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A B S T R A C T   

Sensory receptors in biological systems are an essential part of natural organisms to perceive, understand and 
adapt to their environment and evaluate their internal state. They are interlinked with the senses of living or-
ganisms and are an important tool for the survival and evolution of species. Researchers have implemented the 
biomimetic receptor approach into the development of artificial sensors, in an attempt to mimic the sensory 
transduction of organisms, like self-healing ability and flexibility. However, aspects of biological transduction 
like selectivity and multi-sensing are still underdeveloped in the field of soft self-healing sensors (SSHS). The 
multi-sensing aspect is discussed in this review paper, focusing on resistive-based SSHS for detecting different 
stimuli, like strain, pressure, tactile, temperature, chemical species and structural damage. The inspiration from 
sensory transduction of biological systems will be a key factor for the further development of SSHS and their 
application in soft robotics, electronic skin, smart wearables and haptic devices.   

1. Introduction 

One of the earliest stages of life evolution on earth involved the 
development of means for organisms to perceive their surroundings 
[1–3]. The sensory functions allow biological organisms to interact with 
the world and give the central nervous system the possibility to under-
stand their internal and external conditions, performing precise state 
estimations [4,5]. Living organisms are equipped with several kinds of 
sensory receptors to survive, adapt and evolve [6–8]. 

Mobile electronic devices for wearable applications and soft robots 
are at the forefront of sensor material development with increasing 

biomimetic sensory receptor capabilities [9–12]. In comparison to other 
flexible sensor materials (capacitive, piezoelectric, potentiometric, fiber 
optics), electrical resistive sensor materials can be used for a wide range 
of biomimetic sensory receptors, attributing multifunctional sensory 
abilities, similar to biological sensory modalities. Sensory transduction 
is the process of converting a physical or chemical sensory signal into an 
electrical signal, in sensory neurons [13,14]. In a similar bio-inspired 
way, electrical resistive sensors convert various stimuli from the envi-
ronment, into an electrical signal output, which for resistive sensors is 
the electrical resistance [15,16]. The evolution of biomimicry has 
influenced the synthesis of artificial sensors that are used in 
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applications, like wearable electronic devices [17,18], e-skin [19,20], 
soft robotics [21–23] and prosthetics [24–26]. The biomimetic devel-
opment of sensory receptors has not only benefited from the field of 
electronics, material science plays an important part as well [27,28]. 
Recent advances in fabrication techniques and the development of soft 
composite materials, such as self-healing composite materials, allow the 
production of artificial sensor structures that come closer and closer to 
biological organisms with sensory functions and the ability to recover 
these sensory properties after damage healing [29,30], i.e. soft 
self-healing sensors (SSHS). Inspired by biological sensory systems, the 
authors define four requirements, that maximize the biomimicry of 
artificial resistive sensor systems; flexibility, selectivity, multi-sensing 
capabilities (combination of different sensory modalities) and 
self-healing ability [31–33] (Fig. 1). 

Natural organisms possess intrinsic healing that allows them to 
recover from injury and infection [34]. In a similar way, researchers 
have developed artificial self-healing soft materials that are flexible and 
can recover from physical damage [35]. This allows improving the 
longevity and durability of engineered structures, which results in a 
decrease in waste and maintenance costs. Because of their capability to 
increase the lifetime of structures, self-healing materials have the po-
tential to reduce the carbon footprint of many products and they can 
contribute significantly to sustainability for future societies. The 
development of materials with self-healing abilities has become a topic 
of research for more than two decades [36–42]. The development of 
self-healing materials is not only limited to the restoration of mechanical 
properties, but in case of electrical conductive self-healing materials for 
sensing applications, the restoration of the sensory function (e.g. con-
ductivity) is necessary too [43]. It is worth to mention that in general 
until now, self-healing soft sensors have inferior mechanical strength 
and resilience in comparison with non-self-healing sensors [44]. 

Many SSHS systems rely for their sensing on carbon-based or inor-
ganic fillers. However, careful filler ratio optimizations are essential as 
high filler contents restrict the mobility of polymer chains, affecting the 
flexibility, the elasticity and the self-healing capacity of the composite 

[45]. This is especially the case, when large concentrations are required 
to reach the percolation threshold [46]. Flexibility is an important 
requirement because it allows large range of deformation and con-
formability on surfaces, as it is often the case for sensory receptors found 
in natural organisms. For example, the sensors found on the surface of 
the human skin are able to endure very large elongations. Additionally, 
neural receptors found in internal organs are soft and have the ability to 
wrap around organs and complex surfaces. 

From the five senses described by Aristotle (smell, sight, touch, taste, 
and hearing) to the modern era of science, the study of sensory modal-
ities has evolved [47]. Nowadays, the widely perceived idea is that 
humans possess seven senses including vision, olfaction, gustation, 
auditory perception, tactility, proprioception and balance [48]. Mech-
anoreceptors are somatosensory receptors that detect stimuli like touch, 
pressure, sound and motion. These receptors are related to the senses of 
auditory perception, tactility, balance and proprioception (body 
awareness) [49–51]. Another type of biological receptor, thermore-
ceptor, detects thermal stimuli and is relevant to the sense of touch [52]. 
Chemoreceptors detect the presence of molecules and the chemical 
composition of the environment [53–55]. These neural receptors are not 
only essential for the senses of smell and taste, they also play an 
important role in monitoring the proper function of body operations, 
like for example oxygen concentration in the blood [56,57]. Nociceptors 
can detect the presence of damage or potential damage and trigger the 
sensation of pain. They rely on other receptors like mechanoreceptors, 
chemoreceptors and thermoreceptors. All these types of receptors can be 
mimicked by soft, self-healing sensors to detect stimuli like strain, 
touch/pressure, temperature, humidity and the presence of chemical 
species [50,58,59] (Fig. 2). 

Except for multi-sensing capabilities, one very important aspect for 
biological sensory receptors is selectivity [60]. Biological sensory re-
ceptors are highly selective because each type of receptor is specific to 
the type of stimulus it detects [61,62]. Usually, this selectivity is based 
on different classes of activation energy, specific for each stimulus, or 
additionally, the intensity of energy that is required to activate the 

Fig. 1. Requirements of biomimetic SSHS derived from biological receptors for sensory transduction and their potential applications.  
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receptor [50,63]. The aspects of selectivity and multi-sensing have not 
been systematically investigated for artificial sensing, but in recent 
years, some research works started to expand in this direction [64,65]. 
Conversely, often a sensor is triggered simultaneously by an internal or 
external event. Information from multiple sensor types provides the 
necessary information for interpreting the event. To achieve 
multi-sensing and at the same time selectivity, similar to biological re-
ceptors, artificial sensors are combined together, but each sensor should 
be sensitive for only one specific stimulus. In biological systems, each 
receptor is selective to a specific stimulus and all these receptors are 
working simultaneously, forming an elaborate sensing network, where 
different stimuli are being converted into brain-interpretable electrical 
impulses for cognitive processing [66]. 

Because of their mechanical properties and self-healing abilities, 
SSHS can be relevant for many applications. For soft robotics, e-skin, 
haptic devices or wearables, the ability of the sensor to endure large 
elongations is very essential to the functionality of the structure. 
Therefore, the development of SSHS go hand-in-hand with the progress 
in these technological fields. While there have been significant advances 
in the development of sensing materials, detection of multiple stimuli 
and how selective the response is to each stimulus, has not been explored 
systematically. However, looking into biological organisms, these as-
pects are particularly important for the perception of our internal and 
external state and therefore, it is essential to expand the capabilities of 
SSHS in these aspects. Additionally, SSHS have been widely applied for 
strain sensing application and less in other sensing types. 

In this review paper, different types of SSHS will be highlighted. 
SSHS can be used to detect different stimuli and the report will 
demonstrate the broad range of stimuli that can be used for conductive 
soft composite materials. A special focus is given on the aspects of multi- 
sensing and selectivity of the sensor response of artificial SSHS mate-
rials. In the beginning of each chapter, the link between biological re-
ceptors and their artificial counterparts will be highlighted. Afterward, 
selected studies for each type of SSHS will be discussed. The last chapter 
is devoted to applications that have been reported for the different types 
of SSHS. 

2. Resistive sensors for detecting multiples stimuli 

To produce soft resistive sensors, a soft primary phase that can be a 

hydrogel or an elastomer, is combined with a conductive secondary 
phase. In the field of composite material science, the two terms are 
otherwise known as matrix and filler material. However, the term filler 
doesn’t apply for the case when side groups, a second polymer or a 
coating phase are responsible for the conductivity of the resulting 
composite. This secondary phase can be based on carbon nanomaterials 
(carbon black, carbon nanotubes, carbon nanofibers, graphene oxide or 
graphene), intrinsic conductive polymer or ions. Regardless of the type 
of the secondary phase, when distributed in the primary phase, a 
conductive network is formed and the insulator primary phase can be 
electricity conductive [67,68]. In principle, for all types of resistive 
sensors, the sensing behavior is derived from changes in the agglomer-
ation and density of the conductive network [69,70]. However, the type 
of change depends on the type of stimuli and this function is a useful 
asset for achieving multi-sensing capabilities. Typically an increase in 
the specific value of the stimulus will result in an increase in the inter-
particle distance of the secondary phase and cause an increase in the 
electrical resistance [71,72]. For small changes in the interparticle dis-
tance, the tunneling effect is the underlying mechanism [73]. The 
tunneling effect, describes a quantum mechanical process of a micro-
scopic particle, penetrating a potential energy barrier with energy 
higher than the energy of the particle [74,75]. If the interparticle dis-
tance between the particles of the secondary phase is small enough, 
tunneling paths form and electrons move between the conductive par-
ticles [76]. However, when the interparticle distance increases, the 
probability for tunneling paths to form decreases [77]. For larger 
interparticle distance, the percolation theory is dominant. According to 
the percolation theory, an increase in interparticle distance can lead to a 
breakdown of the conductive network and therefore increase in the re-
sistivity of the composite, achieving a resistive response [78–80]. 

For mechanoreceptors, a piezoresistive response can be achieved by 
exerting a mechanical stimulus, like pressure or strain, a change in the 
geometrical dimensions of the sample causes the interparticle distance 
change (Fig. 3) [81,82]. For chemoreceptors, the change between the 
interparticle distances is achieved because of the swelling of the soft 
primary phase in the presence of a chemical species, like humidity or 
solvent [83,84]. For thermoreceptors, two behaviors have been identi-
fied. In the case of a positive temperature coefficient effect (PTC effect), 
the thermal expansion of the soft primary phase is responsible for an 
increase in the interparticle distance and therefore the higher resistivity 

Fig. 2. Different types of sensory receptions of biological organisms that inspired the development of conductive resistive SSHS. The sensory functions of the SSHS 
can be tailored by composite properties, like percolation, swelling, and deformation behavior, as well as thermal expansion. 
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of the composite [85,86]. For the negative temperature coefficient effect 
(NTC) effect, there is a decrease of the electrical resistance with the 
increasing temperature [87,88]. The phenomenon is not well discussed, 
however there have been some suggestions that the mechanism is linked 
to internal changes in the polymer structure of the primary phase. As for 
the resistive sensors for damage detection (nociception), the mechanism 
is linked to the disruption of the conductive paths of the network of the 
secondary phase. Fewer paths lead to an increase in the resistivity of the 
composite and this behavior can be exploited to detect the presence of 
structural damage [89]. 

Typically, the primary phase (matrix) is responsible for the self- 
healing mechanism in self-healing sensors (SSHS). This healing ability 
is either inherent to the chemical structure of the matrix phase 
(intrinsic) or incorporated as a healing agent that is encapsulated into 
reservoirs that rupture upon damage to release the healing agent 
(extrinsic). In hydrogels and elastomers, intrinsic healing mechanisms 
are by far the most common method to incorporate the ability to heal 
damage into soft matter materials [19,29,35]. Intrinsic healing mecha-
nisms rely either on physicochemical interactions, such as hydrogen 
bonding (64%) or ionic interactions (25%), or on reversible covalent 
bonding (11%), such as disulfide, boronic esters and imines. Physico-
chemical interactions are easily broken, yet reform very fast. This makes 
them very attractive for fast healing, often autonomously, without the 
need of an additional stimulus. Physicochemical crosslinking between 
monomers or oligomers leads to the formation of supramolecular net-
works in hydrogels or elastomers. 

Alternatively, reversible chemical reactions are used. In this case 
reversible covalent bonds that can either be dissociated or exchanged 
upon the adequate stimulus are used to repair cross-linked polymer 
structures. Frequently employed stimuli include heat, light irradiation 

and mechanical force are used to start the self-healing mechanism and it 
is essential that the physicochemical or covalent bonds break in a 
reversible fashion upon mechanical (over)loading. 

About 22% of the reviewed SSHS combine multiple healing chem-
istries. In two third of the SSHS exploiting multiple healing chemistries, 
combinations of hydrogen bonds with other physicochemical in-
teractions are used. It should be noted that the real number of combined 
healing mechanisms is much higher, as many types of physicochemical 
interactions are easily formed in many polymeric materials. Hydrogen 
bonds and electrostatic interactions form easily in the presence of 
hydrogen donating and accepting groups and in the presence of charged 
species in the polymer chains, respectively. In most cases, their contri-
bution to the viscoelastic properties and self-healing behavior is 
neglected compared to the (reversible) covalent bonds that constitute 
the polymer network. In a few cases, e.g. polylipoic acid that contains 
disulfide bonds and undergoes hydrogen bonding and electrostatic in-
teractions with different charged species (N+, Cl− , Fe3+) via the abun-
dance of carboxylic acid side groups is used [90]. 

Some particular healing mechanisms are worth noting. The inclusion 
of a liquid metal into an acrylic acid-based hydrogel showed self-healing 
by way of acrylate radical polymerization upon rupture of the liquid 
metal droplet, initiated by the Ga3+ ions present in the liquid metal [91]. 
This healing mechanism situates at the cross-section of intrinsic and 
extrinsic self-healing, as the healing chemistry is inherent to the matrix 
material structure, yet initiated by the liquid metal droplets that are 
encapsulated inside the flexible hydrogel network. 

In the following chapter, examples of the different types of SSHS for 
mechano-, chemo- and thermoreception will be reported. Material 
combinations for the primary and secondary phases will be discussed 
and different aspects of the sensing performance presented. Finally, we 

Fig. 3. Schematic representation of the major mechanisms responsible for the resistive sensing behavior of resistive sensors based on a primary soft phase and a 
secondary conductive phase. The conductive secondary phase forms a conductive network, distributed in the primary phase. The different stimuli alter the 
arrangement or density of the network resulting in a change of the electrical resistance. 
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will look at the development of nociception functions in self-healing 
materials. 

3. Different categories of SSHS and their applications 

3.1. Biomimetic mechanoreception 

Mechanoreception is the ability of a system to detect stimuli, like 
tactility, pressure, elongation, vibration, sound waves and internal 
stimuli linked with the movement and body position. These stimuli may 
be external or internal. Biological mechanoreceptors convert mechani-
cal displacement into a receptor potential in the ion channels [92] and 
they can be found on the skin, in the joints and close to the bones and 
internal organs [93]. Mechanoreceptors are associated with the sense of 
touch, auditory perception and proprioception (body awareness). 
Similarly, artificial mechanoreceptors have been developed in the form 
of strain, tactile and pressure sensors. Such sensors are particularly 
relevant for applications like artificial electronic skin [19,31,94,95], 
haptic devices [96,97], soft robotics [39,98,99], wearable electronic for 
health monitoring [100–102] and medical prosthetic devices [103]. 

3.1.1. Strain reception 
One of the most prevalent applications for SSHS are strain sensors to 

mimic the functions of natural skin and the monitoring of the human 
body movements [104]. Soft self-healing strain sensors (SSHSS) need to 
detect large elongations and should have a high sensitivity, to be able to 
detect small changes in deformation. They also include the function of 
self-healing after damage. To analyze strain sensor properties, tensile 
testing machines or simple bending experiments can be set up, and this is 
one of the reasons why they have been explored by so many researchers. 
The primary phase of electrical conductive SSHS is usually a hydrogel or 
an elastomer. Self-healing strain sensors based on elastomers can 
maintain their functionality and properties after thousands of cycles of 
repeatable motion [90,105]. 

The selection of the primary phase can impact the properties of the 
SSHSS and there are significant differences between elastomers and 
hydrogels. In general, the elastomer-based SSHSS have a shorter elon-
gation at the point of fracture, compared to hydrogels. This difference 
can be attributed to the significant content of water in hydrogels. 
Another disadvantage of elastomers is the significantly longer time for 
the healing process because they require heating above the melting 
point [35]. However, elastomers have higher mechanical strength and 
modulus, which can be required in applications including soft robotics 
for pick and place, prosthetics, other smart wearables for monitoring 
and haptics. In addition, these self-healing elastomers have higher me-
chanical and thermal stability, lower or negligible humidity dependency 
and often a faster and more complete elastic recovery compared to 
hydrogels. In contrast to hydrogels, several manufacturing processes 
have been already upscaled to the industrial level for elastomer-based 
SSHSS and therefore they are highly interesting for science and tech-
nological developments in the future [100]. 

For a SSHSS, based on brominated natural rubber and graphene 
oxide (GO) sheets, hot compression has been explored for industrial 
manufacturing methods. The resulting sensors had an excellent self- 
healing response (93.58%) based on ionic interactions between 
bromine and histidine ions, but the piezoresistive properties and sensi-
tivity did not fully recover after the self-healing process [106]. Con-
ventional elastomers, like polydimethylsiloxane (PDMS) [107–109] and 
natural rubber (NR) can be modified to contain functional groups in 
form of hydrogen, ionic and reversible covalent bonds to achieve 
self-healing properties [110]. In addition to carbon-based nanofillers to 
achieve extrinsic conductive properties in elastomers, the intrinsically 
conductive polymer polyaniline (PAni) has been by Lu et al. [111]. In 
their study, a self-healing elastomer was combined with PAni and phytic 
acid and the resulting sensors could endure elongations of up to 1935%, 
which surpasses even the hydrogel-based self-healing sensors. Often 

thermal heat treatment is used to lower the activation energy for the 
self-healing mechanism in elastomers. Nevertheless, self-healing at 
room temperature has been reported for epoxy natural rubber (ENR) in a 
few studies [112,113]. Cao et al. developed a two-component system 
consisting of a supramolecular elastomer based on ENR and carbon 
nanotubes [113]. The resulting SSHSS could self-heal at room temper-
ature in 15 s, due to the abundance of hydrogen bonds. It was suggested 
that the formation of hydrogen bonding and the interaction between 
filler and matrix not only helped with the self-healing, but additionally, 
the dispersion of the carbon nanotubes and therefore, the formation of 
the conductive network, resulting in good sensitivity. Niu et al. devel-
oped a sensor based on an amphiphilic copolymer and an ultrathin 
graphene oxide healable at room temperature with good strength (9.3 
MPa) and stretchability up to 300% [114]. 

To get a general overview of the different soft materials used for the 
development of self-healing strain sensors we have summarized relevant 
properties from the literature into bar charts, as shown in Fig. 4. 

As already stated, hydrogels are popular due to their ability to 
endure very large elongations (Fig. 4a). It is thought that because of the 
shorter chain length, compared to elastomers, hydrogels show more 
elastic than viscous behavior [115,116]. This phenomenon can lead to 
reduced creep, hysteresis and relaxation properties in comparison to 
elastomers [117–119]. However, the viscous behavior of hydrogels de-
pends on the water content and systematic studies that compare the 
viscoelasticity of hydrogels and elastomers are scarce. Synthetic 
hydrogels like polyacrylamide (PAAm) [112,120–122], polyacrylic acid 
(PAA) [91,123–126] and polyvinyl alcohol (PVA) [45,127–131] are 
particularly popular [132,133]. Therefore, for biomedical soft sensor 
applications natural-origin hydrogels are often combined with synthetic 
ones (Table S1). Natural origin-hydrogels often include chitosan, 
κ-carrageenan (κ-CA) [70], sodium alginate (S.A.) [126] and tannic acid 
(Tan.A.) [120]. A double network hydrogel of ionic cross-linked κ-CA 
network and a covalently cross-linked PAAm was able to recover 99.2% 
of the value of the resistance after a self-healing process of thermal 
heating (90 ◦C) for 20 min [134]. 

Additive manufacturing (AM) of hydrogel sensor structures is a 
popular topic nowadays. The most common AM method for hydrogels is 
the direct ink writing or robocasting process [135]. Both fabrication 
processes belong to the material extrusion AM method, where a 
paste-like material is extruded through a nozzle on a printing bed 
platform to form a 3D object with layer-by-layer deposition [136,137]. 
For the extrusion process the materials must exhibit shear-thinning and 
thixotropic response. Two other AM techniques often used to build up 
SSHSS structures are stereolithography (SLA) and digital light process-
ing (DLP). A recent study described the fabrication of functionalized 
carbon nanotube-based strain sensor using DLP technique [138]. The 
resulting sensor could achieve very large elongations (1209%) and 
82.6% of the mechanical properties recovered after self-healing process. 
The inclusion of functionalized carbon nanotubes, inhibited effects of 
overcuring, thanks to the presence of carboxylic groups. 

To achieve SSHSS materials a secondary conductive phase is neces-
sary, as mentioned earlier. Extrinsic conductivity can be achieved using 
conductive particles like carbon nanotubes (CNTs), GO, or ions. As an 
alternative, intrinsic conductive polymers (ICP), like PAni, PEDOT:PSS 
or polypyrrole (PPy) can be used. In these systems the conductivity is 
derived from the mobility of valence electrons from delocalized conju-
gated orbitals of the ICP [139]. Intrinsic conductive polymers and their 
composites have exhibited self-healing capabilities [140,141]. For 
hydrogel-based systems, in particular, the use of the hybrid filler 
concept becomes more and more popular for obtaining superior sensing 
performance. Hereby, widely spread ion-based fillers are combined with 
carbon nanomaterial fillers or ICP to improve conductivity and the 
sensitivity of the strain sensor. The sensitivity in strain sensors is typi-
cally expressed by the Gauge Factor (GF). The gage factor is defined as 
the ratio between the relative change in the electrical resistance to the 
change in the mechanical strain [100]. As it can be seen in Fig. 4b, a GF 
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between 2 and 10, has been often reported and seems suitable for ap-
plications, like wearable electronics and soft robots. 

To investigate the self-healing abilities of SSHSS, for both elastomer 
and hydrogels, the recovery time (Fig. 4c) and how the conductance (or 
resistance) recovers after healing (Fig. 4d) is reported by several re-
searchers. Hydrogels show a significantly faster self-healing process, 
compared to elastomers and typically no thermal treatment is needed. 
Liu et al. showed for their PVA/PDA based sensor a 100% recovery of the 
resistance value, after self-healing at room temperature for 250 ms 
[142]. Also for ionic hydrogels based on PAAm, a good recoverability of 
the conductive properties within a short healing time (1.8 s) has been 
reported [85]. Using a humidifier can additionally help to accelerate the 
self-healing process, as shown by Wu et al. [86]. 

However, the linearity and reproducibility of the sensor signal after 
multiple loading cycles and damage-healing cycles should be also re-
ported. Consequently, it is important to investigate the sensitivity of the 
sensor in its application window as a function of time during its lifetime, 
which is prolonged by healing. Even though the most common practice 
to investigate the recovery of the electrical properties is to record the 
change of the initial resistance or conductance without straining, there 
are also some examples that reported the sensing behavior (sensitivity) 
after the healing process. Mei et al. compared the response of the relative 
resistance with the applied strain, before and after the self-healing 
process, showing that the sensitivity of the sensor is the same before 
and after the healing process [143]. Georgopoulou et al. used a SSHSS 
skin on a 3D printed soft actuator module to monitor the bending pro-
cess [144]. The skin consisted of a self-healing supramolecular elas-
tomer sensor fiber embedded in a self-healing supramolecular 
elastomer. Looking at the change of the relative resistance before and 
after damage, it was seen that the sensor could be used to detect the 
motion of the actuator after the healing. Two different cases of damage 
were investigated. In the first case, the supramolecular matrix was 
partially damaged (Fig. 5a–g) and in the second case, the whole skin was 
cut, including the sensor fiber (Fig. 5h and i). In both cases, the relative 
change in resistance was identical before and after the healing. Unfor-
tunately, the initial resistivity did not recover, because for the 
self-healing, thermal treatment up to the melting point of the elastomer 
was required. 

However, to truly validate self-healing sensors, the functional 
integrity of the sensor needs to be investigated after multiple damage- 

healing cycles. This can only be performed based on a model of the 
sensor response of the flexible sensors. This means that recalibration of 
the sensors is required after healing. However, in many applications, 
including robotics, recalibrations are common and therefore these sys-
tems can benefit economically from this healing capacity. 

Developing analytical models for SSHSs is however very challenging, 
not due to their potential non-linearity, but due to their time dependent 
response, resulting from their non-negligible viscous behavior, caused 
by the presence of reversible (physico) chemical bonds. Hysteresis and 
drift result in complex time dependent models or even make it impos-
sible to create an analytical model. Nevertheless, machine learning can 
provide a solution in these circumstances, as learning-based framework 
circumvents this modeling challenge using real-world experience [145]. 

Having more than one self-healing mechanism, like hydrogen bonds, 
π-π stacking and ionic interactions, can result in a higher recovery value 
of the mechanical property (stress or strain) after healing compared to 
one mechanism [146]. A high concentration of the conductive filler can 
act as a reinforcement and therefore the mechanical strength increases 
[147], however, the self-healing efficiency will be negatively affected. 
Functionalizing the filler to obtain a side group that can interact with the 
matrix is a strategy to improve the self-healing behavior and mechanical 
properties of the SSHSS with high conductive filler content. The addi-
tional bonds (hydrogen, dynamic or electrostatic interactions), between 
the functionalized filler and matrix can improve the self-healing 
behavior. It has been demonstrated that functionalized CNTs can 
interact with the hydrogel chains (gelatin and PAAm) that will result in 
an improved dispersion of the nanotubes and desirable sensor charac-
teristics, like sensitivity and reproducibility [148]. 

The majority of hydrogels are based on water and therefore, they are 
prone to drying-out at room temperature or freezing in subzero tem-
peratures. Both conditions will inhibit the strain sensor behavior of the 
conductive hydrogels. Han et al. soaked their gel (PAAm, κ-CA, CNTs) in 
ethylene glycol (EG) to replace water with EG and they managed to 
maintain the functionality of their SSHSS sensor in temperatures as low 
as − 85 ◦C [149]. Another approach is to combine water with ethylene 
glycol [150]. For PVA-based hydrogels, EG induces crystalline domains 
that improve the mechanical properties [151]. As an alternative to EG, 
glycerol can also be used in a binary solvent solution with water [152]. 
Dai et al. achieved a stable sensor response between − 40 and − 90 ◦C and 
humidity between 10 and 90%. 

Fig. 4. (a) The elongation at break for SSHSS categorized by type of matrix material (b) The gage factor (GF) categorized by the type of secondary phase. (c) The time 
required for the self-healing process categorized by the type of matrix material (d) the recovery of mechanical and electrical properties in% categorized by the type of 
matrix material. The data represented in this figure are derived from Table S1. 
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Another approach to produce SSHSS for low temperatures (− 80 ◦C) 
is the use of ionic liquids, like ZnCl2. Zhao et al. use ZnCl2 not only for 
the ionic conductivity. Additionally, the ionic liquid reduced the 
freezing point of their PAAm/PAA hydrogel, due to the colligative 
property of the ionic liquid [153]. Thanks to the presence of cations, 
ionic liquids can also attribute antibacterial properties based on the 
membrane-lysis mechanism, which can be an asset for wearable devices. 
It is worthwhile to mention that self-powered strain sensors have been 
developed. Combining a gelatin-based self-healing elastomer with a 
layer of zinc and an air electrode to form a closed-loop system that uses 
the chemical energy from the battery to power the sensor [154]. The Zn 

layer acted as an anode electrode, an air electrode as the cathode and the 
gelatin hydrogel as the electrolyte. Remarkably, the gelatin-based sensor 
had good self-healing capabilities, and therefore, electrical resistance 
and mechanical strain recovered with a percentage of 94% and 95% 
respectively, after the self-healing process (0.65 s). 

3.1.2. Pressure/tactile reception 
Other types of mechanoreceptors are tactile/pressure sensors 

[104–110] and similar to the strain sensors, their function is based on 
the geometrical change of the sensor, caused by a mechanical stimulus 
like touch (tactility) or sustained pressure [94,155]. Such 

Fig. 5. The electrical signal during cycle bending of a tendon based soft actuator element with SSHSS integrated in a self-healing skin (a) before and (b) damage of 
the self-healing skin, and (c) after the healing of the skin. (d) The tendon-based soft actuator in the initial position and (e) in a bent position, (f) after cutting and (g) 
after healing the sensor matrix (h) and (i) after cutting and healing the sensor fiber. Reproduced under the terms of a CC-BY license from [144]. 
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mechanoreceptors are very important for biological skin for perceiving 
and interacting with the environment [156–158]. For pressure sensors, 
the change in the resistance (or current) is generated as a result of 
applied pressure [159]. However, it is still challenging to compare 
different studies, because a factor for the sensitivity, like the GF for the 
strain sensors, has not been established so far. A summary of soft 
self-healing pressure sensors (SSHPS) can be found in Fig. 6. Similar to 
SSHSS, hydrogels are more popular for SSHPS (Table S2). Ionic con-
duction mechanisms, based on ionic liquids or side groups of the poly-
mer, are often used. Electrical conduction can be achieved by carbon 
nanotube (CNT), graphene and metal particles to build up a SSHPS. 

In the case of elastomer-based SSHPS, the time required for the self- 
healing is significantly higher than for the hydrogels (Fig. 6a), but the 
recovery of the mechanical and electrical properties, after the self- 
healing process, can be very efficient (95%) (Fig. 6b). A SSHPS based 
on polysiloxane elastomer with Diels-Alder dynamic bonds and gra-
phene filler has been reported by Zhao et al. [160]. The resulting pres-
sure sensor could detect pressure and compressive strain, but the 
response was not linear. Tee et al. developed a SSHPS based on a su-
pramolecular elastomer with hydrogen bonding and nickel microparti-
cles [161]. Their sensor exhibited a linear response with the applied 
pressure, for pressures between 50 and 400 kPa. The recovery of the 
properties after self-healing was directly linked to the presence of 
hydrogen bonding sites in the supramolecular elastomer. A linear 
response up to 100 kPa was achieved by Tian et al. with a poly-
urethane/graphene SSHPS, reinforced with polystyrene microspheres 
[162]. 

Hydrogel-based SSHPS coatings have been investigated on complex 
structures [163,164]. Pan et al. reported a PVA- proanthocyane 
/reduced graphene oxide coating on a prosthetic hand to introduce 
tactile sensing capabilities [164]. A pressure sensor up to 1.5 kPa with 
high sensitivity could be achieved by using an ionic hydrogel with 
hydrogen bonding, based on poly(ethylene oxide) and lithium chloride 
[165]. The inclusion of the polyethylene oxide led to multiple hydrogen 
bonds that improved the energy dissipation and rapid association of 
energy in the hydrogel, leading to improved mechanical properties. A 
linear ionic hydrogel pressure sensor up to 2.5 kPa was observed by the 
combination of dodecylbenzene with bio metallic ions [166]. The 
addition of the dodecylbenzane facilitates the mobility of the metallic 
ions, leading to improved sensitivity. A PAni-based hydrogel pressure 

sensor up to 25 kPa was reported by Chakraborty et al., however, a 
significant hysteresis between loading and unloading of the pressure was 
observed [167]. By comparing the self-healing conditions, it can be seen 
that the hydrogel-based SSHPS heal rapidly (a few seconds) and usually 
they do not require any thermal treatment. However, the deterioration 
of the mechanical properties, because of the drying-out has not been 
discussed in the literature. It is worthwhile to mention that this is not an 
issue for elastomer-based SSHPS as their response is in general inde-
pendent of humidity. 

Typically, elastomers can be used for withstand higher pressure 
values, compared to hydrogels (Fig. 6c). However, a pressure sensor up 
to 120 kPa based on hydrogel (PVA with liquid metal) has been reported 
by Liao et al. [168]. This value is comparable to values reported for 
elastomer-based SSHPS. Even though liquid metal can be used as a 
sensor, combining with a hydrogel can improve the mechanical prop-
erties of the composite [169]. As already mentioned, material combi-
nations for SSHSS and SSHPS are similar, therefore in several studies 
SSHS have been investigated for pressure and strain analysis [163,165, 
170,171]. Typically for differentiating between pressure and strain 
analysis, only the geometry and dimensions of the sample have to be 
adjusted [33,129–132]. 

3.2. Biomimetic thermoreception 

In natural organisms, thermoreceptors are specialized neural re-
ceptors that detect changes in temperature [172]. These receptors are 
crucial for homeostasis, the tendency of the body to maintain a stable 
internal condition [173]. The signal generated from these receptors can 
trigger a series of behavioral and physiological responses that are known 
as thermoregulation [52,174]. Such neurons are commonly found in the 
skin, but also in internal cavities of the body and other organs like the 
liver, skeletal muscles and the hypothalamus [175,176]. In artificial 
systems, they are often used for electronic skin applications [20,177, 
178], wearable devices [165,179] and prosthetics [180,181]. Due to 
thermal expansion and shrinking, when changing temperature, hydro-
gels and elastomers are interesting candidates for thermal sensor ap-
plications [182,183]. Similar to the role biological thermoreceptors play 
in homeostasis, artificial thermoresistive SSHS can monitor changes in 
temperature. 

Self-healing polymers, especially those based on reversible covalent 

Fig. 6. (a) The time required for the self-healing process categorized by the type of matrix material (b) the recovery of mechanical and electrical properties 
(resistance R or conductance G) in% and (c) The maximum pressure that can be detected categorized by the type of matrix material. The data represented in this 
figure are derived from Table S2. 
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bonds require a temperature elevation to trigger or accelerate healing 
behavior [35,184,185]. Therefore, tracking temperature during the 
self-healing process, via integrated sensors, can assist in temperature 
control and health monitoring [35]. The mechanical properties 
(strength, elasticity) depend on temperature, as the crosslink density 
and/or strength of the bonds is affected. Therefore, the ability to record 
the temperature in self-healing materials and structures is an important 
asset, at it allows to estimate the mechanical properties and take these in 
account in controllers, e.g. for robotics [186,187]. This could be estab-
lished with model-based (kinematic) control, using knowledge of the 
hyperelastic behavior of the materials to construct the self-healing 
sensor integrated structures like soft robots [188]. 

Additionally, soft robots and wearable electronic devices that can 
detect changes in temperature in their environment, similar to biological 
thermoreceptors, are particularly useful for the exploration of unknown 
environment applications, like outer space and underwater environ-
ments [9,189]. Another popular application of flexible soft self-healing 
temperature sensors (SSHTS) is electronic skin [177,180]. The mecha-
nism for elastomer-based thermistors is based on the positive or negative 
temperature coefficient, namely PTC or NTC effect, respectively. A 
positive temperature coefficient (PTC) thermistor is a material whose 
resistivity increases with an increase in temperature. Similar to SSHSS 
and SSHPS, SSHTS are based on either elastomers or hydrogels. How-
ever, hydrogels can reach significantly larger elongations at the point of 
fracture and therefore, are preferred for applications like electronic skin 
(Fig. 7). For the development of thermistors, carbon nanomaterials are 
popular fillers [190–193]. Hydrogel-based self-healing thermistors often 
show a linear change of the resistance with temperature and can be used 
to detect even small temperature variations (0.2 ◦C) [191]. 

Wu et al. developed a thermistor based on PAAm/κ-CA and their 
sensor showed a monotonic response and good repeatability even after 
self-healing (Fig. 8a) [194]. Similar results were obtained by Yang et al. 
with their CNTs-based sensor [193]. An alternative to carbon fillers can 
be liquid metal-based temperature sensors [159]. Self-healing hydrogels 
with integrated channels can be used to inject the liquid metal and in 
order to increase the viscosity of the liquid metal by oxidation by air 
[195]. Stirring however is required to ensure that the oxidation reaches 
the innermost parts of the liquid metal. In the end, it is possible to 
achieve a paste-like material that can be easily injected into the 

hydrogel. Also intrinsic polymers, like PAni, have been used for the 
fabrication of SSHTS up to 80 ◦C [179]. The sensor was also able to 
detect the distance from hot water (Fig. 8b). 

Because of similar composition, SSHTS often show strain sensitivity 
[179,196]. An et al. reported a selective to temperature hydrogel 
thermistor based on an ionic dual network that showed good tempera-
ture sensitivity up to 80 ◦C, however additional bending and torsion did 
not affect the sensor signal [190]. Another example of a selective SSHTS 
has been reported by Wu et al. [194] (Fig. 8c). The PTC sensor consisted 
of PAAm and κ-CA and the sensor signal was not affected by applied 
flexion. These two examples show how selectivity has to be investigated 
in SSHTS to avoid the influence on the piezoresistive effect. What causes 
this effect is not described. However, it is worth mentioning that in both 
studies a hydrogel with a double network (two polymers) is used and it is 
claimed that the double network shows superior strength stretchability 
and toughness compared to single network hydrogels. 

In addition to measuring temperature, self-healing thermistors can 
also be used as heating elements [197–200]. The resistive heating 
element can generate heat with an applied voltage, e.g. to activate the 
healing action, but thanks to the PTC effect, this behavior is 
self-regulating [201,202]. When the thermistor reaches a certain current 
limit the increase of temperature ceases [203–205]. Due to the 
self-regulation performance, overheating of the soft material structure 
can be avoided. 

3.3. Biomimetic chemoreception 

Chemoreceptors are a type of specialized sensory receptor that 
transduce chemical stimuli, in the form of chemical species molecules 
[206]. These neural receptors are commonly associated with the senses 
of smell and taste and are therefore found in the oral and nasal cavities of 
the body [54,207]. Their function is to relay information about the 
presence of chemical species in the environment [208]. For artificial 
SSHS, this function can be mimicked by gas, vapor and solvent receptors 
that are able to detect the presence of chemical spices, a useful aspect for 
health monitoring devices and soft robots [209–211]. As aforemen-
tioned, their response is based on the swelling of the primary phase in 
the presence of chemical species. On the other hand, in natural organ-
isms, chemoreceptors can detect the concentration of chemicals, like 

Fig. 7. (a) Elongation at break for the SSHTS categorized by matrix material. (b) Sensitivity of the SSHTS categorized by matrix material (c) The minimum tem-
perature that can be detected and (d) The maximum temperature that can be detected categorized by matrix material. The data represented in this figure are derived 
from Table S3. 
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oxygen in the body and are linked with the respiration and metabolic 
process, located in the lungs, blood vessels and other internal organs 
[57,212,213]. The presence of chemical species can be particularly 
important for the homeostasis of SSHS, like for example the efficiency of 
the self-healing process and functionality of the sensors [214–216]. 
Thus, SSHS have been developed for monitoring the levels of chemical 
species, like for example pH and humidity sensors. 

3.3.1. Gas, vapor and solvent reception 
Hydrogels and elastomers with conductive fillers (e.g. resistors) can 

be used for detecting chemical species in form of gasses, vapors or liq-
uids. Soft self-healing chemical sensors (SSHCS) can find applications in 
wearable electronics for the monitoring of bodily fluids and in soft 

robotics. Inspired by the chemoreceptors in biological systems, chem-
iresistive sensors can contribute to the sense of olfaction and gustation. 
Chemiresistive sensors with self-healing properties can be based on 
elastomers or hydrogels. Similar to the other sensors types, carbon-based 
fillers, ionic species, ICP and metals are common options for the sec-
ondary conductive phase. Also for this type of SSHS, a combination of 
two conductive fillers (hybrid filler concept) leads to good values of 
sensitivity of the sensor signal (Fig. 9a). Especially for a sensor device 
that can detect multiple chemical species, a selective sensitivity of each 
sensor can recognize which type of chemical species is present and its 
concentration [217]. Huynh et al. developed a selective SSHCS based on 
self-healing polyurethane for the detection of different solvents like 
hexane, hexanoic acid and nonane and by tailoring the composition and 

Fig. 8. (a) A 2 × 2 cm2 soft thermal sensor, based on single-wall CNTs, was used to measure the temperature between 0 and 80◦ on a soft prosthetic hand. Thermal 
sensitivity was investigated at different temperatures (0, 20, 40, 60, and 80 ◦C) and the resistivity before damage and after healing. Reproduced with permission from 
[193]. (b) A PAni/PAA hydrogel thermistor was investigated under different thermal conditions, with a voltage of 3 V. Reproduced with permission from [179]. (c) 
Double network hydrogel based on PAAm and κ-CA was used as a flexible electronic conductor for LED application. The sensor device was tested at different flexion 
angles and under thermal heat treatment. Reproduced with permission from [194]. 
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the type of carbon-based filler, they could tune the selectivity and 
sensitivity of the sensor response [218]. The differences in the sensitivity 
for the different carbon fillers (carbon black, CNTs) were attributed to 
the differences in the distribution of the carbon filler inside the 
self-healing polyurethane. Zhang et al. combined liquid metal with GO 
for detecting ethyl alcohol in a supramolecular hydrogel-based sensor 
[159]. They reported a linear sensor signal and stretchability above 
400%. However, a temperature dependency of the sensor signal was 
observed, a phenomenon often observed for liquid metal sensors [219, 
220]. 

Elastomers like TPU and PDMS with functional groups for self- 
healing capability have been explored, but overall, hydrogels based on 
PAAm, PEG, gelatin or chitosan still show better recovery of the me-
chanical and electrical properties after the healing (Fig. 9b). The profile 
of the sensor signal and the sensitivity of the response can differ, 
depending on the type of chemical species, however, the change in the 
sensor signal can be altered by the concentration of chemical species too 
[221]. An example of this behavior can be seen in Fig. 10a, where the 
sensor signal does not linearly decrease, by the decrease of the hydrogen 
gas concentration [209]. The different values of the sensitivity, 
depending on the hydrogen gas concentration, are directly linked with 
the diffusion flux of the gas through the sensor material. In another 
attempt, Wu et al. used polyborosiloxane and graphite rods for detecting 
solvents like methanol, toluene and hexane [222]. The sensor perfor-
mance was not only affected by the solvent and the concentration, the 
type of solvent affected the response and recovery time of the sensor. 
These differences were linked with the differences in the diffusion speed, 
expensing on the type of solvent and its affinity to the SSHCS. 

For the detection of gas, the diffusion of the gas through the SSHCS is 
responsible for the sensor response. SSHCS have been investigated for 
gas detection, like hydrogen, using a self-healing PDMS in combination 
with palladium functionalized CNTs [209]. Palladium is an element 
known for the diffusion of hydrogen gas, because of its lattice structure 
and it was found that parameters that affect the diffusion, like the 
temperature had an effect on the response time. In another study, 
self-healing PDMS was mixed with PAni coated CNTs to detect ammonia 

gas [221]. This filler can be used for detecting the specific type of gas. 
Hydrogels are not so popular for gas detection, because the sensor signal 
can be affected by the humidity. Nevertheless, Wu et al. developed a 
selective gas sensor for ammonia and nitrogen dioxide based on a 
self-healing ionic hydrogel, due to the different sensitivity for the two 
different gasses [210].To avoid the effect of the humidity on the sensor 
signal, a hydrophobic membrane was equipped. 

3.3.2. pH reception 
A special subcategory of SSHCS are pH sensors. This category of 

sensors can is relevant for several types of self-healing materials. Espe-
cially for self-healing materials based on physicochemical interactions, 
such as hydrogen bonds, the self-healing of the materials depends on the 
pH. For example an alginate, gelatin and PPy combination requires 
alkaline conditions [224]. Both the rate and efficiency of self-healing 
and the overall mechanical properties of these materials depend on 
pH. Resistive SSHCS can monitor the pH between 2 and 10 (Fig. 9c). In a 
study by Robby et al. the sensor properties and the self-healing ability of 
a PEG-based hydrogel was reported to depend on the pH [214]. There-
fore, they developed a sensor to monitor the correct pH value in the 
hydrogel, based on the restored or not conductivity of the sample after 
self-healing (Fig. 10b). The recovery of the resistance value was evalu-
ated after repeatable cycles of cutting and healing. Yang et al. developed 
an SSHCS for pH based on polyurethane with a color change when pH 
was changing [223]. It was suggested that the reversible keto–enol 
change of the carbonyl group of the modified polyurethane, under acid 
and base conditions, was responsible for the color changes. Even though 
this is not a resistive sensor, it is noteworthy to mention this method for 
monitoring changes in the pH. Yoon et al. developed a pH sensor based 
on carbon fiber and PAni, enveloped by a self-healing polymer that was 
able to recognize the type of fruit that was being touched by the sensor 
by their pH value (pear, apple, peach and grape) [225] (Fig. 10c). They 
selected PAni as the pH-sensitive material owing to its redox equilibrium 
between hydronium and PAni phase transitions. 

Fig. 9. (a) The sensitivity of the sensor categorized by the type of conductive filler materials (b) Recovery of the mechanical and electrical properties in% after the 
self-healing process categorized by the type of matrix material (c) The range of the pH detection categorized by the type of matrix material (d) Range of the humidity 
detection categorized by the type of matrix material. The data represented in this figure are derived from Table S4. 
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3.3.3. Humidity reception 
One of the least explored biomimetic receptor types of resistive 

SSHS, are soft self-healing humidity sensors (Fig. 9d). Measuring hu-
midity, using flexible and soft materials is particularly attractive for 
medical applications, like wearable electronics for healthcare moni-
toring [211,226–228]. The change in resistivity is based on distance 
change between the conductive filler particles, caused by the absorption 
of water molecules [122,86,229]. The mechanism can be enhanced by 
the formation of hydrogen bonds between the molecules of the 
conductive composite [215]. Zainuddin et al. developed a self-healing 
humidity sensor based on PHEMA and CNTs to detect the humidity in 
dry and wet environments due to the water absorption at the hydrophilic 
hydroxyl groups of the PHEMA [230]. Lin et al. developed an SSHS with 
copper hydroxide functionalized filler to achieve hydrogen bond for-
mation between the filler and the adsorbed water molecules [231]. 

For hydrogel-based materials, the self-healing mechanism is based 
on water retention and drying. Only if the levels of humidity are 
adequate, it is possible to achieve self-healing for some hydrogel mate-
rials. Therefore the incorporation of humidity sensors is of particular 
interest to monitor the self-healing process [86,215,232]. Cheng et al. 
produced an SSHCS for humidity based on GO to detect the damage by 
losing its conductivity and self-healing mechanism by the recovery of 
the initial conductive network [233]. Ionic hydrogels have also been 
reported for this category of receptors [216,226,234]. In such hydrogels, 

the mobility of the free ions is affected by the change in the water 
content and hence, the density of the polymer network, following 
changes in humidity [216]. By using an ionic liquid for the hydrogel 
preparation, it was possible to obtain sensor sensitivity in humidity, 
thanks to the abundance of ions in the resulting sensor [235]. Wu et al. 
developed an ionic organhydrogel based on κ-CA and PAAm (Fig. 11a 
and b). Depending on the composition of the double network (DN) 
hydrogel (ethylene glycol modified DN and glycerol modified DN), all 
sensors showed a linear response (Fig. 11c). Modification of the double 
network hydrogel with ethylene glycol showed a steeper slope than the 
pristine hydrogel. The glycerol-modified hydrogel showed the steepest 
slope and thus the highest sensitivity for relative humidity sensing. The 
sensor found application in monitoring human respiration (Fig. 11d–f) 
and the mechanism of the sensor response was attributed to the con-
centration of the polymer network and the mobility of the ions 
(Figs. 11g–h). 

It is worthwhile to mention that humidity can affect the SSHS signal 
while detecting other stimuli, like strain and temperature and therefore, 
the selectivity of the humidity sensing can be critical [236]. Yang et al. 
developed a hydrogel SSHCS for humidity based on an organohydrogel 
and glycerol/water mixture that could also be used for strain detection, 
however, no differentiation was made between the results from the 
different stimuli [216]. 

Fig. 10. (a) H2 sensor based on Pd-CNTs/PDMS/POTS composite and the time response for different gas concentration as well as during cycling conditions. Reproduced with 
permission from[217]. (b) Self-healing pH sensor based on a PDA-based hydrogel before cut, after cut, and after self-healing process. Reproduced with permission from [214]. 
(c) pH sensitive food gripper. Reproduced with permission [223]. 
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3.4. Biomimetic nociception 

Nociception refers to the neural encoding of impending and actual 
tissue damage based on stimulation receptive modalities of the human 
body like heat and pressure [237]. Nociceptive pain is triggered by the 
nociceptive receptors and is often caused by inflammation or an external 
injury (Fig. 12a) [238,239]. This is why these types of receptors can be 
located in the musculoskeletal system and connective tissue, like skin 
[240–242]. Nociceptive pain is related to the damage happening in the 
tissues and not to the neural receptors themselves [243]. The stimuli 
causing tissue damage can be mechanical, chemical or heat [244]. Ac-
cording to this, nociceptors rely on other receptors like mechanorecep-
tors, chemoreceptors and thermoreceptors and have the function of 
detecting damage in the tissue [245]. Nociceptive pain can not only 
indicate when the damage in the tissue has reached a critical level, 
preventing further damage, they are also necessary for the initiation step 
of the healing process [246–248]. In sensor science, the biomimetic 

function of nociception can be carried out by resistive sensors and this 
function can be an important asset for self-healing materials and struc-
tures [100]. SSHS can detect changes in the environment, recording the 
change of the resistive value until damage occurs. Locally detected 
changes can be used to trigger the healing process. Similar to nature, 
biomimetic nociceptors are not another category of sensors, they use the 
response of other sensor types that were reported earlier in this study. 

The overall idea of SSHS is not only to increase the lifetime of soft 
sensors, but also to replace external analytic methods like acoustic 
emission methods, ultrasonics and Raman spectroscopy to detect dam-
age and to measure the progress of self-healing processes by structurally 
integrated sensors [250]. An example of an internal method to detect 
damage in self-healing materials is the use of fluorescent dies that can be 
stored in hollow fibers or vessels inside a self-healing matrix and is 
released when the vessels are damaged [251]. The disadvantage of such 
a method is the required input from the user, like replacing the die and 
cleaning out the colored parts [252]. SSHS for nociception can detect 

Fig. 11. (a) Humidity sensor based on three different ionic organohydrogels (double network DN, ethylene glycol modified DN and glycerol modified DN) (b) 
Relative sensor signal of a humidity sensor based on glycerol modified double network organohydrogel, (c) Sensitivity of humidity sensor based on three different 
ionic organohydrogels. (d) Humidity sensor based on organohydrogel for breathing application. (e) Analyses of the response and recovery behavior of an organo-
hydrogel sensor during monitoring the respiration. (f) Long-term stability (30 days) of an organohydrogel sensor. (g) Schematic illustrating the humidity sensor based 
on an organohydrogel. (h and i) Schematic drawing of the organohydrogel sensor and the formation of hydrogen bonds between water and κ-carrageenan (h), and 
PAAm side groups of the organohydrogel. Reproduced with permission from [217]. 
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damage even at the bulk of the material that would be otherwise 
impossible to detect and reach, like microcracks deep in the structural 
component [253]. Following a similar strategy, mechanophores can be 
built into polymeric materials to impart a color change when sufficiently 
high stress is applied to the material [254,255]. Labile covalent bonds in 
the spiropyran molecule break upon the application of excessive force 
onto the polymeric chains, resulting in a color change depending on the 
number of spiropyran molecules that are broken. The intensity of the 
color change is proportional to the severity of the damaging force. The 
color change to spiropyran is reversible upon light exposure at a certain 
wavelength. 

Monitoring the resistance changes of resistive sensors, due to damage 
or even at an earlier deformation stage is a better solution for detecting 
damage. The mechanism behind the resistance change when damage 
occurs can be associated with changes in the strain rate or the direct 
disruption of the conductive network in composite materials [252]. 
SSHS have been already successfully used for structural monitoring, to 
detect the formation of cracks and the accumulation of micro-damage 
based on these changes [100]. Biomimetic mechanoreceptors and 
thermoreceptors for nociception are based on piezoresistors and 
thermistors [256,257]. The signal of a damaged SSHS can be used to 
trigger the initiation of the self-healing response and the thermistor can 
be used to improve the self-healing process by heating or monitoring it 
by measuring the temperature. Such a closed-loop control system can 
significantly prolong the lifetime of a structure without the need of any 
external or human intervention [89]. 

In order to use the biomimetic nociception concept for the entire 
volume of self-healing structures, the use of sensor networks is practiced 
[258,259]. Khatib et al. developed a neuron-like nanostructured 
network, based on carbon black that could localize damage on a 
two-dimensional scale [260] (Fig. 12b). Using the input of the network 
signal electrical heating was used to repair the damage of the 
self-healing elastomeric electronic skin locally. A similar approach has 
been published by Hurley et al. using a photoresistive sensor [261]. 
Because the thermoplastic material was semi-transparent, the presence 
of cracks changed the light transmission to the photoresistor, triggering 
metallic heaters to initiate the healing by thermal treatment. In a recent 
study, a Diels-Adler thermoplastic elastomer was combined with carbon 
nanotubes and the resulting SSHS could detect the presence of damage 
by the temperature difference between damaged and undamaged parts 
when a voltage was applied [249]. The same sensing elements were used 
in a later step to monitor the self-healing process of the Diels-Alder 
thermoplastic elastomer, using the profile of the temperature distribu-
tion (Fig. 12c). Finally, pressure sensors detect the changes in the 
pressure of inflatable structures and can be combined with closed-loop 
control systems to assess the performance of structural health moni-
toring. An example of such a closed-loop control for monitoring of 
structural damage can be found in Fig. 12c. The inflatable humanoid had 
integrated pressure sensors that upon the presence of damage would 
signal the structure to deflate [89]. 

4. Applications of SSHS 

4.1. Soft robotics 

One popular application for mechanoreceptors is the monitoring of 

soft robotic motion [99,100,262]. This aspect resembles closely the 
proprioception found in natural organisms. For soft robots, integrated 
sensory receptors should not inhibit the motion of the robot and there-
fore, elastomers and hydrogels are materials commonly used in the field 
[9,10,263]. Often soft robotic actuators also follow biomimetic princi-
ples, responding to stimuli, like light [263,264], humidity [265] and 
temperature [266]. Elastomers based on silicone are most commonly 
selected, however, in the last years self-healing elastomers for the 
development of soft robotics actuators became popular [35]. The 
introduction of SSHSS in self-healing actuators can have significant 
advantages over the conventional sensing materials that are susceptible 
to damage [267–269]. Such receptors will help to increase the autonomy 
of the soft robotic actuator modules for closed-loop control functional-
ities [145,270,271]. 

Hydrogels can be used for the development of actuators, by activa-
tion of their swelling-shrinking behavior. This can be combined with 
hydrogel-based SSHS to monitor the deformation of the actuator [272, 
273]. The electrical resistive sensors can be directly integrated inside the 
actuator by additive manufacturing techniques instead of casting or 
lamination process [98,274]. SSHCS for pH can be used for the devel-
opment of electronic tongues to detect acidic and alkaline substances in 
their surroundings [275]. A SSHCS developed by Zu et al. deforms 
(stretches) by changing the pH [276] and can be used as a pH actuator. 
The actuator combined a gel that shrunk on one side and swelled on the 
other side, in the presence of ions. In that way, the actuator would fold 
and open, depending on the pH value. 

SSHTS can be used for to monitor the temperature of the robot and 
this can be interesting for marine environmental exploration applica-
tions or the handling of hot objects. If the temperature of the objects it 
too high, it can potentially damage the soft robot structure. Here, the 
SSHTS can act as a nociceptor for detecting the potential thermal 
damage. In Fig. 13a, a pneumatic gripper actuator can be seen with 
integrated SSHTS based on poly-ionic liquid hydrogels. The gripper 
could distinguish between gripping a glass of ice water and hot tea 
(Fig. 13b). It was only possible to distinguish the temperature stimulus 
and not the shape of the object [277]. Even though the shape of the glass 
was the same, the sensitivity was different for the two cases. 

Nociceptors interesting for soft robots and devices that are used in 
the exploration of remote locations, like outer space [278]. In addition, 
structural health monitoring and autonomous healing on the system 
level can provide economic benefits for expensive robotic equipment, in 
which maintenance and repair are highly costly due to the complexity of 
the system. 

4.2. E-skin 

The skin of a biological orgasms is an essential barrier that allows to 
perceive and interact with the environmental. Therefore, a lot of sensory 
receptors for different modalities are integrated inside the skin and this 
is an important aspect to bring into the research and development of e- 
skin [180,279]. Lei and Wu suggest that strain, temperature and tactile 
sensors are key sensory modalities for e-skin applications [18]. The 
practice of using an insulator layer on the surface of the sensor has been 
used to avoid environmental effects on the sensor signal, mostly the 
presence of chemical species, like humidity and gasses [177]. One 
important challenge for the SSHS integrated into the self-healing e-skin 

Fig. 12. (a) Conceptual diagram of a peripheral nociceptor-based circuit. Injured or inflamed intestines stimulate the peripheral termini of nociceptors, which 
transfer the electrical signal to the brain through intracellular signaling. Reproduced under the terms of a CC-BY license from[258]. (b) Double layer heater with 
integrated sensor based on a self-healing thermoplastic elastomer used for damage detection and self-healing by activating the heaters. Reproduced with permission 
from[259] (c) Autonomic electricity-triggered damage detector with heating function for self-healing process. The material consists of a polyurethane bearing 
Diels–Alder bonds (PUDA)/CNTs composite The surface temperature of PUDA/CNTs composite recorded by infrared thermal imager for the different steps is shown. 
(i) undamaged composite; (ii) damaged composite (crack); (iii) applying an appropriate voltage to heat up the composite and activate the healing process; and (iv) 
completely healed composite. Reproduced under the terms of a CC-BY license from [249]. (d) A soft, inflatable humanoid structure with a wireless damage detector is 
shown. A fan is used for the inflation and a wireless sensing platform is used for visualization of damage by knife and therefore the pressure drop. Reproduced with 
permission from [89]. 
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can be associated with the ability to endure elongations during the 
self-healing process step [19]. Often e-skin are highly stretched and the 
sensors should be able to detect the rupture or a cut during this large 
deformations. On the same time, the nociceptor function to localize the 
damage to prevent the impairment of the nearby sensors. Self-healing 
sensors based on ionic conduction mechanisms are often used in e-skin 
applications, because of their excellent stretchability (>600% elonga-
tion at the point of fracture) [279]. 

Gu et al. developed an ionotronic (ionic hydrogel) skin with inte-
grated SSHSS. The skin, worn by a human subject’s hand could be used 
for gesticulating sign language and for human-machine interface ap-
plications [118]. Peng et al. developed a SSHSS based on dual-network 
hydrogel to detect direction related deformation of the skin [130]. 
Detection of the deformation direction will lead to determining the 
source of the stimulus more accurately. Cao et al. developed an e-skin 
with integrated SSHS that could self-heal based on ion-dipole in-
teractions and it could self-heal in water [31]. For self-healing materials 
based on hydrogen bonding it is a challenge to achieve the underwater 
self-healing effect. E-Skin based on SSHS can also be used for proprio-
ceptive functions when attached to a human subject or a soft robotic 
actuator module and is therefore linked to other fields of applications for 
SSHS [20,161]. 

While SSHTS are essential for biomimetic tactility, thermistors can 
also be used as heating elements (e.g. temperature regulation) inside the 
e-skin. Resistive heating elements are interesting for anti-freezing elec-
tronic skin for soft robotics [277,280]. Wang et al. developed anti-icing 
self-healing skin using carbon nanotubes [281]. By applying a voltage to 
the nanotube layer, de-icing was possible at subzero temperatures by 
electric heating. In self-healing materials the thermistors can be com-
bined with damage sensors to start the heating function after detecting 
the damage [282]. Park et al. developed a resistive heating element 
based on a composite with carbon fibers and a polymer-based on the 
Diels-Alder reaction that heated up to 100 ◦C to repair cracks induced on 
the composite [283]. The Diels-Alder bond opens rapidly at higher 
temperatures and this allows the moieties to react with the damage, 

restoring the plastic deformation and miss-match in the surface topol-
ogy, around the area of the cracks. Heating elements have been also 
integrated into self-healing stretchable thermoelectrics for energy har-
vesting applications. Such devices can convert thermal energy into 
electricity and potentially be used as flexible energy harvesters for 
powering the sensor elements in soft robots [284]. 

SSHCSs for e-skin have not been explored extensively in literature. 
Duy and Seo developed a multi-sensory e-skin based on SSHS composed 
of hydrogels and graphene (Fig. 14a) [191]. The skin could detect the 
changes in temperature, humidity and the concentration of chemical 
species, like ammonia gas. This example shows how e-skin with multi-
sensory ability can convey a variety of information about its eminent 
environment. The performance of the SSHS in the skin was not affected 
by mechanical stimuli, like strain, which is a significant factor for e-skin 
that is subjected to stretching motions during use (Fig. 14b and c). To 
tune the selectivity of individual stimulus, they changed the ratio of the 
polyurethane diol oligomers in the primary face of their SSHS. 

For nociceptors, localization of damage detection is a useful ability 
for self-healing e-skin [89]. Nociceptors integrated into the e-skin, can 
recognize damage and the need of local self-healing. A particular 
important aspect for self-healing mechanisms that require some inter-
vention, like pressure or heating. Nonetheless, the specific type of sensor 
has not been extensively explored for self-healing e-skin. 

4.3. Wearables 

Wearable electronic devices are a widely-used application field for 
soft sensing. Because of the comfort, they offer the user and the ability to 
adhere to complex surfaces, soft wearable devices gained popularity 
compared to their solid-state counterparts. Wearable devices most 
commonly utilize soft sensors for proprioception and tactility [97]. 

SSHSS can be used for wearable devices and they are often able to 
detect even small strains [168,285], like the heartbeat [142,286,287] or 
the small muscle motions of the face during talking [85,163]. Xia et al. 
showed that their PAA/CNTs-based sensor could detect accurately the 

Fig. 13. (a) Photos of the soft gripper with integrated SSHTS based on a hydrogel and poly-ionic liquids holding a cup of ice water and a hot tea (approximately 
60 ◦C); (b) the resistive signal of the holding process. Reproduced with permission from [277]. 
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heartbeat of runners during intense exercise. Thanks to the adhesive 
properties of the SHSS, it could easily be attached on the skin [287]. 
Chen et al. developed an ionic hydrogel that exhibited an excellent range 
of motion and could be used for detecting the motion of different joints, 
like the knee, wrist, elbow and skin motions during swallowing and 
speaking [107]. This are examples how SSHS can be used for the motion 
monitoring of different body parts (Fig. 15). SSHSS can be used for 
monitoring the breathing of athletes and patients too. The monitoring of 
vital functions over long periods of time, as exhibited by Wei et al. using 
a PAA/CNTs based sensor [126]. SSHSS can be used to measure the 
pulse, as shown by Liu et al. with a self-adhesive hydrogel-based sensor 
[142]. Cao et al. used an ENR-based SSHSS for detecting the tiny human 
motions of the face. They connected the sensor signal with a 
human-machine interaction system with a facial expression control and 
an electronic larynx that helped mute patient to speaking with electronic 
voice and improvement the everyday quality of life [113]. 

SSHS that function in different temperature and humidity conditions 
are very promising to be used as wearables because they can be used in 
different environmental conditions without losing their performance 
[150,151,216]. Fan et al. used their PAA hydrogel/silver 
nanoparticles-based hydrogel for detecting the motion of different joints 
(finger, wrist, elbow, knee) and their SSHSS had the advantage that it 
could maintain functionality and self-healing capability at low temper-
atures (− 30 ◦C). A similar approach was followed by Han et al. and their 
hydrogel-based sensor. They exhibited that their SSHSS could have po-
tential as a wearable for long-term applications, because it was 
anti-freeze, non-drying and the self-healing could be achieved in a va-
riety of environmental conditions [149]. Gao et al. developed a hydrogel 
SSHSS and the sensor signal was not affected by the swelling in water 
[288]. Wu et al. developed a motion sensor with stability for nine 

months using an ethylene glycol ionic organohydrogel. The hydrogel 
was able to perform in dry or freezing conditions without altering the 
sensor performance [234]. 

SSHTS and SSHCS are often used for health monitoring and physical 
activity of humans. Changes in the temperature can be associated with 
different conditions, like inflammation, hypothermia, fever or the 
occurrence of heart attacks [102]. Another interesting application is the 
detection of ions in a liquid, particularly relevant for biomedical appli-
cations and the monitoring of patients. Monitoring the concentration of 
chemical species in bodily fluids, like sweat and urine can be also 
associated with specific diseases or the monitoring of the physical con-
dition of athletes during training [211,212,229]. Humidity sensing is 
very essential for wearable devices, as it can detect the human breath, an 
important asset for many biological applications [122,289]. Yoon et al. 
used a PAni-based/carbon fiber SSHCS wearable diagnostic device for 
detecting the concentration of different ions in the sweat, urine and 
saliva [225]. Yoon et al. developed a flexible self-healing sensor for the 
detection of potassium and sodium ions in the sweat [290]. To enhance 
the selectivity to the ion species and avoid interference of the two 
different ions, they used an ion-selective elastomer membrane. The 
selectivity of the membrane was achieved by the different size of the 
ions and special compounds, such as valinomycin for potassium ions. 

Especially for the monitoring of human vital signs and motion, the 
adhesive properties of some hydrogel-based sensors are a big advantage 
for skin adhesion without the need of additional adhesive materials 
[142,143,291–293]. Adding of catechol groups can be used to tailor the 
adhesive properties for wearable sensing skin devices [288]. Because of 
their polarity, catechol groups can give hydrogels the ability to pene-
trate water boundary levels and interact with local metal ions, forming 
adhesive bonds [294]. Yin et al. developed an ionic hydrogel-based 

Fig. 14. Photo image of the graphene hydrogels functionalised with diol oligomers for temperature and gas sensing (b) Cyclic stretching test of the SSHS at 40% 
elongation during exposure to different concentrations of ammonia gas. (c) Response of the SSHS before deformation, during stretch, and after healing towards 
changes in temperature (ΔT). Here, black dash lines are the temperature profiles of the sample holder integrated with a heater and a thermometer. Reproduced with 
permission from [193]. 
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sensor with combined reversible coordination and hydrogen bonds. 
After removing the sensor no inflammatory response or residuals on the 
skin could be observed [292]. Zhang et al. developed an adhesive SSHSS 
that was injectable before crosslinking. By DIW method sensor struc-
tures with different shapes were fabricated to monitor the motion of 
different body joints [135]. 

It is worth mentioning some challenges with skin mounted wearable 
SSHS for motion detection. In addition to being biocompatible and 
nontoxic [146], the sensor signal should be not affected by sweat and oil 
secretions of the skin [97]. In addition, the sensor material should be 
robust against the humidity of the environment or on the surface of the 
skin too [228]. 

Also the hysteresis of the sensor signal is always a point of discussion 
for soft sensor materials. Cai et al. investigated a hydrogel/CNTs –based 

sensor for monitoring motions, like neck and elbow bending. Up to 
100% strain, the hysteresis and drift of their sensor was negligible [117]. 
Such investigations of the drift and hysteresis are not commonly inves-
tigated for wearable SSHSS. However, for the commercialization of 
wearable SSHS this should be taken more into account. It has to be 
mentioned here that AI (artificial intelligence) can be used to solve the 
hysteresis problem of many soft sensor materials, as shown by Thuruthel 
et al. [295]. 

4.4. Haptic devices 

Haptic technology utilizes tactility for simulating the sense of touch 
in a user experience. Flexible haptic devices can be found in several 
portable electronics and wearables. As already mentioned, material 

Fig. 15. SSHSS based on PAA and ions used to monitor human activities. Relative resistance as a function of time monitoring (a) the index finger, (b) wrist joint 
bending, (c) elbow joint bending, (d) knee bending, (e) throat swallowing and (f) speaking. The insets show the photos of the SHSS adhered onto the finger, wrist 
joint, elbow joint, and knee joint. Reproduced with permission from [107]. 
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combinations for SSHSS and SSHPS are similar, therefore in several 
studies SSHS have been investigated for pressure and strain analysis 
[163,165,170,171]. Typically for differentiating between pressure and 
strain analysis, only the geometry and dimensions of the sample have to 
be adjusted [33,129–132]. A touchpad based on a self-healing hydrogel 
was made by Guo et al. [124]. With the pressure sensor array, it was 
possible to detect different motions, a useful function for monitoring 
human and soft robotic motion [124]. Liu et al. used PAni for a pres-
sure/tactile sensor to detect the touching of a feather on a sensor array, 
making a very sensitive touchpad [296] (Fig. 16b). 

Haptic devices often function as human/machine interfaces, using 

the input from the user, as feedback for regulating the function of the 
device (haptic feedback). In order to make soft touchpads, soft resistive 
sensors are often employed [299]. Tan et al. developed a tactile/-
pressure sensor, selective to tactile/pressure stimulus, based on a fluo-
rocarbon elastomer and ionic liquid [31]. The sensor signal was not 
affected by changing the humidity and pH parameters (Fig. 16c), an 
important aspect for underwater applications. Shin et al. prepared a 
self-healing touch-sensor based on an organohydrogel for low temper-
atures (− 60 ◦C) [298]. The profile of the sensor signal was unaffected by 
the temperature of the environment. The organohydrogel was used on 
an artificial fingertip to evaluate the potential as a haptic device for 

Fig. 16. (a) Pressure sensing array based on PAni to detect touching of a feather on a surface. Reproduced under the terms of a CC-BY license from [296] (b) SSHPS 
based on polybutadiene based poly(urea-urethane) connected with an electric circuit to visualize touching by LED and healing efficiency under different conditions. 
Reproduced with permission from [297]. (d) A fingertip-shaped artificial pressure sensor based on an organohydrogel and ethylene glycol and the time-dependent 
current signal generated by touching. Reproduced with permission from [298]. 
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prostheses (Fig. 16d). As an alternative to tactile sensors, chemiresistive 
sensors can be also interesting for human-machine interfaces, especially 
for healthcare applications like early non-invasive disease diagnostic 
devices [217]. 

5. Conclusion and outlook 

Natural sensory transduction inspires the development of artificial 
sensors. Trying to mimic biological sensory receptors, artificial sensors 
aspire to be self-healing, flexible, and selective and have the ability to 
detect and differentiate multiple internal and external stimuli. This can 
be achieved by flexible resistive sensors. While this review focused on 
resistive soft sensors, it is worth to mention that there are some draw-
backs of resistive sensors. For example for synthetic mechanoreceptors 
the sensor response is not linear over the entire strain range, until 
breakage [300,301]. Some of these effects originate from the visco-
elasticity of the soft materials. However, Thuruthel et al. has demon-
strated a promising novel method to read out the electrical signal from 
multiple strain sensors and to compensate nonlinearity and hysteresis 
using machine learning tools [295]. Such algorithm will help promote 
the applicability of SSHS, despite the viscoelastic effects in the future. 

Employing soft materials, mainly elastomers and hydrogels allow the 
development of soft self-healing sensors (SSHS). Hydrogels offer 
significantly higher elongation than elastomers and they are preferred in 
applications that require superior elasticity, like sensorized electronic 
skin. Their fast self-healing, without thermal treatment is an additional 
advantage compared to elastomers. However, hydrogels are susceptible 
to drying and freezing in subzero temperatures, which affects the long- 
term stability of the SSHS. New strategies of substituting the water 
content in the hydrogels try to tackle this disadvantage. On the other 
hand, elastomers can be used to develop robust and long-term stable 
sensors that can be used in a variety of conditions and applications. 
There are compatible with processes that have been already upscaled for 
industrial production. In the case of elastomers, researchers try to 
improve the self-healing time and conductions, developing new types of 
elastomers like epoxidized natural rubber that can heal fast at room 
temperature. Both categories of soft materials have their advantages 
(Table 1) and different properties can be deemed significant depending 
on the individual application. Based on the listed bullet points in the 
table, the material selection for SSHS can be guided. 

Thanks to self-healing mechanisms, it is possible to develop resistive 
sensors that can restore their structural integrity and sensory functions 
after damage occurs. Nonetheless, the aspects of multi-sensing and 
selectivity are not as thoroughly explored. The current review showed 
examples of different types of biomimetic artificial sensory receptors, 
however, the number of studies in the field of strain sensors is signifi-
cantly larger, in comparison to other types of SSHS. To be able to mimic 
the senses of biological organisms, the detection of other stimuli needs to 
be further explored, especially for applications like wearable electronics 
and soft robots. Resistive SSHS for detecting sound and light have not 
been developed so far, but it is expected, that such sensors will be 
explored in the future too. In that way, artificial multi-sensory platforms 
could mimic all the seven senses found in human bodies. 

The concept of multi-sensing can improve the applicability of SSHS, 
only when it is combined together with selectivity [178]. While there 
have been some studies that explore more than one stimulus for resistive 
sensors, it is obvious that the same material composition is used to do so. 
This implies that different stimuli can produce a similar change in the 
sensor signal and this can make it difficult to use SSHS in real applica-
tions. However, there are very few examples of studies that investigated 
these aspects and showed that selectivity in SSHS is possible (Table 2). It 
is evident to further explore the multi-sensing approach selective sensor 
materials need to be combined. The sensor response can be affected by 
stimuli other than the main one. Unfortunately, a strategy of exploring 
the aspect of selectivity to a designated stimulus has not been yet 
established. Established experimental protocols are needed to 

investigate the selectivity behavior of SSHS. 
Improving the selectivity would have a significant advantage on the 

spreading of SSHS in real-life products and applications. Overall, the 
research of SSHS is a very exciting direction for implementing bio-
mimetic receptors, in artificially intelligent systems. 
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