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MICROPILLARS FABRICATION
* The samples of the were fabricated by casting and annealingZn-xAg alloys (x = 0 ÷ 2.21 at.%) .

* Grains with the highest Schmid Factor for  were selected for the micropillars  basal and prismatic slip systems
fabrication.
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Micropillars were fabricated by multi-step Ga  focused ion beam milling at 30kV and currents from 4.5 nA to 40 pA.

Fig. 4. Micropillars prepared for the compression tests withing single grain with basal- or prismatic- slip favoured orientation

Fig. 3. Microstructure of the sample; EBSD-IPF orientation map; SF maps for basal and prismatic slip system; Schmid factor calculations.

* diameter between 3 μm and 9 μm A micropillar  had been chosen based on the studies [1-2]      since the transition
slip . from twinning to dislocation dominant deformation mechanism occurred within this grain size range
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* According to the Schmid Law, CRSS σ0.2 can be calculated  based on the yield stress ( ) determined from the stress-
strain curves and Schmid Factor ( ) calculated for a single grain and particular slip system.m
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IN SITU MICROPILLARS COMPRESSION
* Micropillars compression tests were performed using diamond flat punch installed in Alemnis Standard Assembly 

 in situ nanoindentation system (Fig. 5) up to ~10% of deformation.  
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* Zn deformed at 10  s  the size effect on CRSS.   Different-sized pure micropillars were to investigate  
-4 -3 -2 -1

* Zn-xAg deformed at 10 , 10 , 10  s  the effect of Ag on CRSS. micropillars (Ø3 μm) were to measure 

Fig. 5. Setup for the in situ micropillars compression and the example of stress-strain curves
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 σ  = (1/m)·CRSS 0.2

► Current studies provide fundamental knowledge about the possibilities of Zn solid solution strengthening.

► Calculated CRSS can be further implemented in crystal plasticity models, as input data, for designing fabrication 
processes of bioresorbable implants requiring specific mechanical properties.

► The Zn-Ag system can be used as a thin antibacterial coating on biomedical devices, such as orthopaedic implants

► The knowledge gained in this research will be translated into the design of novel Zn-based porous metamaterials 
with tailored microstructure and tunable properties for potential bioresorbable maxillofacial implant applications.

Fig. 6. Process diagram for fabrication of coated Zn-based metamaterials
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FUTURE PERSPECTIVES

MOTIVATION & OBJECTIVES

* Zinc (Zn) has been recently considered as a novel promising material 
for bioresorbable medical implants .(Fig. 1)

* Poor strength and brittleness of   alloying  as-cast pure Zn require 
with other elements  plastic deformation and  resulting in grain size 
refinement aimed at mechanical properties enhancement .(Fig. 2)

Fig. 2. Effect of Ag on the microstructure and mechanical properties of hot-extruded Zn alloys
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→ at the macroscale

The strengthening effect is affected by:

* Mechanical properties testing:

► grain size; 
 texture;►

 phase composition;►

 fraction and type of GBs;►

deformation mechanisms.► 

→ at the microscale

Individual strengthening effect can be 
distinguished:

 size effect;►

 solid solution strenghtening.►

 
Besides, one deformation mechanism 
can be activated within a single grain, 
so critical resolved shear stresses in 
a specific slip system can be measured.
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Fig. 9. SEM images of deformed Zn-xAg micropillars showing basal and prismatic slip after compression

  the recrystallization at RT is suppresing → → 
→ → dislocation density is increasing 
→ →the probability of finding dislocation source is increasing 

→ →  Ag content is increasing 

* Basal slip changes the character from localized deformation in pure Zn to uniform in the Zn-2.2Ag alloy. 

 Prismatic slip occurs in two favourable planes resulting rather in buckling than clear localized shearing. *

Fig.10. Engineering stress-strain curves of Zn and Zn-xAg micropillars with basal- and prismatic slip-favored orientation 

prismatic slipbasal slip

* Strain rate sensitivity: no significant effect in the basal slip system, while in the prismatic slip system, 
the pronounced effect was seen above 0.59 at.% Ag.

* Strengthening effect : small Ag additions result in a decrease of both CRSS  (up to 0.3 at.% Ag) and CRSS  B P

(up to 0.14 at.% Ag), while further increase in Ag content increases the CRSS in both cases.

* According to [3], initial drop and further increase of CRSS with Ag additions result from increasing dislocation 
density in the micropillars. The transition in strengthening sources is expected as follows: 
            dislocation starvation  single-source strengthening  exhausted hardening  forest hardening→ → →

Fig. 11. The effect of Ag additions on CRSS for the basal and prismatic slip systems in Zn-xAg alloys at various strain rates
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Fig. 8. The effect of Zn pillar size on CRSS in basal and prismatic slip 
systems. EBSD analysis in cross-section of deformed micropillars  

SIZE EFFECT IN PURE ZINC
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Fig. 7. SEM images of undeformed and deformed Zn micropillars with different sizes showing basal and prismatic slip after compression 

* yield stress and CRSS increase diameter reduction A significant  with the micropillar  was observed.

* uniform orientation within the deformed 3 µm pillars in bigger pillars, a localized  A  was observed, while 
deformation occurred on the top of the pillar, resulting in a lattice rotation. No twins were nucleated.  

The deformation in the  system produced * basal slip multiple slip traces   along the basal plane, while in the 
prismatic slip single slip traces system, were observed. 

Fig. 1. Idea of a bioresorbable implant
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