)λ2
k + κI1)(ar−1)/2λk(1 − 2κ) −

R−∑
j=1

m̄′
jλ

−āj−1
k

⎤⎦− pλ−1
k , (5.26)

where k again runs from 1 to 3.

(d) Variation 4: topological constraints
The last variation concerns the representation of the free-energy contribution due to topological
constraints, which in [16] was associated with those terms in Ogden’s model that have negative
powers αr and coefficients μr, as summarized in §3c. In fact, alternative representations have
already resulted naturally from a variation of the representative chains (§5b), albeit along with
corresponding modifications of the free energy due to chain extension. Therefore, we here
consider the constitutive model that is obtained when only those terms with negative powers
and coefficients are varied and replaced by the constraint contribution proposed by Kroon [42],
later also adopted in [59],

Ψν = nkBΘckr

(√
I2

3
− 1

)
, (5.27)

in terms of the second principal invariant and a positive constant ckr. The thus modified Ogden
strain-energy density expressed in the molecular statistical form reads

Ψ = nkBΘ

⎡⎣1
3

3∑
k=1

R+∑
r=1

Mr

Ar
λ
βAr
k + ckr

(√
I2

3
− 1

)⎤⎦ . (5.28)

The principal stresses are calculated as

Pk = nkBΘ

3

⎡⎣ R+∑
r=1

N(1−ar)/2mrβλ
β(ar+1)−1
k + ckr

(
I2

3

)−1/2
λk(I1 − λ2

k)

⎤⎦− pλ−1
k , (5.29)

and k takes values from 1 to 3.

6. Comparison with experimental data
The goal of the present work is to highlight relations between Ogden’s and other models, both
existing ones and new expressions that result from simple variations of the ingredients that
provide the original strain-energy density function. A detailed discussion of these models with
regard to their capacity for fitting sets of experimental data is beyond the scope of this paper.
Nevertheless, in order to sketch the general characteristics predicted by the nine relatives of
Ogden’s model obtained through a single variation, we calibrated their material parameters
against a reproduction of Treloar’s data on vulcanized rubber [18] for illustration.

(a) Parameter identification
Fitting the stress response of Ogden’s model [1] in homogeneous load cases to corresponding
experimental data can lead to non-unique sets of the 2R parameters and is affected by the
selection of the data used for calibration [46,91]. It has been shown that the molecular statistical
reinterpretation of Ogden’s model [16] which comes with 3 + 2R− parameters typically reduces
the number of unknown parameters that need to be determined by comparison with experiments.
For a given temperature, these parameters reduce to the chain density n, the number of links N,
the non-affinity parameter β, and the constants wν m̄j and āj which specify the tube geometry
and deformation [16]. Given this clear interpretation of these parameters, they are either strictly
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bounded or at least restricted by physical reasonableness. This generally beneficial property
carries over to the variations of the statistically motivated Ogden model studied herein, which
largely share these parameters.

To determine these parameters, a custom MATLAB (The Mathworks, Inc., v. R2018a) script was
used to compute the principal stresses predicted by the different models under homogeneous
states of deformation. We note that the discrete full-network model (5.12) was represented by
M = 88 directions on the unit sphere defining a spherical 12-design according to [92,93], whereas
all other models are fully specified in §5, except for the number R− of terms in the constraint
contribution. The latter was set to R− = 1 since this corresponds to a single term with negative
power in Ogden’s model, which is typically needed for good agreement with experimental data
[16]. We recall that the parameters mr and ar (and thus Mr and Ar) are predefined and were
set according to the R+ = 2 approximations of the inverse Langevin function specified in [16]:
m1 = 4.537, a1 = 1.295, m2 = 18.50 and a2 = 10.98.

Uniaxial tension (UA), equibiaxial tension (EB) and pure shear (PS) with prescribed tensile
stretch λ1 along a fixed direction e1 were considered, where the deformation gradient F = Fij ei ⊗
ej was defined through the orthonormal basis {e1, e2, e3} and Cartesian components

[FUA
ij ] = diag

(
λ1,

1√
λ1

,
1√
λ1

)
, [FEB

ij ] = diag

(
λ1, λ1,

1

λ2
1

)
and [FPS

ij ] = diag
(
λ1, 1,

1
λ1

)
,

(6.1)

respectively. For all three states, the surface with normal e3 was considered free of traction,
so that P3 = 0 allowed elimination of the arbitrary hydrostatic pressure p from the expression
for the tensile nominal stress P1. Considering the Na

dat data pairs (λa
1,i, P̃a

1,i) for each test mode
(a = UA, PS, EB) in [18] and the corresponding stress Pa

1(λa
1,i) predicted by a model, the objective

function

ε̄2 =
∑

a=UA,EB,PS

1
Na

dat

Na
dat∑

i=1

[
Pa

1(λ1,i) − P̃a
1,i

P̃a
1,i

]2

(6.2)

was minimized by means of the MATLAB function fmincon. Although a detailed analysis of
the parameters’ uniqueness and sensitivity is beyond the scope of the present work, the fitting
routines were initiated several times with different starting parameters according to the following
scheme. When present in a model, the values of the parameters in the set P0 = {nkBΘ , N,β, m̄′

1, ā1}
given in [16] were used as initial guesses at first. Then the routine was repeated another S = 30
times upon applying a random 20% variation of the initial set of parameters and restarting
the optimization with the new initial guess Ps, s = 1, 2, . . . , 30. The optimized set of parameters
was then identified from the procedure that led to the smallest value of ε̄2. For the sake
of comparability, a coefficient of determination R2 applicable to nonlinear models [94] was
calculated for each of the nine variations and every mode a = {UA, EB, PS}. Even if approximate,
it serves as a scalar indicator of the goodness of fit and allows coarse comparison of the models.

(b) Results
Tables 1–4 report the values of the parameters estimated through the optimization routine, and,
for comparison, the parameters of the unvaried statistical representation of the Ogden model [16]
are reported in the first row of each table. The corresponding plots are provided in figures 5–8.
The exemplary application of the models to the classical benchmark dataset of Treloar can clearly
not testify to their capacity to fit the elastic response of the broad range of rubber-like materials.
However, it provides an indication of how well they capture the principal characteristics of these
materials on the one hand, while highlighting differences from Ogden’s model on the other.

A closer analysis reveals that, irrespective of the number and disposition of the representative
chains, consideration of a non-affine relation of the chain stretch in terms of a β-power
law, adopted for the non-Gaussian approximations (5.6), (5.9), (5.12), (5.15) and (5.20),

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

29
 S

ep
te

m
be

r 
20

22
 



19

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210322

...............................................................

7

6

5

4

3

2

1

0

P
11

 (
M

Pa
)

7

6

5

4

3

2

1

0

P
11

 (
M

Pa
)

6

5

4

3

2

1

0

P
11

 (
M

Pa
)

1 2 3 4 5 6 7 8
l1

1 2 3 4 5 6 7 8
l1

1 2 3 4 5 6 7 8
l1

Treloar [18]
Ogden
Gauss
Cohen

llg/Khiêm-ltskov

(b)(a) (c)

Figure 5. Nominal stress in UA (a), EB (b) and PS (c) homogeneous deformation states for the models obtained by varying the
chain model (variation 1). The statistical Ogden’s model with R+ = 2 and R− = 1 is plotted for comparison (with parameters
from [16]). (Online version in colour.)
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Figure 6. Nominal stress in UA (a), EB (b) and PS (c) homogeneous deformation states for the models obtained by varying
the representative chains (variation 2). The statistical Ogden’s model with R+ = 2 and R− = 1 is plotted for comparison
(with parameters from [16]). (Online version in colour.)

generally improves the simultaneous fitting of the three homogeneous deformation states.
The use of the affine stretch (5.22), even in an average sense, i.e.

√
I1/3 as in (4.2) or

their combination in the path average as in (5.25), indicates somewhat less accurate fitting
capacities.

In this regard, one may also note the value of N that characterizes the length N
 of the
freely jointed chain. The value obtained by parameter identification is considerably higher for
the affine model (5.22) (N ≈ 74) than in the non-affine cases, and it seems obvious that this large
value is necessary to postpone the strong increase in stiffness when one of the principal stretches
approaches the limit λk → √

N.
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Figure 7. Nominal stress in UA (a), EB (b) and PS (c) homogeneous deformation states for the models obtained by considering
different approaches to accounting for non-affinity (variation 3). The statistical Ogden’s model with R+ = 2 and R− = 1 is
plotted for comparison (with parameters from [16]). (Online version in colour.)
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Figure 8. Nominal stress in UA (a), EB (b) and PS (c) homogeneous deformation states for the model obtained by varying the
contribution of the topological constraint (variation 4). The statistical Ogden’s model with R+ = 2 and R− = 1 is plotted for
comparison (with parameters from [16]). (Online version in colour.)

Finally, it is interesting to compare the parameters m̄′
1 and ckr that weight the contribution

of the tube constraint and that vary over several orders of magnitude, from essentially zero for
the Iβ model (table 2) to a substantial weight in the path average and affine models (table 3),
where the fitted power ā1 takes the lowest limit allowed. The Iβ model, on the other hand,
thereby effectively becomes a three-parameter model that excellently fits the experimental data
of Treloar.

With the exception of the Gaussian chain variation (5.4), which is inadequate for describing
the large strain regime as expected, the overall agreement of the variations with the triplet of
experimental data is generally high. Table 5 summarizes the coefficients of determination R2 of the
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Table 1. Fiitted parameters for the models obtained by varying the chain model (variation 1).

model equation nkBΘ [MPa] N β m̄′
1 ā1

Ogden (3.19) 0.7495 18.69 0.6992 0.01025 2.518
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gauss (5.4) 0.2305 — 1.1154 1.7932 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cohen (5.6) 0.70308 22.5883 0.73053 0.011241 2.4712
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ilg/Khiêm–Itskov (5.9) 0.68877 23.1587 0.73859 0.011098 2.4808
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Fitted parameters for the models obtained by varying the representative chains (variation 2).

model equation nkBΘ (MPa) N β m̄′
1 ā1

Ogden (3.19) 0.7495 18.69 0.6992 0.01025 2.518
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FNβ (5.12) 0.58029 16.0777 0.72483 0.057743 2.0182
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8ch-β (5.15) 0.49899 10.0428 0.73799 0.049652 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8ch-Iβ (5.20) 0.58202 9.808 0.78778 2.2204 × 10−16 2.4053
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. Fitted parameters for the models obtained by considering different approaches to accounting for non-affinity
(variation 3). Note that the functionalityϕ was set to 4 in the path average model.

model equation nkBΘ (MPa) N β m̄′
1 ā1

Ogden (3.19) 0.7495 18.69 0.6992 0.01025 2.518
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

affine (5.22) 0.25275 74.0452 — 2.6156 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

path average (5.25) 0.64547 30.0567 — 0.88761 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4. Fitted parameters for the model obtained by varying the contribution of the topological constraint (variation 4).

model equation nkBΘ (MPa) N β m̄′
1 ā1 ckr

Ogden (3.19) 0.7495 18.69 0.6992 0.01025 2.518 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kroon (5.28) 0.59893 24.3985 0.75854 — — 0.11637
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5. R2 values for each model and each deformation state, calculated according to [94].

Ogden Gauss Cohen Ilg FNβ 8ch-β 8ch-Iβ affine path avg. Kroon

R2UA 0.9940 0.6668 0.9939 0.9930 0.9937 0.9953 0.9960 0.9970 0.9976 0.9933
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R2EB 0.9997 0.9838 0.9998 0.9998 0.9991 0.9947 0.9815 0.9689 0.9595 0.9847
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R2PS 0.9801 0.9466 0.9950 0.9950 0.9804 0.9859 0.9928 0.9870 0.9858 0.9856
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fitted models for each test mode and documents rather small differences between the remaining
eight models.

7. Concluding remarks
In the present contribution, we have used a recently proposed statistical interpretation of Ogden’s
model to identify closely related models by a single variation of its basic ingredients. The
schematic of the way this and other models can be derived from statistical mechanical concepts
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and the idea of representing the polymer network through a number of representative chains
show that these models share the same essential steps in their development. Although they
can thus be categorized into the same large family of models, there are very few known close
relatives that differ from the statistical version of Ogden’s model only in a single step. In fact, we
have discovered only one such model, viz. the strain-energy density function (5.15), which is a
special case of the hyperelastic constitutive equations proposed in [87,88].

A main reason for this special position of Ogden’s model is the relaxation of the affine
assumption through a power law. In general, this operation turns out to be beneficial since nearly
all variations containing this step have shown very sound agreement with the experimental
dataset.

In summary, Ogden’s model—even if it can be well embedded in the family of hyperelastic
models with molecular statistical meaning—remains unique in the combination of its ingredients.
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