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ABSTRACT: To fully understand the potential ecological and human health risks from nanoplastics and microplastics (NMPs) in
the environment, it is critical to make accurate measurements. Similar to past research on the toxicology of engineered
nanomaterials, a broad range of measurement artifacts and biases are possible when testing their potential toxicity. For example,
antimicrobials and surfactants may be present in commercially available NMP dispersions, and these compounds may account for
toxicity observed instead of being caused by exposure to the NMP particles. Therefore, control measurements are needed to assess
potential artifacts, and revisions to the protocol may be needed to eliminate or reduce the artifacts. In this paper, we
comprehensively review and suggest a next generation of control experiments to identify measurement artifacts and biases that can
occur while performing NMP toxicity experiments. This review covers the broad range of potential NMP toxicological experiments,
such as in vitro studies with a single cell type or complex 3-D tissue constructs, in vivo mammalian studies, and ecotoxicity
experiments testing pelagic, sediment, and soil organisms. Incorporation of these control experiments can reduce the likelihood of
false positive and false negative results and more accurately elucidate the potential ecological and human health risks of NMPs.

KEYWORDS: microplastics, nanoplastics, measurement quality, artifacts, control experiments

B INTRODUCTION

There has been increasing research interest in recent years on
the potential adverse effects of nanoplastics (<1 gm) and
microplastics (between 1 pm and S mm) (NMPs) on
ecosystems and human health.'~"> NMPs are often categorized
as primary particles, when a consumer product is designed to
contain such particles, or as secondary particles, when the
particles are produced by the weathering and degradation of
larger pieces of plastic.'* It is critical to have accurate and
reliable measurements to understand potential risks that NMPs
pose.z’3

Many standardized toxicity methods are designed to test
dissolved substances (e.g, organic chemicals or metals).'>'¢
Guidance on the use of some of these methods has the
deliberate aim to remove particles so that the dissolved fraction
alone can be tested.'”'® As such, modifications to test methods

have been required to evaluate particulate contaminants, such
as engineered nanomaterials (ENMs) or NMPs.">'7 1t is
broadly recognized that particulate substances may lead to
artifacts in many assays and that control experiments are
needed.'®*™** Moreover, there is also a possibility for
misinterpretations if the toxicity is attributed to particulate
contaminants, namely NMPs, and control measurements are
not performed to determine whether the toxicity is from the
particles themselves or substances released from them (ie.,
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Table 1. Potential Biases in the Exposure Concentration for Tests with Different Exposure Systems

suspended cells
(e.g., algae), or

pelagic aquatic

organisms (e.g.,
fish)

adsorption of
particles to the
sidewalls of the
container or from
agglomeration and
sedimentation

Category Graphical example NMP matrix Relevant Potential biases Steps to minimize
biological test bias
systems
1 Particles Suspended The suspended Measure the
suspended in molecules (e.g., | concentration could | concentration in
the test medium | proteins), change based on containers without

cells and/or
measure the
suspended
concentration in
containers with
cells after density
gradient

microplate wells

the wells at low
concentrations
according to
models that
estimated the cell

centrifugation
2 » Particles Submerged, Low density Adjust the
j suspended in adherent cells at | polymers may only | suspended
the test medium | the bottom of reach the bottom of | exposure

concentration so
that a sufficient
concentration of
particles reaches
the cells or perform

exposure and
avoidance of areas
with elevated
concentrations

exposure experiments for
concentration longer durations
3 - A liquid (e.g., Cells or a 3D For liquid Test the
suspension), construct exposures, the agglomeration and
cream, or solid | located on an suspended adsorption to the
air-liquid concentration could | sidewalls using
i/ interface, in change based on blank inserts
M M vivo dermal adsorption of without cells;
exposure particles to the assess the
i sidewalls of the concentration
| container or from associated with the
SommTTTeT Y agglomeration cells or dermal
surface for in vivo
exposures
4 Al Airborne Cells or a 3D The largest Perform control
‘ flow particles froma | construct particles may not experiments
N t suspension ora | located on an be without cells to
dry powder air-liquid nebulized/aerosoliz | measure the size
interface, in ed or may not get distribution and
vivo inhalation | transported concentration at
exposure throughout the different steps such
exposure system as after
nebulization/aero-
solization, after
passage through
the exposure
system, and onto
blank inserts
without cells or
exposed cells, or
into organisms
during in vivo
exposures
5 Exposure via Cells located Particles may clog | Perform
airborne within an in the microfluidic experiments in the
particles or vitro channels; particles | absence of cells
particles microphysiologi | may adhere to and measure the
suspended in cal device sidewalls of tubing | exposure
the test medium concentration and
size distribution
that exits the
system; perform a
mass balance
during exposures
with cells
6 Particles mixed | Sediment or Inhomogeneous If methods are not
with soil or terrestrial mixing of the readily available to
sediment burrowing particles may lead | quantify the NMP
organisms to variable concentration in

the test soil or
sediment, mixing
experiments could
be performed with
an ENM analogue
that is easier to
quantify (e.g., gold
ENMs of a similar
size)

Figures created with biorender.com.

substances bound to or leached from the NMPs). While these
issues have been previously discussed for ENMs,'® a
comprehensive evaluation of the relevant control experiments
for NMPs for the broad range of ecological and human health

assays in use is not yet available (although quality criteria have

been suggested for ecotoxicity testing”

and human health

24 . ¢ . .
related assays™"). While these previous reviews motivate
screening criteria for the use of data in risk assessment in a
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broad sense, this review goes much deeper by focusing solely
on the dimension of the control experiments. In addition,
many artifacts and biases observed during testing of ENMs
have not yet been reported in the NMP literature. Borrowing
these lessons learned from previous ENM studies can help
raise the quality of future NMP studies.

It is critical to differentiate between operator mistakes,
artifacts from testing particles, and uncertainty in experimental
measurements. All measurements contain some amount of
uncertainty that is often expressed through, for example,
standard deviation values or 95% confidence intervals. This is
distinct from operator mistakes in the performance of an assay
(e.g., pipetting twice the intended volume), and from artifacts
that arise from testing particles in assays originally designed to
evaluate dissolved substances. For example, if a specific type of
NMP has an absorbance signal similar to that being measured
in a plate reader to assess a change in cell viability,” that could
be a potential artifact in the assay that, if it is not accounted
for, could cause a false positive or a false negative result. In this
case, the false positive or false negative result would be an
example of a misinterpretation. Misinterpretations can also
occur when the mechanism of toxicity is misassigned such as
when toxicity caused by impurities present in a mixture is
attributed to plastic particles. This could then hinder
comparisons among studies using particles that contain
different impurities, or could result in misleading perceptions
about the risks of plastic toxicity given that different impurities
may be present in mixtures tested in laboratory studies versus
actual products. Overall, it is critical that protocols include the
right control measurements to ensure that operator mistakes
and artifacts from the NMPs have been avoided. It should be
noted that the magnitude of biases from operator mistakes and
artifacts varies among experiments. Some biases (i.e.,
deviations from the value that would have been obtained in
the absence of operator mistakes and artifacts) may be so small
that they cannot be separated from typical experimental
uncertainty, while others may be so large that they invalidate
the measurement and could lead to a misinterpretation.

The aim of this paper is to help raise the quality of NMP
research by systematically describing potential artifacts, biases,
and misinterpretations that can occur during NMP research, as
well as control measurements to identify, and, when possible,
strategies to minimize them; no previous reviews have focused
specifically on control experiments during NMP testing. While
some of these topics are similar to those described for ENMs,
there are also many unique issues for NMPs that require
different considerations (e.g., the larger size of microplastics
can limit ingestion by multicellular organisms). Issues can
occur throughout NMP toxicity measurements from sample
handling to performing the experiments. One overarching issue
that is beyond the scope of this paper is evaluating the
environmental relevance of NMPs used in toxicity experiments.
There are several recent developments that allow us to better
understand the distributions of the properties of environ-
mentally relevant microplastic particles.”””” Aged and
weathered particles of various shapes and polymer types can
be mixed to approximate these characteristics as much as
possible. Nevertheless, this is a complicated topic, especially
for nanoplastics, which have rarely been isolated from
environmental matrices.”®> A consensus has not yet been
reached in the field regarding what particles to test, although
some su§gestions have recently been published for micro-
plastics.”

B SAMPLE HANDLING—PROCUREMENT, STORAGE,
AND DISPERSION PRIOR TO CELL OR ORGANISM
EXPOSURE

Depending upon the origin of the NMPs, potentially toxic
impurities may be present. For example, antimicrobial
compounds may be present for primary NMPs such as
polystyrene (PS) spheres.’”*" In the absence of antimicrobials,
it is possible that biofilms may form on particles especially
during long-term storage. This could change the NMPs’
surface and their toxicity. The presence of plasticizers is
common among a range of plastic particles and may elicit
toxicity depending upon the assay and released plasticizer
concentration.>>** Heavy metals, such as lead, have also been
shown to be released from NMPs and may have been used in
the polymerization process.””*> Endotoxins may also become
associated with the NMPs during sample preparation, such as
the dilution in the test media, or during the production of
secondary NMPs.'® This is especially important when testing
for inflammation-related end points.'****” It is important to
monitor physicochemical changes (e.g., degradation, release of
additives) to the NMPs and to the media for those NMPs
stored in aqueous media during long-term storage because
increased release of toxic compounds could occur.

Most studies conducted on the toxicity of NMPs use PS
spheres that may contain surfactants in the formulation or have
surface modifications to support their stability. For these
particles, dispersion in the test media is relatively straightfor-
ward because only dilution is typically required. If sonication is
used with these particles or with the secondary NMPs formed
from the degradation of larger pieces of plastic, it is important
to ensure that this process does not produce unintended
changes to the particles (e.g, degradation of the NMPs
themselves or of other substances that may be bound to the
NMPs or freely available in the media). Extended probe
sonication of carbon nanotubes has been shown to
substantially degrade them,’®* and a similar effect would
likely occur for NMPs. When testing secondary NMPs that
contain a heterogeneous mixture of particles, consistently
producing dispersions with similar concentrations and size
distributions among batches may be challenging. Therefore,
additional methodological development may be needed in this
area, potentially including the use of natural organic matter to
facilitate dispersion.

B DOSIMETRY ISSUES DURING TOXICITY TESTS

One challenge in summarizing the potential for biases from
dosing is the huge variability among model systems, which vary
from simple 2-D adherent cell models to microphysiological
devices and sediment exposures. Based on the exposure
system, there are different potential sources of bias (Table 1).
Nevertheless, the })otential for adsorption to the sidewalls of
test containers,””"" pipettes, or syringes would influence most
exposure systems. If this is observed, using other items (e.g., a
different kind of test container) can be evaluated to assess if
losses decrease. It should be noted that these losses are also
often observed in experiments with dissolved substances. In
addition, care is required to minimize atmospheric deposition
of plastic particles during the experiments, and the appropriate
blanks should be used to evaluate this possibility.”*****

For exposure systems where exposure occurs to organisms
with suspended particles in the test media (e.g, algae, fish),
potential sources of bias include adsorption to sidewalls of the
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container,** flotation on the air—water interface,"”* and microplastic particles could potentially clog the channels in
sedimentation of the particles out of the suspension after microphysiological devices, which often have cross-channels
homo- or heteroagglomeration.‘w’48 Sedimentation can poten- smaller than 1 mm, or flow-through systems with aerosolized
tially be accelerated in the presence of test organisms by particles.”’ In addition, some types of plastic particles (e.g,
agglomeration during passage through the organism or by poly(vinyl alcohol)) can form an amorphous mass after
attachment to suspended cells (e.g., algae, bacteria).****° For dissolution, a process that can hinder making a uniform
other types of exposure systems, the size of the particles can concentration in many test systems.”” The density of the
impact function of the exposure test method. For example, plastic particles can also impact exposure for some test
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systems: for example, for less dense particles or particle
agglomerates, only a minimal concentration (6—19% in a study
with 60 nm PS spheres)”® may reach 2-D adherent cells at the
bottom of the wells in a microplate. This can be estimated
using dosimetry models, such as the in vitro sedimentation,
diffusion, and dosimetry model (ISDD).*** Some plastic
particles have a sufficiently low density that they are buoyant in
many test media (e.g., expanded PS floats) and this can impact
the ability to generate homogeneous exposure preparations for
ecotoxicity testing (to some extent mitigated by extensive
stirring). This would impact most exposure systems, except for
soil or sediment exposures. One challenge in exposures with
soils and sediments is that extraction and quantification
methods are still under development.*>*® This can hinder
evaluating the uniformity of the sample throughout the test
container after mixing and ensuring that the test concentration
remains constant during the exposure period.

B POTENTIAL ARTIFACTS AND CONTROL
EXPERIMENTS DURING TOXICITY TESTS

Potential control experiments for NMP toxicity studies are
listed in Table 2 including their purpose, their methodology,
and strategies to minimize artifacts or biases. It should be
noted though that some of the issues being tested in these
experiments (e.g, nutrient depletion, shading) could occur at
environmental hot spots with elevated plastic concentrations or
for specific organisms (e.g., corals). While some of these
control experiments are similar to those for ENMs, there are
also many important nuances that are specific to NMP toxicity
testing. In any aqueous test media, NMPs will undergo
adsorption, leaching/desorption, and attachment processes
(Figure 1). All these processes could lead to unexpected
artifacts and misinterpretations in toxicity assessments if they
are not fully understood (Figure 1C). A graphical depiction of
selected artifacts and biases is provided in Figure 2. In this
section, a set of proposed controls are discussed below to
elucidate their importance in toxicity testing to identify
potential artifacts.

Bioavailability Control. Substance bioavailability, defined
as the extent to which the substance enters a tissue and reacts
with biological molecules,”” is an important aspect of
toxicological tests with NMPs. Some assays require that the
toxicants are able to reach a particular location (e.g., the
nucleus) to assess certain end points. For example, measuring
genotoxicity using the Ames test requires that a particle can
travel across the bacterial cell membrane and interact with the
nucleus. However, this is not guaranteed to occur and was not
observed in studies on ENMs.>® In these cases, there is the
potential for false negative results. A similar issue is relevant for
studies with multicellular organisms. It is important for the
NMPs to be distributed to the organ of interest (e.g., the
brain)®’ to cause a toxicological effect there, unless there is a
reasonable alternative mechanistic explanation. Given that
there is uncertainty in the ability for NMPs to cross epithelial
barriers for some organisms as is discussed in more detail in
the Potential Artifacts and Control Experiments during
Bioaccumulation Tests section, measurements need to be
made to confirm that the NMPs can be transported to the
tissue of interest. Moreover, the large size of some micro-
plastics (up to 1 mm) limits their ingestion by many species
(maximum in§estible size for selected species ranges from 36
to 400 um).”’ Currently, it is not possible to advocate for a
single analytical method to be used for this purpose, because

the maturity of quantitation methods varies substantially
between microplastic and nanoplastic methods, with micro-
plastic methods being substantially more advanced.®"**
Nonetheless, NMPs can potentially induce negative effects in
tissues independent of whether they are ingested or
internalized, for example if the NMPs accumulate on and
occlude tissue surfaces and impact photosynthesis.””

Cell-Free Control. This control measurement is relevant
for cell-based (e.g, mammalian, bacteria, algae) toxicity
experiments. Many cell-based toxicity experiments assess
changes to the cells using probes with absorbance or
fluorescence at particular wavelengths. However, the NMPs
tested may also have a signal at the same wavelengths and
therefore could bias the results if they are present when the
measurement is performed.””** Washing steps can be used to
remove particles present prior to the measurement,” but the
removal process needs to be verified by control measurements
that measure the NMP concentration. For some types of
measurements (e.g., flow cytometry or Coulter counter),
microplastic particles or heteroagglomerates could be mis-
interpreted as cells, both of which could bias the results.”” The
potential for a technique to distinguish between particles and
cells can also be evaluated by the zero-hour control as
described in the Zero-Hour Control section.

Filtrate Control. One control experiment that is relevant
across all toxicity tests is the filtrate control (Table 2).
Commercially available NMPs (especially nanoplastics) are
commonly presuspended in water in suspensions that also
contain additional potentially toxic comg)ounds such as
preservatives, antimicrobials, or surfactants.>*~** For example,
sodium azide, added as an antimicrobial preservative in PS
NMPs suspensions, was much more toxic to Daphnia magna
than the particles themselves.’’ After dialysis, sodium azide
molecules both in the suspension and on NMPs’ surface could
be removed which resulted in highly reduced toxicity (100%
mortality was reduced to nondetectable mortality at 100 mg/L
after dialysis).”® Therefore, the toxicity of commercially
available NMPs could be overestimated if the contribution of
sodium azide was not excluded.

It is also possible for additives and monomers to be released
from NMPs during experiments (Figure 1B, C).> 4356967 oy
example, both low-density polyethylene (PE) and polycar-
bonate (PC) NMPs can release bisphenol A (BPA), a
commonly used additive. A BPA concentration of 14.68 ug/
g leached from PC NMPs after shaking for 3 d in water; it
should be noted that toxic effects from released additives are
important for laboratory studies but are less relevant for field
conditions where organisms will mainly be exposed to NMPs
that have been in the environment for long periods of time.
Poly(vinyl chloride) (PVC) and PE NMPs have been observed
to release hazardous compounds, such as heavy metal
stabilizers and pigments, from the polymeric matrix that
contributed to the NMP toxicity to sea urchin (Paracentrotus
lividus) embryos,® algal cells (Microcystis aeruginosa),”’ and
zebrafish.”*

This control functions by testing the potential toxicity of
other substances that may be present in a NMP suspension
(e.g., additives, leachates, biocides, surfactants), in addition to
the particles themselves. The filtrate control should be
prepared shortly before the toxicity experiment so that the
dissolved substances mirror those in the NMP suspension. If
leaching during an experiment is a concern, it would also be
possible to obtain and test the filtrate from the NMP
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suspension after incubation in test media in the absence of
organisms for the duration of the toxicity experiment. Washing
NMPs in an organic solvent or dialysis can be used to remove
leached impurities.

Heteroagglomeration Control. Similar to ENMs, it is
possible for NMPs to heteroagglomerate with suspended cells
especially for nanoplastics and smaller microplastics; the
situation differs for larger microplastics where cells could
adsorb onto them. This could complicate an ecotoxicity assay
if heteroagglomeration of NMPs occurs with the food source
for another organism. For example, a recent study found that
positively charged PS nanoplastics could heteroagglomerate
with Escherichia coli, the food source for Caenorhabditis
elegans.50’68 This, then, resulted in the formation of particles
much larger than 2 ym, the typical size of food consumed by C.
elegans using pharyngeal pumping. The growth and reproduc-
tion inhibition observed was hypothesized to stem from
indirect toxicity due to starvation instead of direct toxicity from
exposure to the particles. Therefore, it is possible that NMPs
under specific conditions may interact with the food source in
other assays such as algae feeding of D. magna during chronic
experiments and limit food intake. This could also likely occur
in nature.

To test for potential heteroagglomeration of NMPs and
suspended cells intended as a food source, it is possible to
perform the experiment without the test organism and
microscopically evaluate if larger heteroagglomerates are
formed.”® Hyperspectral darkfield imaging could be used to
probe the heteroagglomerates to assess if they contain cells and
NMPs.*” If larger heteroagglomerates are observed when
NMPs are present, the agglomerate size should be compared to
the maximum size that can be ingested by the test organism.

Nutrient Depletion Control. During toxicological tests,
essential nutrients are supplemented in the culture media of
animal cells, algae, bacteria, protozoa, and plants. These
essential nutrients include organic (e.g, proteins, amino acids,
vitamins) and inorganic components (e.g, N, P, Ca, Fe) in
different culture systems. Engineered nanomaterials have been
found to adsorb these nutrients, thus reducing available
nutrients for the growth of the tested organisms, such as
algae,69 plants,70 and cells.”' NMPs (especially, nanoplastics)
have comparable surface areas and adsorption capacities with
ENMs. However, to date, adsorption-induced nutrient
depletion by NMPs has not been directly evaluated in
toxicological tests to our knowledge. Conversely, it is also
possible for ingestion of microplastics to enhance growth if
there are unintentional bacteria associated with microplastic
particles that the test organism could use as a food source,””
although it is more common to observe food dilution in NMP
studies.”’

NMPs have been reported to accumulate nutrients (e.g,, N,
P) in the sediments from river waters due to adsorption.”
Such nutrient accumulation in sediments may result in nutrient
depletion from the decreased concentration of N and P in the
aqueous phase if the NMP concentration is sufficiently high
(Figure 1C). The presence of PS and polytetrafluoroethylene
(PTFE) NMPs at concentrations of 0.25% and 0.5% (mass/
mass) reduced the contents of available N and P in the soil for
rice growth.”* This was attributed to the activity inhibition of
soil enzymes (e.g, urease), but this could also be from
adsorption-induced depletion. In addition, the potential for
NMPs to change the soil environment and thereby impact
nutrient availability to onions was hypothesized.”” It is worth

noting that NMPs are able to adsorb other nutrients, such as
Fe, B, Ca, and amino acids in aqueous phase74’76 which could
lead to nutrient depletion in some media.

In addition to inorganic nutrients, organic nutrient
deficiency could also lead to growth inhibition of test
organisms. For example, vitamin B12, an essential nutrient
for algal growth,”””® is present in freshwater (e.g, HUT
medium) and marine algae (F/2 medium) test media at 0.5
pug/L. The strong adsorption capacity of vitamin B12, as high
as 1700 mg/g onto poly(vinylidene fluoride) membranes,”
suggests that nutrient depletion could occur. Proteins such as
fetal bovine serum (FBS) are another important component of
some mammalian cell media. Recent studies’”" suggested a
strong interaction between proteins and NMPs including a
multilayer adsorption pattern. Engineered nanomaterials, such
as CeO, and TiO,, were reported to reduce the viability of
human cells (HaCaT and A549 cells) due to the depletion of
serum proteins in cell culture media.*’ NMPs, especially
nanoplastics, have comparable surface area, stronger hydro-
phobic interaction, and unique 7—7 interaction with proteins
in comparison with CeO, and TiO, ENMs. Therefore, protein
depletion by NMPs is expected to occur and should be
assessed during in vitro assays.

To understand the potential for nutrient depletion,
adsorption experiments are recommended by adding the
same mass concentration of NMPs as in the toxicity
experiments to the culture medium and incubating for the
duration of the toxicity test.” Then, the NMPs should be
removed. A comparison should be made between this
supernatant and the regular test media in the ability of each
to support the growth of the test organisms (e.g, algae,
bacteria, cells, plants). The difference between these two
treatments can reveal the degree to which nutrient depletion
has occurred. It is important to also note that adsorption of
proteins can result in a protein corona that could change the
potential toxicological impact of the NMPs.*>**

Heteroagglomeration could also lead to nutrient depletion,
for example, by blocking algal pores, thereby inhibiting gas
exchange.84 Furthermore, heteroagglomeration between NMPs
and algae could inhibit biosorption of critical nutrients (e.g., P,
N). NMPs-algae heteroagglomeration was reported to
accelerate the sedimentation of both NMPs and algae from
the water phase to sediment,*”* further enhancing nutrient
depletion by constraining algae in a limited space.

In experiments where cells serve as the food source for larger
organisms, adsorption of cells onto larger microplastics may
not have an impact if the particles can be readily ingested, but
could reduce the quantity of the food source if the particles are
too large to be ingested. Control experiments with the cells but
without test organism can be performed to assess if the
suspended cell concentration is significantly reduced by larger
microplastics and the size of the particle with adsorbed cells.

Shading Effect Control. Floating NMPs and those
attached onto the test container could block the transmission
of light, causing shading effects to some test organisms such as
algae (Figure 1C). For example, strong attachment of PS
NMPs onto the inner wall of flasks was observed while
exposing marine algae.”” Such attachment could also cause a
reduction of the NMP exposure concentration in addition to
shading effects (Figure 1C). However, this possibility is rarely
evaluated in toxicity mechanism discussions of NMPs.

NMPs can also exert shading effects by directly attaching
onto algal cells. This toxicity mechanism has been confirmed
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for the given density media or NMP materials. Note that the reported
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precursor all fall within the same relative range. Therefore, density gradient separations can be a useful tool. Considerations can be made to select
the appropriate media combinations (and centrifugation parameters) that will facilitate successful separation of biological organisms and NMPs in

bioaccumulation studies. This figure has been adapted and reprinted

with permission from ref 99. Copyright 2019 Royal Society of Chemistry.

for NMPs-induced growth inhibition of algae.”” For example,
PS NMPs (0.1 to 2 ym) attached and encapsulated microalgae
cells (Scenedesmus obliquus), thus blocking light transmission
and inhibiting photosynthesis.**

Relevant control experiments can be performed to assess the
potential for shading effects.**™*® The amount of light
reduction in particle-only containers can be quantified and
then how much this decreased light transmittance would
reduce algal growth can be evaluated.***” Alternatively, it is
possible to use a special set up that passes the light first
through chambers with the particles but without algae and
then to chambers with only algae.”®® These results can be
compared to algae directly exposed to particles and to negative
control algae without particle exposure.

15199

Positive Spiked Control. The positive spiked control
differs from the positive control (Table 2). The positive
control tests a substance known to elicit the toxicological effect
being tested.”’ In contrast, the function of the positive spiked
control is to evaluate if substances added to positive control
samples can inhibit or increase its signal. This control
measurement is similar to the zero-hour control measurement
(described in the following section). The key difference is that
positive control samples (i.e., samples exposed to a positive
control thereby exhibiting the toxicological effect under
investigation) are used instead of negative control samples
(i.e., cells not exposed to any toxicant). This type of control
experiment was performed on a study on cell apoptosis and
necrosis measurements using flow cytometry with positive
control cells spiked with gold and silica ENMs and found that
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the presence of ENMs impacted the signal observed.”" This
control could apply to both microplastics and nanoplastics. If,
for example, an ELISA study was performed, it is possible that
either microplastics or nanoplastics could adsorb excreted
cytokines and decrease the effect being studied.

Zero-Hour Control. This control functions similar to the
positive spiked control. However, instead of adding substances
to positive control samples, they are added to negative control
cells and then subsequent processing steps are performed
without an exposure period (Table 2).°*?>** The zero-hour
control experiments evaluate the extent to which toxicity can
be induced after the exposure period concludes. For example,
in a genotoxicity assay, particles could interact with cellular
DNA thereby changing DNA migration during the gel
electrophoresis step of the Comet assay and potentially
appearing in the head of the comet.'®”* Additionally, particles
could induce DNA damage after the exposure period during
the subsequent sample processing steps.”””*

It is also possible for NMPs to heteroagglomerate with
suspended cells and interfere with cell number measurements
(e.g., using flow cytometry or a hemocytometer). This could
occur during in vitro experiments with suspended cells or
ecotoxicity experiments using single-celled organisms, such as
algae or bacteria. These artifacts are well-known in the ENM
literature and have been observed, for example, for algae after
exposure to TiO, particles.”> While smaller microplastics
would be more likely to heteroagglomerate, larger microplastic
particles could adsorb cells, which could also significantly
interfere with cell number measurements.

B POTENTIAL ARTIFACTS AND CONTROL
EXPERIMENTS DURING BIOACCUMULATION
TESTS

One common end point to assess in NMP studies is
bioaccumulation,”™*® the capacity of organisms to accumulate
plastic particles over time. An organism can accumulate
particles by their association with external tissue surfaces (e.g.,
integument and respiratory tissue surfaces), accumulation on
external epithelial surfaces within the lumen of the gastro-
intestinal tract (for the fraction that is ingestible), and also
after absorption across epithelial membranes and accumulation
within internal tissues/organs.”” One key question in these
studies is whether the particles have the capacity to travel
across epithelial surfaces. This could influence the potential
toxicological mechanisms that the particles could cause such as
impacts in the organisms’ digestive tissue versus those in other
tissues.

In an analysis of field studies of microplastics, it was
estimated that >99% of the plastic particles were observed to
be in the gut tract, suggesting a lack of absorption.””'%’
However, different results have been observed in laboratory
studies with fluorescently labeled plastic particles, suggesting
systemic absorption into different tissues.'”' ™"’ With the
fluorescent labeling approach, it is critical to differentiate
between the accumulation of fluorescent probes detached from
the plastic particles and those that remain attached. If this is
not conclusively evaluated, it is possible for artifacts to occur,
as has been observed in recent studies with fish and D.
magna.'*~'% Control experiments can include dialyzing the
particles to remove freely available molecules, testing the
stability of the fluorescent particles in various media prior to
performing the experiment, and testing the bioaccumulation of
the probe molecule by itself. Confidence in bioaccumulation

results can be strengthened when an orthogonal technique
(e.g, pyrolysis gas chromatography—mass spectrometry”” or
metal labeled particles'”'”) is used to confirm the results.

An additional consideration for bioaccumulation studies
with smaller organisms is to ensure that they can be separated
from individual and agglomerated NMPs prior to quantifying
the associated NMP concentration.”” While simple solvent
rinses followed by filtration may be sufficient for removal of
particles sg)eciﬁcally adsorbed to the surface of organ-
isms,"%*""'% they may not be sufficient to separate the test
organism from suspended NMPs. In contrast, density gradient
separations have been shown to separate small organisms from
particles still suspended in media or even adsorbed to cuticle
surfaces (Figure 3). s Density separations have not yet
been reported for the determination of uptake of NMPs by
small organisms, but given the efficiency the technique has
shown when employed in ENM uptake studies'''~"'* and the
fact that most laboratories may have access to the tools needed
to perform the separations, this approach should be evaluated
if control measurements (e.g., zero-hour control) indicate an
incomplete separation of the test organism and suspended
ENMs.

B ARTIFACTS AND CONTROL EXPERIMENTS
DURING CO-CONTAMINANT EXPERIMENTS

Plastic particles are typically associated with chemicals, either
from the manufacturer (intentionally added chemicals, i.e.,
additives) or by absorption of chemicals from the ambient
environment. These chemicals often are referred to as plastic-
associated chemicals (PACs).'"*""> The presence of PACs has
raised concerns that transport followed by ingestion of
microplastics would lead to additional bioaccumulation,
exposure, and risks compared to a scenario without any plastic
particles present (i.e, “zero microplastic’ scenario).' *~'"
Here, the aspect of additional uptake caused by the presence of
NMPs, the ‘microplastic vector effect,” is crucial, because all
PACs are ubiquitous in all environmental media at background
levels. Whether a “microplastic vector effect” occurs under
natural conditions depends on the relative share of exposure
via plastic compared to other pathways, and on whether the
fugacity gradient for transfer favors desorption from plastic
particles, !/

There are several reviews that summarize the weight of the
evidence for the vector effect to occur, generally concluding
that the evidence base is thin.""*"'”""?"2% This is attributed to
misinterpretations typically encountered when results from
plastic vector studies are put into an environmental context.
First, parallel chemical uptake pathways are not considered,
thereby artificially increasing the supposed relevance of the
pathway occurring via microplastic ingestion.""”

Second, transfer of PAC from microplastics to the organism
is studied at the maximum possible concentration gradient, i.e.,
with clean organisms. Such a situation conflicts with conditions
in nature where the gradients for MPs are small or
nonexistent."'” In aquatic systems, the time scales of
adsorption and desorption of PAC between microplastic
particles and water are determined by particle concentration,
particle size, the thickness of the stationary boundary layer
surrounding the particles, the diffusion rate in that layer, the
intrapolymer diffusion coeflicient of the PAC, the PAC
partition coefficient of plastic to water, the concentration of
dissolved organic matter (DOM) and the PAC partition
coeflicient of DOM to water. The role of these traditional
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factors is well understood in environmental chemistry and
several studies have shown, based on empirical and validated
model simulations, that PAC equilibrium times range from
hours to months at most."'*'*" Given the residence time of
NMPs in water systems, this means that equal fugacity (i.e.,
chemical equilibrium) usually is the standard state for PAC
residing in NMP, especially in the oceans. This also applies to
noncovalently bound additives that can contain tens of percent
of the weight of the plastic particles. Nevertheless, numerous
studies explore the artifactual nonequilibrium scenario, where-
as the number of studies addressing the opposite case is small,
which seems to reflect confirmation bias in the literature.

Third, studies exist that report data of PAC desorption
(extraction or migration) from high concentrations of plastics
to relatively small volumes of water or cell media (e.g,,”””?).
These experimental conditions will easily lead to concen-
trations that cause responses in, for example, in vitro toxicity
tests. Often, such studies implicitly suggest that PAC are toxic
under environmentally relevant conditions. In reality, however,
such migration of PAC would not lead to exceedance of
chemical effect threshold concentrations. This is because the
concentrations of microplastics in the environment are much
lower than those used in these tests and dilution would occur,
making such studies confusing,

Fourth and finally, when dealing with the implications of the
MP vector effect, the scenario of absorption by NMPs of
nonadditives (i.e., reducing the chemical concentration)
should be given equal weight to that of leaching of additive
chemicals, something which is however usually overlooked. For
example, recent reviews postulate biomagnification and gut
leaching simultaneously as accumulation pathways,'** without
considering that biomagnification can increase the fugacity in
an organisms’ lipids such that gut leaching would not occur, or
even could be reversed. Incidentally, the distinction between
additives and nonadditives (‘sorbed chemicals’) is often
artificial because many of the same chemicals belong to both
categories. Recently, a practical tool has been developed that
allows for the accurate simulation of the microplastic vector
effect in a food web under all possible hydrophobic organic
contaminant exposure scenarios, including “overequilibrium”
(e.g., additives) as well as “under-equilibrium” (sorbed
chemicals).'""® This shows that it is feasible to translate
observations from co-contaminant experiments to field
conditions by numerically correcting all of the above potential
artifacts. In summary, co-contaminant or “vector studies” can
be done in many ways, but their results should be put in an
environmental context, that is, as long as they are meant to be
environmentally relevant.""”

Implications. Making robust measurements of the
potential toxicity of NMPs and PACs is critical for under-
standing their risks. While there are a broad range of potential
artifacts that can impact toxicity assays evaluating NMPs, the
extensive literature on toxicity testing of ENMs provides
insights into some shared potential artifacts that are relevant
for particle toxicity testing in general. In addition, there are
many unique issues for NMP testing that differ from those
relevant for ENMs that are also described here in depth (e.g.,
the potential for some plastic particles to float, and the
potential for single-celled organisms to be absorbed onto larger
microplastic particles). There is no clear distinction between
nanoplastics and smaller microplastics with regards to the
potential artifacts and control experiments that are needed.
Nevertheless, there are differences with larger microplastics,
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which are more likely to have distinct size-related differences
such as adsorbing cells rather than forming heteroagglomer-
ates, limited transport through an exposure system, and being
too large for ingestion by organisms.

The control experiments described in this paper should be
incorporated into future studies to help raise the quality of the
published literature, avoid false positive and false negative
results, and accurately determine the toxicity mechanism.
Given differences among toxicity methods, it is not possible to
prescribe a priori all of the control measurements that would
be relevant for a particular study, but the extensive discussion
of relevant control measurements for different types of
experiments will facilitate designing a robust experiment.
Ultimately, having reproducible results will support future
informatics efforts to pull together results among studies, such
as with species sensitivity distributions, to identify NMPs that
may pose risks, to understand toxicity mechanisms, and to
guide the design of safer alternatives.
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Notes

Certain commercial equipment, instruments, and materials are
identified in this paper to specify an experimental procedure as
completely as possible. In no case does the identification of
particular equipment or materials imply a recommendation or
endorsement by the National Institute of Standards and
Technology or by the Consumer Product Safety Commission
(Commission or CPSC), nor does it imply that the materials,
instruments, or equipment are necessarily the best available for
the purpose. The paper is work of staff and has not been
reviewed or approved by and does not necessarily represent
the views of the Commission nor does any mention of trade
names, commercial products, or organizations imply endorse-
ment by the CPSC.
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