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Plasma polymerized thin films are of increasing importance in the 

field of transparent packaging. In particular, hydrocarbon coatings 

prepared by the reactive magnetron sputtering method combined 

with plasma-stimulated gas-phase polymerization have proved to 

have excellent diffusion barrier properties for gases and water 

vapor. 

However, the non-linear relationship between stretch failure and 

permeation properties poses a challenge when it comes to modeling 

the functional coatings to meet the required product specifications. 

An improvement in the fanctionality of these films has been achiev­

ed using the general regression neural network GRNN. The method 

employs the input parameters of the coating such as gas flow, pres­

sure and process time. To improve the prediction performance the 

training input and output vectors were linearity transformed into 

the space defined by the principal components of the given training 

data. 

In conclusion, it can be stated that modeling of plasma processes 

according to the film characteristics makes possible a more con­

trolled and systematic production of thin films. The neural network 

being used as a tool to determine the process parameters is able to 

enlighten the understanding of their influence on the film proper­

ties which is of particular importance for optimization and scaling 

up of a defined fanctional thin film in a web coater. 
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Introduction 

Amorphous hydrogenated carbon thin films generated by plasma-enhanc­
ed chemical vapor deposition have attracted a large amount of interest due 
to their desirable mechanical, physical and chemical characteristics and 
properties. The attributes of hydrogenated carbon films (a- C: H) vary 
from the extremes of hard diamondlike films (often called DLC) to soft 
polymerlike films. A number of groups have extensively characterized the 
chemical structure and investigated the macroscopic properties of hydro­
genated carbon films using a wide variety of analytical methods. However, 
the detailed structure of the bonding network is still under study. A ran­
dom covalent network model and a two phase model consisting of three­
fold coordinated sp2 hybridized carbon clusters embedded in a randomly 
oriented tetrahedrally sp3 bonding matrix, with the spl amount small 
enough to be ignored have been suggested. The matrix largely controls 
the mechanical properties governed by the hydrogen and sp3 content 
while the planar rings control the band gap. Many of the properties of 
these films, such as hardness, density, high degree of transparency to infra­
red radiation, and high electrical resistivity have been correlated with the 
hydrogen content and the sp2 to sp3 ratio. 

In previous work we have shown that dense hydrocarbon coatings can act 
as excellent diffusion barriers for oxygen and water vapor permeation 
[1-3]. Due to the diverse nature of these thin films their intrinsic flexibili­
ty can be tailored to meet the product specifications. This barrier type is, 
therefore, a potential candidate for extending the existing application 
fields for transparent packaging. 

The non-linear relationship between input parameters of the coating pro­
cess and properties of the resulting coating prevent an exact mathematical 
description and optimization. However, artificial neural networks mimic 
the behavior of biological neural nets, and have successfully solved prob­
lems through generalization of a limited quantity of training data, overall 
trends in functional relation hips. In semiconductor manufacture, a multi­
layer perceptron trained by backpropagation is by far the most popular 
network architecture [ 4 - 6]. Based on a general regression neural network 
(GRN ) it is equally well to model a real deposition process and to calcu­
late the effect of the parameters according to their specific probabilities 
based on a reasonably small data set [7, 8] . This mathematical model was 
also used to generate process parameters for thin films with the desired 
functional performance. 

The aim of this work was to the properties of the coatings using a model 
based on a neural network and to obtain a deeper insight into their func-
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tionality when acting as a diffusion barrier. However, the project was start­
ed without knowing that neural networks were suitable for modeling our 
process. After having evaluated the usability of neural networks and more 
specifically GRNN the general potential of their application in plasma 
processes was investigated {Figure 7). 

Figure 1: Schematic 
drawing of possible 
applications for 
neural networlc in 
plasma technology. 
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Experimental Procedure 

All samples were prepared in a low temperature, plasma-enhanced che­
mical vapor deposition (PE-CVD) reactor and are described in detail in 
previous papers [1 - 3]. The starting pressure in the reactor was about 
3 x 10-6 mbar. The discharge power density was maintained between 0.3 
and 0.6 W / cm 2, and a puJ e frequency of25 kHz; a reverse voltage of 15 % 
of operating de input voltage, and a reverse recovery time of2 µs were cho­
sen. The samples were either grounded (samples Al, Bl) or were biased 
using a capacitively coupled radio frequency (rf= 13.56 MHz, Vb= 
- 90 V). The target consisted of a circular hot pressed carbon di c (purity of 
99.999). The total flow rate of gas mixtures (acetylene, helium, argon) was 
not higher than 72 seem. The working pressure in the range from l to 
15 µbar was regulated by a butterfly valve controlled by a baratron gauge. 
Polyethylene terephthalate (PET) film, DuPont-MYLAR' type A, with a 
thickness of 12 µm, aluminum foil, and a piece of silicon wafer [ 100] were 
used as substrates. The film thickness varied from 20 nm up to 3 µm to 
allow analyses by the various techniques. Oxygen permeability was mea­
sured using a Mocon OX-TRAN 2 / 20 instrument at 0% and 85 % rel. hu­
midity, respectively. Water vapor transmission measurements were con­
ducted with a Lyssy Vapor Permeation Tester L 80 - 4000 at 90% rel. 
humidity. 
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Neural Network Modeling of the Plasma Processes 

The process of making coatings and analyzing their properties is expen­
sive and time consuming. The average time from making the coatings until 
measurements of their properties were available was about two weeks. 
The high degree of complexity of the PE-CVD process would require 
many iterations until an optimum set of process parameters could be 
found by a human operator and would thus lead to very high costs. Linear 
methods cannot be used for modeling the sputtering process. Therefore, 
we were looking for a suitable non-linear, black box modeling approach. 

All the coatings that were available at the time when we started looking for 
a non-linear modeling method could be grouped into about half a dozen 
groups of various coating processes, each of them described by a group of 
10 to 30 different plasma parameters leading to different coatings. The 
data for some of the most promising groups were rare. The group of coat­
ings we describe in this paper consisted of only 12 samples. 

Figure 2: The Ge­
neral Regression 
Neural Network for 
a scalar output. 

Output 

first hidden lrf•: 
For each training umple there ls one 
neuron in this layttr (here Straining 
aamples) . 

The General Regression Neural Network (GRNN, Figure 2) was found to 
be the most suitable for modeling our coating processes for the following 
reasons: 
- We could use our rare data for training and verification at the same time, 

without the problem of overfitting (cross validation error measure). 
- The same programs could be used without modification to model 

various groups of coatings, since the structure was only dependent on 
the training data. 

- The clear analytical-statistical theory underlying the GRN approach. 
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The training set consisted of 12 different plasma processes which were pre­
pared by reactive de magnetron sputtering processes combined with 
plasma stimulated gas-phase polymerization. The input parameters were 
(gas flow 1, gas flow 2, gas flow 3, pressure, process time) and the output 
(i.e. the desired properties) consisted of (permeation, stretch failure, coat­
ing thickness). 

The training input vectors (process parameters) and the training output 
vectors (resulting coating properties) were first centered and normed to 
unit variance. To improve the prediction performance, the training input 
and output vectors were linearily transformed into the space defined by 
the principal components of the given training data. During the gradient­
based training the GRNN predicted the properties of each coating as if it 
were a new unknown coating. This gave us a measure indicating how well 
the GRNN could predict new coatings before creating new samples. This 
was possible by minimizing a cross validation error measure during train­
ing {Figure3). 

Figure 3: The 
training process. 
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Figure 4: The 
trained GRNN used 
to predict process 
parameters. 
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Prediction 
of coating 
properties 

The trained GRN was used to generate the input parameters for a set of 
films from which the best ftlms were selected according to (Figure 4). The 
film of which the coating properties were found to be most suitable was 
chosen and its process parameters locally optimized using a gradient­
based technique. 

A MATLAB toolbox for implementing the GRNNs was developed in 
order to extend the application to any kind of training data. The program 
automatically recognizes the number of input and output parameters and 
determines the structure of the network. 

Results 

Functional Performance 
Table 1 shows the properties of selected amorphous hydrocarbon thin 
films. The oxygen and water vapor permeability decreases with increasing 
mass density. In a humid environment, the oxygen permeation is reduced 
to an even lower value as indicated by the oxygen permeability measured 
at 85 0/o rel. humidity. Since the influence of the rel. humidity on the oxy­
gen permeation is reversible, we assume that the water molecules reduce 
the oxygen permeation by being physisorbed in the voids of the hydro­
carbon network. 
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The stretch failure factor of the coatings - defined as the 0/o elongation per­
missible before permeation failure - decreases with increasing mass den­
sity and increases with the hydrogen content. Sample Nl exhibits an opti­
mal functional performance that would be of interest for various applica­
tions and is characterized by a relatively high mass density and hydrogen 
content, as well as a lower nanohardness compared to the other coatings. 

Sample Thick- OXTRb OXTR0 WVTRd Stretch" Den- Hard-
ness" sity1 ness0 

A1 20 ± 3 <2.2 ± .2 <1 .7± .2 < .6 ± .2 > 2.5 ± .2 1.58 13.3 
81 35 ± 3 < 39.3 ± .2 <18.7±.2 < 12.1 ± .3 > 8.8 ± .2 1.03 -
82 58 ± 3 < 1.8 ± .2 < 1.6 ± .2 < .3 ± .2 > 2.8 ± .2 1.21 -
C2 76 ±3 < 1.1 ± .2 < .7 ± .2 < .4 ± .2 > 2.8 ± .2 1.46 8.1 
N1" 78 ± 3 < 1.2 ± .2 < .8 ± .2 < .6 ± .2 > 3.7 ± .2 1.48 7.5 
N2* 89 ± 3 < 1.8 ± .2 < .9 ±.2 < .7 ± .2 > 3.0 ± .2 1.34 8.1 
N3* 90 ± 3 < 2.4 ± .2 < 1.5 ± .2 < .7 ± .2 > 3.4 ± .2 1.18 8.8 
PET-film 12 µm < 123.9 ±.3 < 93.0± .3 < 20.4 ± .3 - 1.36 

* Samples prepared according to parameters suggested by GRNN 

Legend: 
a Thickness [nm) 
b Oxygen permeability [ccm/(m2xdxbar)): ASTM D 3985-81 @23°C, 0% rel. humidity 
C Oxygen permeability (ccm/(m2 xdxbarJI: ASTM D 3985-81 @23°C, 85% rel. humidity 
d Water vapor permeability [g / m2xdl : ASTM F 1249-90@ 23°C, 90% rel. humidity 
e Stretch failure, Elongation 1%1 
f Mass density [g/cm31 
g Nanohardness [GPaJ 

Table 1: Functional performance of selected amorphous hydrocarbon thin films. 

Characteri.za,lion 
The density of paramagnetic spins, as measured with ESR (electron spin 
spectroscopy), was 7.2x 10-5mol/g and 4.9 x 10-5mol/g for sample N 1 and 
C2, respectively. The g-value was 2.0023, and the peak-to-peak linewidths 
were measured to be 11 Gauss. The relatively high number of about 
1020/cm3 unpaired electron spins is expected to have a considerable in­
fluence on the N MR spectrum. Carbon atoms inside a radius of - 1 nm 
around an unpaired electron are not detected and as a consequence the 
fraction of undetected carbons can be as high as 50 % in hydrogen defi­
cient structures. Therefore, NMR results have to be interpreted with cau­
tion. The combination of various NMR measurements yields quantitative 
information about the hybridization and the relative amount of hydro­
genated and non-hydrogenated carbon. This is compiled in Table 2. 

The NMR spectrum indicates that coating N 1 is more polymerlike than 
coating C2. The density of coating N 1 is relatively high, and the additional 
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hydrogen is bonded to carbon atoms and not incorporated into the net­
work interstitially as molecular hydrogen. In contrast, sample Al contains 
more tetrahedrally bonded sites coordinated in a diamondlike carbon net­
work according to Raman data. The effect of hydrogen incorporation into 
hydrocarbon films can be interpreted using a structural model, in which 
hydrogen appears to increase the number of network terminating bonds. 
An increase in hydrogen content leads to a higher polymeric content of 
the film and as a result to a flexible barrier, as long as the mass density is 
not reduced below a certain level. 

Sample sp2:sp3 sp2 sp2 sp• sp• 
(C-graphite) (CH-polymer) (C-diamond / (CH-/CH2-

CH3) polymer) 

C2 47 :53 40 7 19 34 
N1 45 :55 34 11 13.5 41.5 

Table 2: Hybridization and hydrogenation of carbon atoms in plasma polymerized 
hydrocarbon coatings as determined by NMR measurements in fat %). 

Discussion 

When we started using the GRNN approach some of the coatings exhib­
ited a good performance as diffusion barriers ( Table 7: coatings B2, C2). 
However, the stretch failure of these coatings was less than the 3 0/o mini­
mum value required by the packaging industry. The non-linear relation­
ship between excellent diffusion barrier and elongation behavior prevents 
a straightforward optimization for the process engineer. 

As shown in Table 7, excellent barrier coatings combined with a high 
stretch failure have been produced on the basis of the process parameter 
adjustments predicted by the GRNN (coatings Nl, N2, and N3). In addi­
tion, the GRNN model as developed enabled us to study the correlation 
between the coating properties and the process parameters. 

Outlook 

Our aim was to establish a set of process parameter that optimizes barrier 
and stretch performance for an individual application. The GRN was 
able to predict the process parameters for an excellent diffusion barrier 
suitable for flexible packaging. Further work will show to what degree 
GRNN is able to optimize proce s parameters for data sets concerning 
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functional thin films with different properties. Moreover, we intend to 
enhance the current GRN structure so as to regulate the deposition pro­
cesses in the web coater BABE 1 in an time-adaptive way {Figure 5). The 
stabilization of the reactive magnetron sputtering method combined with 
plasma-stimulated gas-phase polymerization is a challenge we are going to 
elaborate a suitable model for in the near future (Figure 6). 

Figure 5: High 
vacuum web coater 
BABE 1. 

Figure 6: Pulsed 
de-magnetron sput• 
tering discharge in 
web coater BABE 1. 
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