Supporting Information:

On the Local Structure in Ordered and Disordered *Closo*-hydroborate Solid Electrolytes

Paul Till^a, Ryo Asakura^b, Arndt Remhof^b, Wolfgang G. Zeier*^{a,c}

^a Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, D-48149 Münster, Germany.

^b Materials for Energy Conversion, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.

^c Institut für Energie- und Klimaforschung (IEK), IEK-12: Helmholtz-Institut Münster, Forschungszentrum Jülich, 48149 Münster, Germany.

Pawley fitting

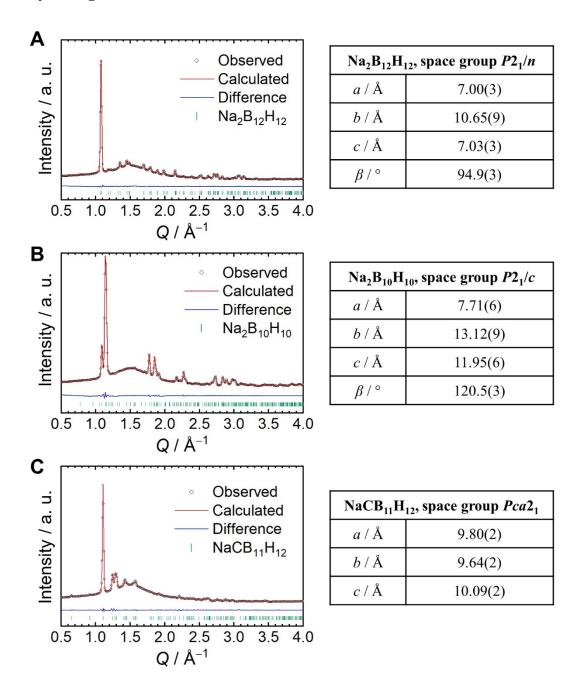


Figure S1: Plots of Pawley refinements and obtained lattice parameters for samples with only one cage type, namely a) $Na_2B_{12}H_{12}$, b) $Na_2B_{10}H_{10}$ and c) $NaCB_{11}H_{12}$.

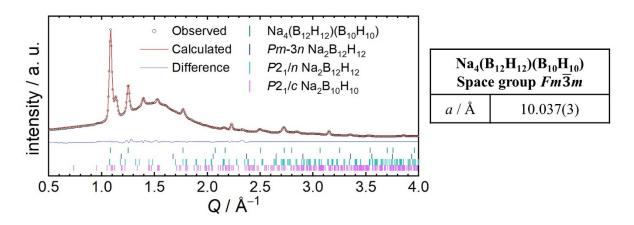


Figure S2: Plot of the Pawley refinement and obtained lattice parameters for $Na_4(B_{12}H_{12})(B_{10}H_{10})$. A reliable Pawley refinement against $Na_3(CB_{11}H_{12})(B_{12}H_{12})$ Bragg diffraction data was not possible, due to the broad reflections.

Simulated pair distribution functions of specific atom-atom distances in Na₂B₁₀H₁₀

As elaborated in the main text, partial pair distribution functions, which only consider specific atom-atom distances, were calculated to obtain a better understanding of the measured D(r). The same conclusions can be drawn for Na₂B₁₀H₁₀ and Na₂B₁₂H₁₂. While the results obtained for Na₂B₁₂H₁₂ are discussed exemplarily in the main text, discussion of the simulated partial pair distribution functions of Na₂B₁₀H₁₀ is added here for completeness.

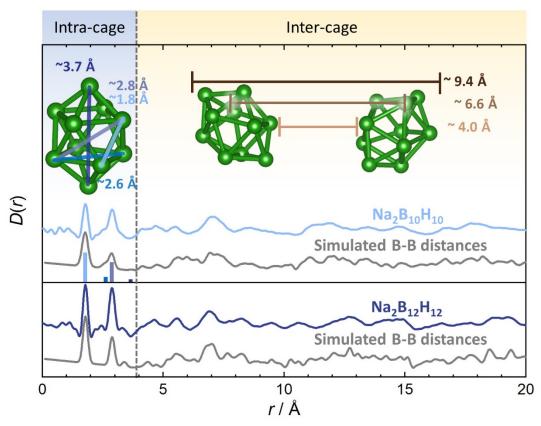


Figure S3: Measured D(r) of $Na_2B_{10}H_{10}$ and the simulated partial D(r) that arises from B-B distances only. The published structure from reference 1 with adjusted lattice parameters was used for the simulation. In the low r region, D(r) peaks correspond to intra-cage B-B distances. For r > 4 Å, inter-cage B-B distances are observed. Since various inter-cage B-B distances are found, the D(r) is broad. The center of mass distances of $B_{10}H_{10}^{2-}$ anions do not fully correspond to the higher intensity feature around 7 Å. This however, may be due to the ellipsoidal shape of the $B_{10}H_{10}^{2-}$ anions. The largest B-B distances of neighboring cages are found around ~ 9.4 Å. The measured and simulated partial D(r) of $Na_2B_{12}H_{12}$ are added for comparison. In both compounds measured and simulated D(r) are similar up to ~ 10 Å and become increasingly different with higher r.

As shown in Figure S3 the simulated partial B-B pair distribution functions and measured D(r) for Na₂B₁₂H₁₂ and Na₂B₁₀H₁₀ are similar up to 10 Å, and the simulated partial D(r) contributes significantly to the measured D(r) in both compounds. Noteworthy, in Na₂B₁₂H₁₂ the intense feature around ~7 Å was found to coincide with the center of mass distance of the B₁₂H₁₂²⁻ anions. In Na₂B₁₀H₁₀ the anion centers are closer to one another (~6.6 Å), so that the center-to-

center distance does not coincide with the broad peak around 7 Å. This difference may be due to the ellipsoidal shape of the $B_{10}H_{10}^{2-}$ cages. The different cage sizes and shapes may ultimately also be the reason for the increasing disparity between measured as well as simulated D(r) of $Na_2B_{12}H_{12}$ and $Na_2B_{10}H_{10}$ for r > 10 Å. Overall, the simulated partial D(r) of both compounds in comparison to the measured D(r) shows that the earlier described intensity decay occurs once atom-atom distances in the inter-cage region are considered.

The simulated Na⁺-B partial pair distribution function of Na₂B₁₀H₁₀ is compared to the measured D(r) in Figure S4a. Similar to Na₂B₁₂H₁₂, Na⁺ is surrounded by four *closo*-hydroborate cages in an approximately tetrahedral configuration and Na⁺ is located closer to one of the triangular faces. The first peak of the partial Na⁺-B D(r) consequently arises from distances of Na⁺ and B atoms of these three cages, as shown in Figure S4a. Due to the spatial extension of the *closo*-hydroborate cages, peaks arising from Na⁺-B distances of these first three cages overlap with Na⁺-B peaks from cages located further away from Na⁺, so that a continuum of peaks is observed.

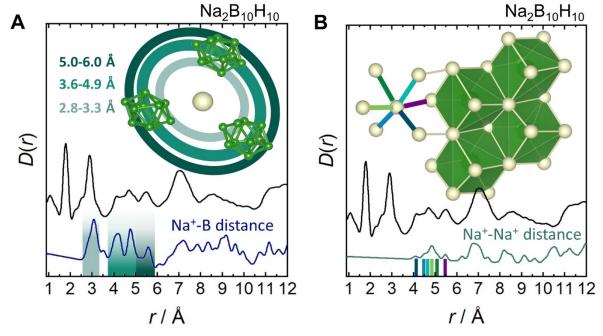


Figure S4: a) Measured D(r) of $Na_2B_{10}H_{10}$ compared to the simulated partial D(r) of Na^+ -B distances. The most intense peak around 3 Å arises from the first B coordination sphere. Na^+ -B distances of these nearest B cages extend up to 6 Å. Within this distance, further hydroborate cages are found, which also contribute to the D(r) so that a continuum of Na^+ -B peaks is observed. b) Measured D(r) of $Na_2B_{10}H_{10}$ compared to the simulated partial D(r) of Na^+ - Na^+ distances. Na^+ surrounds the $B_{10}H_{10}^{2-}$ cages in a distorted, cube like configuration. For better visibility, closo-hydroborate cages are represented by spheres. Na^+ is surrounded by 6 other Na^+ in the shape of a distorted octahedron.

The structure of the Na⁺ sublattice and the partial D(r) arising from Na⁺-Na⁺ distances is shown in Figure S4b. Each Na⁺ is surrounded by six other Na⁺ with six distinct distances in a distorted octahedral arrangement. This octahedral motif is also observed in the Na⁺ sublattice of Na₂B₁₂H₁₂ but in that compound one Na⁺-Na⁺ distance is significantly larger than the other distances, while in Na₂B₁₀H₁₀ the spread of Na⁺-Na⁺ distances in the octahedral motif is comparably smaller. Each hydroborate cage in Na₂B₁₀H₁₀ is surrounded by eight Na⁺ ions in a distorted, cube-like arrangement. These distorted cubes are edge sharing, as shown in the inset of Figure S4b.

Comparison of all five compounds in the low r range



Figure S5: Comparison of all five measured D(r). All D(r) show a similar pattern at low r. Samples with higher orientation disorder have an almost flat and featureless D(r) for r > 5 Å.

Comparison of all simulated contributions to the pair distribution functions

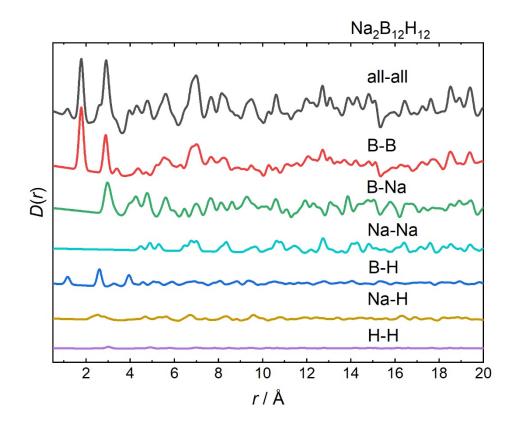


Figure S6: Simulated D(r) of $Na_2B_{12}H_{12}$ based on the structure reported by Her and coworkers.² Peaks arising from B-B distances have the largest intensity contribution to the D(r), compared to contributions from other atom-atom pair interactions.

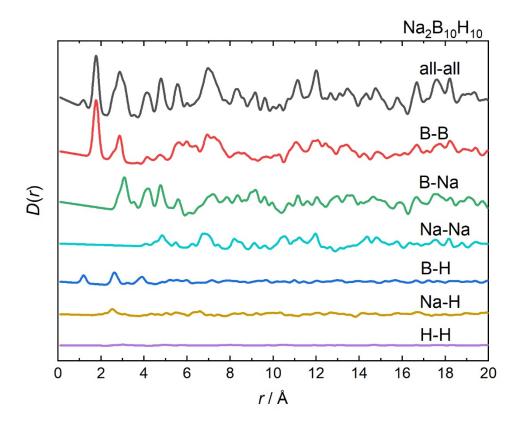


Figure S7: Simulated D(r) of $Na_2B_{10}H_{10}$ based on the structure reported by Wu and coworkers. Peaks arising from B-B distances have the largest intensity contribution to the D(r), compared to contributions from other atom-atom pair interactions.

References

- (1) Wu, H.; Tang, W. S.; Zhou, W.; Stavila, V.; Rush, J. J.; Udovic, T. J. The Structure of Monoclinic Na₂B₁₀H₁₀: A Combined Diffraction, Spectroscopy, and Theoretical Approach. *CrystEngComm* **2015**, *17* (18), 3533–3540. https://doi.org/10.1039/c5ce00369e.
- (2) Her, J.-H.; Zhou, W.; Stavila, V.; Brown, C. M.; Udovic, T. J. Role of Cation Size on the Structural Behavior of the Alkali-Metal Dodecahydro- Closo Dodecaborates. *J. Phys. Chem. C* **2009**, *113* (26), 11187–11189. https://doi.org/10.1021/jp904980m.