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A B S T R A C T   

Despite the convenience that plastics provide to society, there have long been concerns regarding the risks they 
present to the environment. Microplastics (MPs, plastic particles smaller than 5 mm) have been found in every 
environmental compartment—air, freshwater, oceans, but also soils—yet the emphasis to date has been on the 
risks they represent to aquatic environments. The present study, therefore, aimed to perform a comprehensive 
risk assessment of MPs in soils. A probabilistic approach was used to account for the variability and uncertainties 
in the available data. Measured exposure concentrations and ecotoxicity thresholds were extracted from perti-
nent peer-reviewed literature. Risk characterization ratios (RCRs) were then calculated for different land uses 
and geographical regions by dividing the predicted no-effect concentration (PNEC) distribution by the respective 
measured environmental concentration distribution. Using particle-number concentrations, the mean PNEC was 
calculated to be 82,000 part.kg− 1. The measured concentrations of MPs in soils ranged from 0 to 410,000 part. 
kg− 1 (median: 930 part.kg− 1). A human influence was clearly demonstrated, with higher concentrations (me-
dian: 3,600 part.kg− 1) in soils directly influenced by human activity than in natural or agricultural soils. 4.8 % of 
RCR calculations (median: 0.013) of the probability distribution were above 1, which is 40 and 240,000 times 
greater than that predicted for freshwater and marine habitats, respectively. Urban and industrial soils had the 
highest RCR, followed by agricultural and natural soils. The comparability of exposure and hazard datasets could 
be improved if the MPs tested for ecotoxicity were more representative of those found in environmental samples. 
There is a need for more ecotoxicity data on fibers, films, polyethylene, and weathered or aged MPs so that 
comparisons with real-world, observed exposure data can be built on more solid foundations.   

1. Introduction 

Plastics present various interesting properties, such as high mallea-
bility, low mass, and high corrosion resistance. These make them the 
materials of choice for a large range of applications. Despite their con-
venience, evermore concerns are being raised regarding the risks they 
pose to the environment (Priya et al., 2022; Parker, 2019). Microplastics 
(MPs) are one class of pollutants on which research has increased 
tremendously in the past few years (Klingelhöfer et al., 2020). Their 
common point is a size smaller than 5 mm in diameter (GESAMP, 2015), 
but they are also diverse in size, shape, and how and where they were 
produced. Primary MPs are produced deliberately for use as beads or 
pellets, e.g., in hygiene and abrasive products. Secondary MPs result 
from weathering, e.g., by ultraviolet radiation or the thermal oxidation 
of larger plastic products, such as packaging and textiles, and their 
subsequent fragmentation (Nasseri and Azizi, 2022; Horton et al., 2017; 
Andrady, 2011). Secondary MPs are mainly fragments and fibers. 

The main release pathway for plastics is to the terrestrial environ-
ment. Worldwide, it is estimated that plastic pollutants are 4 to 23 times 
more abundant in soils than in oceans (Horton et al., 2017). In 
Switzerland alone, emissions to soils were estimated to be 40 times 
higher than to surface water (Kawecki and Nowack, 2019). After use, 
plastics and MPs find their way to the terrestrial environment via 
different routes (Rillig, 2012). Littering is the main route, but con-
struction and agriculture are also significant sources (Kawecki and 
Nowack, 2019). In agriculture, MPs find their way into soils, e.g., 
through sewage sludge application (Corradini et al., 2019; Nizzetto 
et al., 2016; Zubris and Richards, 2005), irrigation with wastewater 
(Bläsing and Amelung, 2018; Zhang and Liu, 2018), and the application 
of plastic mulching film (Huang et al., 2020). Tire-wear particles are 
another large source of the MPs that enter soils and rivers via runoff 
from the streets where they are produced in the first place (Campanale 
et al., 2022; Bläsing and Amelung, 2018; Sieber et al., 2020; Chen et al., 
2020). 
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Microplastics can alter soil properties (e.g., their water-holding ca-
pacity or soil bulk density), microbial activity (de Souza Machado et al., 
2018b), enzyme activity (Zhao et al., 2021), and the composition of 
microbial communities (Seeley et al., 2020). Moreover, their leachates 
can negatively impact soil biota (Kim et al., 2020). Microplastics are also 
directly ingested by organisms present in soils, such as earthworms 
(Huerta Lwanga et al., 2017), snails (Panebianco et al., 2019), or col-
lembolans (Maass et al., 2017), most likely because these animals 
mistake these particles for food (Cole et al., 2013). After ingestion, MPs 
can cause false satiation and deleterious effects on the digestive system, 
such as damage to the esophagus and intestinal obstruction (Ju et al., 
2019; Song et al., 2019; B.-K. Zhu et al., 2018; D. Zhu et al., 2018). 
Eventually, MPs affect organisms’ reproduction, growth, and survival 
(Cao et al., 2017; Lahive et al., 2019). Jiang et al. (2019) showed growth 
inhibition in Vicia faba in the presence of polystyrene MPs, and Bosker 
et al. (2019) observed reduced germination rates and decreased root 
length in Lepidium sativum after exposure to MPs. Smaller particles can 
also be taken up by plants, including edible crops (Li et al., 2020a; Li 
et al., 2020b). 

Given the adverse effects of MPs on soil organisms, toxic doses of 
MPs should be compared to the real-world environmental concentra-
tions to which they are exposed to understand their potential impacts 
fully. Risk assessment methodologies compare exposure concentrations 
and toxicity doses. Microplastics risks have been assessed in marine 
waters using modeled environmental concentrations and ecotoxicity 
data extracted from the literature (Everaert et al., 2018). These authors 
concluded that MPs in surface marine environment would probably not 
create a risk before the year 2100. 

Adam et al. (2018, 2020) used a probabilistic approach to consider 
the uncertainties in their risk assessments of MPs in freshwaters and 
marine waters, respectively. Risks were shown to be unlikely based on 
the available data. Burns and Boxall (2018) aggregated both freshwater 
and marine water in their assessment, also concluding that MPs’ risks to 
aquatic organisms were unlikely, although they highlighted the limited 
data available. Mehinto et al. (2022) proposed a framework for cate-
gorizing the risks of MPs in aquatic systems by the level of concern. More 
recently, Redondo-Hasselerharm et al. (2023) also assessed the risks of 
MPs in freshwater sediments, reporting that there was a potential risk to 
benthic communities. 

However, to date, risk assessments of MPs in soil systems have been 
very limited. To the best of our knowledge, only one study has con-
ducted a complete environmental risk assessment of MPs in soils (Jac-
ques and Prosser, 2021). These authors built environmental exposure 
distributions and species sensitivity distributions (SSDs) based either on 
no-observed effect concentrations (NOECs) or lowest observed effect 
concentrations (LOECs), and risks were calculated considering the 
overlap between the distributions. Their results showed that the current 
MP levels in soils might affect 7 %–28 % of species 5 % of the time. 

Given the need for an updated risk assessment of MPs in soil, the 
present study’s aim was to use a probabilistic species sensitivity distri-
bution (pSSD) model to shed further light on the possible risks of MPs on 
soil organisms. The probabilistic species sensitivity distribution was 
built by using uncertainty factors to consider different endpoints (NOEC, 
LOEC, and the highest observed no-effect concentration or HONEC) and 
to transfer acute toxicity to chronic toxicity endpoints. As per Adam 
et al. (2018), this approach was used to include the uncertainties and 
variabilities associated with the experimental data available in the peer- 
reviewed literature. The risk assessment also considered the percentage 
of overlap between the two distributions and suggested RCRs that 
considered different land uses and locations for the first time. The ad-
equacy of these datasets for risk assessment needs is discussed in order to 
identify potential research gaps that need to be addressed to obtain the 
most accurate risk assessment possible. 

2. Materials and methods 

We performed a terrestrial risk assessment of MPs at the global scale, 
incorporating types of land usage and locations that were then compared 
to identify risk hot spots. Using the Web of Science search engine, we 
analyzed the peer-reviewed literature published up to August 2021 to 
extract exposure concentrations and ecotoxicity doses. Effects due solely 
to the leaching of additives or sorbed pollutants were excluded from this 
assessment as it was focused on the direct risks of MPs. All the data on 
plastic particles smaller than 5 mm in diameter or length was examined, 
but data on nanoplastics (particles smaller than 1 µm) were excluded 
since their toxicity mechanisms in terrestrial systems are different (de 
Souza Machado et al., 2018a). 

After data collection, probability distributions associated with 
exposure and effect concentrations were built. These were then 
compared to assess their potential risks. All calculations were made in R 
software (R Core Team, 2019) using the probabilistic risk assessment 
method developed by Gottschalk and Nowack (2013) and modified by 
Wigger et al. (2019) (pSSD+). The “trapezoid” (Hetzel, 2022), “mc2d” 
(Pouillot and Delignette-Muller, 2010), “mvtnorm” (Genz et al., 2021), 
“psych” (Revelle, 2022), “xlxs” (Dragulescu and Arendt, 2020), “msm” 
(Jackson, 2011), “stringr” (Wickham, 2022), “ggplot2′′ (Wickham, 2016), 
”car“ (Fox and Weisberg, 2019), ”tidyverse“ (Wickham et al., 2019), 
”rstatix“ (Kassambara, 2021), ”ggpubr“ (Kassambara, 2020), and ”FSA“ 
(Ogle et al., 2022) packages were all used. The general methodology 
used for this risk assessment was similar to the method used for MP risk 
assessment in freshwater and marine waters by Adam et al. (2018, 
2020). The details of this method are described in the following sections. 

2.1. Hazard assessment 

The terms “microplastic”, “soil”, “terrestrial”, “ecotoxicity”, 
“toxicity”, and combinations thereof were used to search the internet for 
hazard data. The regulatory guidelines for ecotoxicity on terrestrial or-
ganisms define three soil organism groups that should be covered by 
hazard data for a comprehensive assessment. These include plants, in-
vertebrates such as earthworms, springtails and mites, and microor-
ganisms like bacteria, protozoa, and fungi. This ensures that all the 
relevant ecological levels and exposure pathways to stressors in a 
terrestrial environment are considered (ECHA, 2017). The preferred 
endpoints considered for inclusion were growth, survival, and repro-
duction; thus, data for soil, animals, and plants were collected. To ensure 
the quality of the dataset used for risk assessment, several criteria (e.g., 
lack of information on polymer type or shape, differentiation of soil and 
organism matrix, focus of the study) were used to exclude studies 
considered irrelevant (Table S1). 

The hazard dataset was then used to build pSSDs following the 
pSSD+ methodology developed by Wigger et al. (2019) that uses un-
certainty factors (UFs). First, an uncertainty factor-dose descriptor (UFD) 
was used. NOEC data points were derived from the literature since this is 
the preferred dose descriptor in REACH regulations (ECHA, 2008). 
When NOEC data were not available, LOEC and HONEC data points 
were derived and then converted to NOECeq using the UFD. To derive 
NOECeq from LOECs (ECHA, 2008) and HONECs, UFDs of 2 and 1 were 
used, respectively. HONEC values were only included if no other de-
scriptors were reported, and only if they were higher than 0.1 g.kg− 1, 
thus ensuring that the lowest part of the pSSD would not be skewed by 
highly uncertain data. Secondly, an uncertainty factor-time (UFT) was 
used when chronic data—which is preferable to acute data (ECHA, 
2008)—were unavailable. A threshold duration for each species was 
considered for the UFT. If the experimental duration was higher than the 
threshold duration derived from the guidelines (Table S2), UFT was 
taken as 1, whereas it was taken as 10 when the experimental duration 
was below the threshold value. Endpoints were also considered when 
determining the UFT. For example, if the guideline specified the 
threshold duration according to an endpoint, such as mortality or 
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reproduction, then the study’s endpoint was considered accordingly to 
determine UFT. Considering these uncertainty factors, the NOECeq was 
derived by using Equation (1). 

No observed effect concentration equivalent

=
Dose descriptor data point

Uncertainy factor time *Uncertainty factor dose descriptor
(1) 

Second, probability distributions were calculated for each species in 
the dataset by considering inter-laboratory variations and uncertainties 
due to UFs. From these distributions for each species, multiple pSSDs 
were formed using the Monte Carlo simulation. Finally, the probability 
distribution associated with the predicted no-effect concentration 
(PNEC) was calculated by combining the fifth percentiles of each pSSD 
into one vector (ECHA, 2008), which results in a probabilistic PNEC 
distribution instead of a single value. Both mass-based and particle- 
based MP levels were considered for the pSSD distributions. 

Both metrics are needed because hazard studies often report MP 
concentrations as mass-based, and exposure studies report them as 
particle-based. To make the results comparable, mass-based data was 
transformed into particle-based data by considering the density and 
volume of the MPs used. If the density of the MP used in the study was 
not reported, the density values were derived from Plastics Technology 
(n.d.). For volume determination, spheres, fragments, and films were all 
modeled as spherical, and fibers were modeled as cylindrical (consid-
ering both length and diameter). If the research papers did not define 
shape, but scanning electron microscopy images (if available) showed an 
irregular shape, the volume was modeled as spherical. If the size of the 
particle was not reported, but the size distribution was, the mean value 
was considered. For instance, if the size was reported as “< 250 µm”, it 
was considered to be 125 µm, or if it was reported as “20 % < 100 µm 
and 80 % 100–200 µm”, then the value was calculated as 130 µm based 
on an appropriate weighting of these ranges. 

The effect of particle size on mass-based and particle-based toxicity 
was also checked. The relationship between the size and the particle 
number was also assessed for particle-based toxicity to see if any of the 
noted effects were due to the increase in particle number as particle size 
decreased. To test this, the particle-based toxicity of the largest-sized MP 
was taken as a reference point and the particle number was set to 1. 
Particle numbers for the same mass of smaller-sized MPs were calculated 
by considering each particle’s volume. Toxicity values were then 
adjusted by dividing the reference point by the calculated particle 
number for each size of MP. 

2.2. Exposure assessment 

For our exposure assessment, the peer-reviewed literature was 
searched using the terms “microplastic”, “soil”, and “terrestrial”. Most of 
the studies retained reported measured environmental concentrations 
(MECs) as the particle number per soil mass. Since only a few MECs on a 
mass-per-mass basis were provided, we preferred the particle-based unit 
of measurement and used this to conduct the exposure and subsequent 
risk assessments. 

To ensure the quality of the final exposure assessment dataset, we 
defined exclusion criteria, data extraction and harmonization method-
ologies, the calculation of proportions of shapes, and polymer compo-
sitions (Tables S3, S4, and S5). The uncertainty and variability of the 
measured concentrations reported in the literature were used to build 
probability distributions. Normal distributions were built when mean 
and standard deviations were provided, whereas triangular distributions 
were calculated when minimum, maximum, and mean concentrations 
were given for a single location. In most cases, however, only single 
values were reported, in which case no probability distribution was 
calculated. Monte Carlo simulations were used to calculate cumulative 
exposures by using all the data points and their associated probability 
distributions. Data points produced by iteration that were higher than 

real, measured concentrations (plus their standard deviation, if avail-
able) were removed from the distributions. 

The present study considered three types of land use: agricultural 
soils, natural soils, and urban and industrial soils. All soils used for 
agricultural activities involving crops, including orchards and green-
houses, were listed under agricultural soils, regardless of the sampling 
area’s location. Natural soils grouped samples taken from locations with 
no reported human impact, mostly consisting of forest and floodplain 
soils. However, when a human impact was reported close to the sam-
pling point’s location, or if a human influence was clear in photos of the 
sampling site, data points were excluded from this category and 
included in the urban and industrial soils category. It should also be 
noted that if no information was available regarding the sampling 
point’s surroundings, and in case it was reported as forest or woodland, 
data points were included in the natural soil category. Samples of urban 
and industrial soils came from residential areas, recreational spaces, 
roadsides, industrial zones, wastelands, and areas where there was soil 
management (e.g., managed pine plantations) or animal activity (e.g., 
pastures). The continental locations of the samples were also considered 
to be used in the geographical comparison. 

Probability distributions and single values associated with land use 
and location were then plotted as cumulative curves and combined into 
overall probability distributions representing the exposure probabilities 
in various types of land use, and in different locations. 

2.3. Risk assessment 

The potential risks of MPs in soils were characterized using two ap-
proaches. The first consisted in plotting the exposure and hazard prob-
ability distributions on the same graph. If the two curves overlapped, 
meaning that the maximum MEC was higher than the minimum PNEC, a 
risk was expected. If there was no overlap, risks were considered un-
likely, given current knowledge. The second means of characterizing a 
risk was to calculate the risk characterization ratio (RCR) by dividing the 
MEC probability distribution by the PNEC probability distribution, as 
shown in Equation (2) (ECHA, 2016). A risk was expected if the RCR was 
greater than or equal to 1 (RCR ≥ 1), meaning there was a chance that 
the MEC exceeded the PNEC. 

RCR =
Measured environmental concentration distribution

Predicted no − effect concentration distribution
(2)  

2.4. Dataset comparability 

The shape, polymer type, and size of MPs were also collected from 
the hazard and exposure studies to compare their datasets. After 
considering the main shapes used in ecotoxicity studies and found in 
exposure assessments, we formed five different groups of shapes for 
comparison, representing fibers, foams, films, spheres, and fragments. 
Sheets and foils were combined under films; granules, beads, virgin MPs, 
powder, pellets, particles, and balls were considered under spheres; 
columns, flakes, and platelets were considered under fragments. For 
examining hazard studies, if MPs had been ground, milled, cut, or 
shredded, they were assumed to be fragments. If scanning electron mi-
croscopy or transmission electron microscopy images were available, 
but the shapes were unclear, these data points were excluded from the 
shape-toxicity assessment to prevent uncertainty, even though they 
were included in the hazard assessment, as described in Section 2.2. 
Regarding the shares of MP shapes, if there was no information about a 
specific type of shape, it was assumed not to be present since all the main 
shapes defined in the literature were covered in the datasets formed. 
Regarding the types of MPs, we formed seven different groups: poly-
styrene (PS), polypropylene (PP), polyethylene (PE), polyvinyl chloride 
(PVC), polyamide (PA), polyethylene terephthalate (PET), and polyester 
together (as PES), and “others”. When a value was not reported for a 
specific type of polymer (e.g., PP), it was not included in the calculation, 
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averaging, or weighting. 

3. Results 

3.1. Hazard assessment 

The species included in the present dataset for pSSD calculations 
generally agreed with the REACH guidance, covering the major taxo-
nomic groups of plants and invertebrates and providing suitable end-
points, including 63 toxicity values from 16 species. Most of these data 
points were HONECs (n: 36), followed by LOECs (n: 19), and NOECs 
(n: 8). The whole dataset is available in Supplementary Information 1 
(Table S6). Probabilistic species sensitivity distributions and PNEC dis-
tributions calculated in mass-based and particle-based concentrations 
are shown in Fig. 1A and 1B. 

When using mass-based concentrations, Zea mays L. was the least 
sensitive species, with a HONEC: 100 g.kg− 1 (NOECeq: 100 g.kg− 1), 
while L. sativum was the most sensitive (Fig. 1A), with LOEC: 0.2 and a 
HONEC: 0.2 g.kg− 1 (NOECeq: 0.1 and 0.2 g.kg− 1, respectively). When 
using particle-based concentrations, however, Allium fistulosum became 
the least sensitive species (LOEC: 6.8⋅109 part.kg− 1, NOECeq: 
3.4⋅109 part.kg− 1), and Eisenia andrei was the most sensitive species 
(HONEC/NOECeq: 3,900 part.kg− 1, Fig. 1B). 

Since HONECs are unreliable dose descriptors, calculations were 

repeated excluding them (Fig. 1C and 1D), thus decreasing the total 
number of species from 16 to 7. Many of the species were lost in the 
cluster of least sensitive species because they only had HONEC values. 
Lumbricus terrestris (NOECeq: 70 g.kg− 1) became less sensitive than 
A. fistulosum, and this shift was due to the removal of five lower NOECeq. 
There was also a shift among the most sensitive species because Eisenia 
fetida had relatively high HONEC data points. When using particle 
number concentrations, the least sensitive species did not change, 
whereas Caenorhabditis elegans became the most sensitive species, as 
E. andrei had no data points except HONECs. 

The predicted no-effect concentration were extracted from the pSSDs 
presented in Fig. 1. When all the data were included, the PNEC distri-
bution calculated based on particle number concentrations presented a 
mean: 3,300 part.kg− 1 (Table 1). This value shifted slightly higher when 
HONECs were excluded (82,000 part.kg− 1). When using mass-based 
concentrations, the mean values of the PNEC distributions were found 
to be 0.13 and 0.08 g.kg− 1 when including and excluding HONEC data, 
respectively. The particle-based PNEC excluding HONEC was used for 
risk assessment, with a mean value: 82,000 part.kg− 1. The MP size range 
used in the hazard dataset was 10–4000 µm. 

4. Hazard data analysis 

No single species had enough data available for us to perform 

Fig. 1. Probabilistic species sensitivity distributions (pSSDs) for terrestrial species exposed to MPs in mass-based (A) and particle-based (B) concentrations, including 
all available data, and excluding HONECs from the dataset (C and D, respectively). Mean pSSD curves are shown by the blue/green lines; surrounding bars indicate 
the range of uncertainty (lightest shade. area between minimum and maximum, mid shade: area between Q5 and Q95, darkest shade: area between Q25 and Q75). 
Points indicate single NOEC values. Common names for species can be found in Table S7. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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statistical tests on how varying MP composition, particle shape, and size 
had a potential influence on toxicity values. Thus, for all organisms, 
these relationships were analyzed using a combination of particle-based 
and mass-based toxicity. 

Regarding polymer type, the effects of PES and PA were found to be 
higher than those of other polymers when examining mass-based 
toxicity (Figure S4), but the only statistically significant difference 
was observed between PES and PET (p: 0.006) when HONEC values 
were included. When particle-based toxicity was considered, in addition 
to PES and PET, statistically significant differences were also observed 
between PES and PE, PA, and PET. The p values can be seen in Table S8. 
When HONEC values were excluded, there were no data points left for 
PES. 

When it came to shapes, fibers seemed to have higher toxicity than 
spheres and fragments for mass-based toxicity (Figure S5), whereas a 
significant difference was only observed between fibers and fragments 
(p: 0.032 and 0.013 for mass-based and particle-based toxicity, respec-
tively) when HONEC values were included. There were no data points 
left for fibers when HONEC values were excluded. 

It should be noted that some polymer types (e.g., PVC, PA, PES) and 
shapes (e.g., films) were under-represented, and some of the data points 
were completely or mostly lost when HONEC values were excluded. 
Differences are likely to occur as more data is published in the literature. 
Another factor adding uncertainty is the transformation of mass-based 
toxicity into particle-based toxicity, as described above. 

As Fig. 2A shows, there was no clear relationship between particle 
size and toxicity when particle mass was used as the metric. This means 
that, overall, the same mass of smaller particles does not result in greater 
toxicity (and thus smaller NOEC values). When particle number is used 

as the metric (Fig. 2B), a clear relationship between particle number and 
NOEC can be seen, with larger NOECs (and thus less toxicity) at smaller 
particle sizes. Smaller-sized particles have higher particle numbers for 
the same mass. The line in Fig. 2b shows the relationship between 
particle size and particle number, assuming that the toxicity of the 
largest particle in the dataset remains the same and only the particle 
number increases. Particle numbers were calculated by assuming that 
the relative total volume of different-sized MPs was the same as that of 
the largest-sized particle. There was visibly no size effect in the dataset, 
and the trend in the data was caused solely by the increasing number of 
particles. 

4.1. Exposure assessment 

The final dataset for terrestrial exposure assessment included 713 
MECs (Supplementary Information 2, Table SI2). Most of the data (59 %) 
were composed of single measurements with no associated uncertainty, 
and the variability reported was mainly in the form of replicates. 
Measured concentrations ranged between 0 and 410,000 part.kg− 1 

(Fig. 3), with a mean concentration: 9,300 part.kg− 1 (Table 2). 
Globally, urban and industrial soils showed the highest MP 

Table 1 
Statistical analyses of the probability distributions associated with predicted no- 
effect concentrations (PNECs) in soil for particle-based and mass-based evalu-
ation. HONEC: Highest observed no-effect concentration. All values are rounded 
to 2 significant figures.  

Dataset Unit 25th 

quantile 
Mean Median 75th 

quantile 

Including 
HONECs 

part. 
kg− 1 

2,100 3,300 3,200 4,400 

Including 
HONECs 

g.kg− 1 0.082 0.13 0.11 0.16 

Excluding 
HONECs 

part. 
kg− 1 

38,000 82,000 72,000 120,000 

Excluding 
HONECs 

g.kg− 1 0.06 0.08 0.08 0.11  

Fig. 2. Relationships between the particle sizes used in terrestrial toxicity studies and the resulting no-effect concentrations for mass-based (A) and particle-based 
units (B). The line in Fig. 2B is calculated assuming that toxicity remains the same and that just the particle number increases at smaller sizes, keeping the total mass 
the same. Dose descriptors other than HONECs include NOECs and LOECs. Undefined shapes were excluded from the chart. 

Fig. 3. Cumulative probability curves of microplastic concentrations in soils. 
Samples with no detected microplastics are reported as 10-5 part.kg− 1 to keep 
them visible on the logarithmic scale. 
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concentrations, with a mean value: 28,000 part.kg− 1, followed by 
agricultural and natural soils with mean values: 4,400 part.kg− 1 and 
1,400 part.kg− 1, respectively (Table 2). 

The breakdown of urban and industrial soils according to different 
categories can be seen in Figure S6. The results showed that there were 
some variances between sub-categories. The highest data points were 
measured in woodland in an industrial zone in Asia that received 
discharge from many different factories (Zhou et al. 2019). The MP 
levels found in the sub-categories were: industrial zones: 
2,000–410,000 part.kg− 1; construction land: 570–14,000 part.kg− 1; 
recreational spaces: 0.004–12,000 part.kg− 1; residential areas: 
280–19,000 part.kg− 1; wasteland: 1,800–6,400 part.kg− 1; and others 
(vacant land, savanna, pastures, and a site where untreated sewage 
waste was dumped) 0.004–120,000 part.kg− 1. Overall, savanna, 
pasture, and managed pine plantations had considerably lower MP 
concentrations, whereas the greatest concentrations were in the wood-
land in the industrial zone mentioned above. 

The amounts of MPs according to different land uses and regions, and 
the cumulative probability curves of MP concentrations in different 
geographical regions, can be seen in Figures 4 and S1, respectively. Most 
of the data points were for Asia and Europe (631 and 63 values, 
respectively). Asian data came from China, India, South Korea, and 
Pakistan. European concentrations came from Switzerland, Greece, 
Germany, Spain, and the Netherlands. A mere 15 data points came from 
three studies in Latin America (Chile and Mexico), whereas just one 
study with 4 data points was available from Canada, representing all of 
North America. This overall geographical coverage is quite limited, with 
a lack of data from different land use types for different locations, as 
shown in Fig. 4. 

4.2. Risk assessment 

MEC and PNEC distributions were compared for overlap (Fig. 5A). 
The whole PNEC distribution (from minimum PNEC to maximum PNEC) 
overlapped the MEC distribution by 69.9 %. 

Secondly, RCRs were calculated for all soils together (Fig. 5B) and for 
each type of land use and location separately (Table 3, Figure S2, 
Figure S3). Globally, 4.8 % of calculations resulted in an RCR ≥ 1, which 
means a risk existed for a maximum of 4.8 % of cases when all the un-
certainties and locations were taken into account. For the different land 
uses, 12.7 % of the calculations resulted in an RCR ≥ 1 for urban and 
industrial soils, followed by agricultural and natural soils at 2.8 % and 
1.8 %, respectively. Regarding comparisons based on locations, the 
highest expected risk was 5.8 % for the cases in Asia, followed by 0.96 % 
and 0.4 % for Latin America and Europe, respectively. It should be noted 
that the number of data points for Latin America was quite limited, and 
statistical assessment was impossible for North America due to a lack of 

Table 2 
Key figures for measured environmental concentrations in part.kg− 1 reported in 
soils. All values are rounded to 2 significant figures.  

Land use 25th quantile Median Mean 75th quantile 

All 98 930 9,300 2,600 
Urban and industrial soils 1,000 3,600 28,000 8,000 
Natural 60 300 1,400 2,400 
Agricultural 58 440 4,400 1,700  

Fig. 4. Microplastic concentrations according to land uses and continents. Null 
concentrations were represented as 10-5 part.kg− 3 for visibility on the log scale. 

Fig. 5. Terrestrial microplastics risk characterization. A: Worldwide measured 
environmental concentration (MEC) and predicted no-effect concentration 
(PNEC) distributions for terrestrial habitats. B: Probability distribution associ-
ated with the risk characterization ratio. 

Table 3 
Key figures of the risk characterization ratio (RCR) distributions in the terrestrial 
compartment.  

Location 25th 

quantile 
Mean Median 75th 

quantile 
% RCR ≥
1 

World  0.002  0.61  0.013  0.051 4.8 
Urban and 

industrial  
0.014  1.8  0.053  0.19 13 

Natural  < 0.001  0.088  0.006  0.034 1.8 
Agricultural  < 0.001  0.28  0.008  0.030 2.8  
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data. 

5. Discussion 

5.1. Hazard assessment 

Most of the hazard data points were HONEC values, which means 
that in most studies, no toxicity due to MPs was observed, even at the 
highest tested concentration. This shows that soil organisms had an 
overall low sensitivity to MPs, although some specific species may be at 
risk. The inclusion of HONEC values, therefore, constitutes a precau-
tionary assessment as the true NOEC values observed will be higher. This 
is also visible in the PNEC values, which are lower when HONECs are 
included. Removing HONEC values from the SSD reduced the number of 
species affected from 16 to 7. ECHA (2008) recommends the inclusion of 
at least 10 NOEC values from 8 taxonomic groups for freshwater or-
ganisms. There is as yet no clear requirement or recommended number 
of species of soil organisms that should be included in an SSD; however, 
a dataset for calculating the PNEC should preferably be comprised of 
primary producers, consumers, and decomposers (ECHA, 2008). Our 
dataset included species from each group, even when the HONECs were 
excluded. 

The mass-based PNEC distributions remained quite similar whether 
HONECs were included or not, with mean values: 0.13 g.kg− 1, and 0.08 
g.kg− 1, respectively. Kim and Rillig (2022) found a PNEC value: 0.52 g. 
kg− 1 for soil biota. However, there were many methodological differ-
ences between the studies examined (e.g., number of data points 
considered per study, factors used to convert LOECs into NOECs, the 
inclusion of acute data, choices of endpoints). There were also differ-
ences between the sensitivities used in the present paper and those used 
for some of the species in the SSD-like curves in Kim and Rillig’s paper 
(2022). For instance, this study found the most sensitive species to be 
E. fetida, whereas it was at the top of the SSD-like curve in the Kim and 
Rillig study (2022), representing their least sensitive species. Further-
more, the two least sensitive species found in the present study 
(L. terrestris and A. fistulosum) were positioned around the middle of the 
SSD-like curve by Kim and Rillig (2022). These differences could be due 
to the available dataset, choices authors made on which studies to 
include in their datasets as well as the methodological differences listed 
above. 

Toxicity concentrations extracted from the literature were mostly 
mass-based, whereas exposure concentrations were normally reported 
in particle numbers. To enable a comparison of these two datasets and 
the calculation of risk characterization ratios, toxicity concentrations 
were converted into particle-number concentrations. When mass-based 
toxicity values were transformed into particle-based toxicity values, a 
change in the least sensitive species was observed. This was due to the 
small size of the MPs used in the study involving A. fistulosum, i.e., 17.5 
µm (de Souza Machado et al. 2019). Small-sized MPs resulted in higher 
particle-based toxicity values since each particle’s mass was smaller. In 
other words, dividing mass-based NOECeq by volume and density to 
obtain particle-based NOECeq (as stated in Section 2.1) produces higher 
NOECeq values. Bigger particle sizes would result in higher total volumes 
of MPs, which would then be used to divide mass-based toxicity values, 
eventually producing lower particle-based toxicity. 

The generalizations required to compare our data on the sizes and 
shapes of the particles tested led to uncertainties that could not be 
quantified. Many assumptions had to be made as almost none of the 
studies included provided the complete size distributions that would be 
needed for accurate conversions. Using an average particle size or a size 
range can result in inaccuracies in particle numbers, as this metric is 
highly dependent on the actual size distribution. This shows how critical 
the current situation is concerning the availability of a high-quality 
dataset, especially for the particle-based PNEC. One possible approach 
to overcoming this limitation is using probability density functions to 
describe MP size and shape, as proposed by Kooi and Koelmans (2019). 

The debate on which metric best characterizes MP toxicity is 
currently ongoing in the MP-related literature. For marine data, one 
meta-analysis showed the incompatibility of the measured concentration 
units used in the real world and those used in effect studies (Cunning-
ham and Sigwart, 2019). This is similar to the situation with engineered 
nanomaterials, where there remains a gap between predicted environ-
mental concentrations and those used in laboratory studies (Holden 
et al., 2014). Because of engineered nanomaterials’ minuscule size, high 
surface reactivity, and potential for aggregation, some studies have 
indicated that particle number concentrations might be more relevant 
than mass concentrations for describing biological effects (Petersen 
et al., 2015). These characteristics are the same for MPs, resulting in 
some of the same dosimetry challenges previously found for nano-
materials. The size distribution of MPs that tested organisms encounter 
appears to be an important characteristic that should be described in 
ecotoxicity assays, especially considering the very wide range of sizes 
over which they are defined. Moreover, because plastic particles have a 
low density, their weight might be difficult to measure in some envi-
ronmental samples (Weber et al., 2020). Therefore, it seems that particle 
number concentrations might be more appropriate than mass-based 
concentrations when describing MP hazards. Specific tests need to be 
performed to define which metric correlates best with the biological 
effects observed. In the meantime, it is important that toxicity assay 
researchers provide both mass and particle number concentrations, as 
they are more familiar with the materials and can make more accurate 
calculations. Efforts are under way to propose guidelines that will in-
crease dataset comparability, including dose metrics (Cowger et al., 
2020). 

Current data suggest that overall particle type, shape, and size are 
not always the main parameters affecting MP toxicity in soils.This is 
especially true for particle size, where the data do not show any overall 
effects of particle size on toxicity—they notably do not show that small 
sizes are more toxic. Fibers and PA and PES particles may result in 
higher toxicity depending on the dataset considered, as stated earlier. It 
should be noted that there were very few data points for some types or 
shapes (e.g., PA or films) of MPs. Kim and Rillig (2022) used an effect 
distribution dependent on the type and shape of MP, and they consid-
ered the proportion of significant effects in soil by evaluating it with an 
SSD-like curve. Even though there were differences between the meth-
odological approaches and the data sets, as described above, the results 
are partially similar. They found that MP fibers and films had larger 
effects than other shapes and suggested that toxicity decreased from PVC 
(highest) to LDPE, PES, PE, PA, PS, HDPE, PAN, and finally, PP. Kim and 
Rillig (2022) also assessed whether there was an effect based on the MP 
size tested, and they stated that significant effects mainly occurred with 
particles ranging from 102–105 µm. 

The PNEC values reported here could serve as the starting point for a 
risk assessment, but they may very likely need to be adapted in the near 
future as more data are published. However, these values could then 
shift lower if very sensitive organisms were tested, or perhaps higher 
should chronic EC10 or NOEC values be published, because these will 
require only a small assessment factor to obtain the PNEC, which will 
therefore be higher than when obtained using acute tests. 

5.2. Exposure assessment 

Urban and industrial soils had the highest MP concentrations (me-
dian: 3,600 part.kg− 1), ahead of agricultural (median: 440 part.kg− 1) 
and natural soils (median: 300 part.kg− 1). The exposure assessment 
clearly showed the influence of anthropogenic activities on MP levels in 
soils. Agricultural soils showed higher values than natural soils, and it is 
well known that many agricultural applications result in MP contami-
nation, such as sewage sludge application or the use of plastic mulch 
(Huang et al., 2020). However, there were only a limited number of 
studies providing complete information on agricultural applications; 
thus, no comparisons could be made based on specific application types. 
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Natural soils showed the lowest MP concentrations. Even though the 
sampling points furthest away from any human impacts were grouped in 
this category, it was hard to find information regarding their use his-
tories or descriptions of their surroundings. For instance, a data point 
may be considered natural, but the sample may have been taken from 
natural soil next to a road or a recreational space, which might actually 
represent more urban or industrial-type soils. Samples taken from ri-
parian forests formerly used as cropland showed very high levels of MPs 
(Zhang and Liu, 2018). The lowest levels were found in a forest sample 
from South Korea (Choi et al. 2021) and floodplain soil samples from 
Switzerland (Scheurer & Bigalke 2018), followed by a tropical rainforest 
and an unmanaged pine plantation in Mexico (Álvarez-Lopeztello et al., 
2021). 

Another issue is that the geographical distribution of the studies 
included was far from ideal, with large differences in the types of soil 
studied in different regions. Not all land-use types were reported for 
every different location, so a robust geographical comparison was 
impossible. For instance, urban and industrial soil data were limited to 
Asia and Latin America, whereas there were no data points reported for 
urban and industrial soils in Europe, and only agricultural soil data was 
available for North America. 

Another point deserving consideration was the extraction process 
used to remove MPs from soils in the different studies. Before the 
identification and quantification of MPs in soils, samples must undergo 
1) a digestion step to remove organic matter, 2) a flotation step to extract 
MPs from the soil matrix, and 3) a filtration step to isolate MPs from the 
rest of the sample. Since there are no standardized methodologies for the 
quantification of MPs in soil samples, the different methods for 
extracting MPs from soil samples in the literature could cause un-
certainties about the levels of MPs reported. Different methods have 
different limits of detection, which could considerably affect the con-
centrations described. 

5.3. Risk comparison 

The risks to terrestrial systems found in our study were all higher 
than those for marine systems (Adam et al., 2018) and freshwaters 
(Adam et al., 2020). The comparison of mean values for PNEC and MEC, 
as well as RCR percentages higher than 1, are all shown in Table 4. 

These results suggest that MPs in soil pose a higher risk than MPs in 
freshwater and marine water. The mean PNEC calculated for soil is much 
higher than those for marine water and freshwater, however, MEC 
values were also much higher in soil ecosystems. Even though soil or-
ganisms may seem more resistant to MPs, based on PNEC values, they 
are much more likely to be exposed to greater amounts of MPs, which 
results in higher risks, as shown in Table 4. The proportion of RCRs 
greater than one is 40 times higher for soil ecosystems than for fresh-
water ones, and 240,000 times higher than for marine ecosystems. It 
should be noted, however, that potential methodological differences in 
MP determination in aquatic and soil ecosystem exposure studies and 
the limited data may result in some uncertainties. Another factor 
affecting risk assessment is the dataset’s distribution of maximum MEC 
values. Differences in RCR calculations may occur depending on 
whether the maximum MEC is reported as a single value or a normally 
distributed value since iterations are made to build up an exposure 

distribution. 
Jacques and Prosser (2021) also showed that MPs might pose a risk 

to terrestrial ecosystems. The 5th percentiles of their SSDs ranged be-
tween 162–4824 part.kg− 1, depending on whether NOEC or LOEC 
values were used and whether the lowest or the geometrical mean of the 
NOEC and LOEC values were used. These methodological differences 
preclude very robust comparisons. Their results showed that from 7 % to 
28 % of species might be impacted by MPs 5 % of the time, representing 
a risk to soil ecosystems in line with the present study’s results. By 
comparing the PNEC and exposure concentration values calculated in 
selected literature, Kim and Rillig (2022) also concluded that MPs could 
be expected to affect some agricultural and industrial zones. 

5.4. Dataset comparability 

The characterizations of the MPs used in hazard studies were 
compared with the MPs found in environmental samples in Fig. 6. 
Regarding MP shapes, fragments comprised 71 % of the ecotoxicity data 
points in hazard tests. This was generally due to plastics being milled in 
liquid nitrogen to obtain smaller MP particles for hazard studies. How-
ever, only 39 % of the samples reported fragments in their exposure 
assessments. On the contrary, fibers were under-represented in ecotox-
icity assays, constituting 11 % of this dataset, whereas they represented 
30 % of the MPs observed in soils. Similarly, films constituted 24 % of 
the MPs characterized in samples, whereas they were only used in one 
ecotoxicity study. This evaluation is hampered by different definitions of 
what constitutes a fragment in toxicity studies and monitoring studies. 

Most of the ecotoxicity data points considered for risk calculations 
represent the effects of polyethylene (PE), followed by polypropylene 
(PP), polyester (PES), and polystyrene (PS). The share of PS and PES in 
ecotoxicity studies is comparably high, whereas PE’s share is lower by 7 
%. None of the hazard data points included the effects of weathered or 
aged MPs, actions that could enhance their toxicity (Luo et al., 2022). To 
ensure greater representativity of real-world environmental scenarios, 
scientists are encouraged to use fibers, films, and PE MPs more 
frequently, as well as consider the effects of additives and effects. 

Still, the hazard dataset in this study was much more representative 
of the actual MP exposure in soils compared to the datasets for the 
marine environment (Adam et al., 2020); with gaps calculated at 49 %, 
14 %, and 27 % for PS, PE, and PP usage, respectively. The same applied 
for the MP shapes used in the marine risk assessment: 78 % of the hazard 
studies used spheres, contradicting the 56 % of shapes found to be fibers 
in the exposure dataset (Adam et al., 2020). 

A detailed evaluation comparing MP particle sizes in hazard and 
monitoring studies can be seen in Table S9: 45 % of the data points used 
in our hazard assessment were based on MP particles from 150 to 500 
µm, followed by 27 % for 50–150 µm, 13 % for < 50 µm, and 11 % for 
500–1000 µm, respectively. <4 % of data points were based on particles 
greater than 1 mm in size. Most of the studies reported in the exposure 
dataset examined particles smaller than 1000 µm. For the studies that 
reported particle sizes smaller than 500 µm, most of them reported 
higher MP abundances for this range than particle sizes higher than 500 
µm. Also, studies reporting MP particle sizes smaller than 50 µm 
generally had higher shares (between 13 and 49 %) than those in hazard 
studies (7 %). Exposure and hazard datasets had some similarities, 

Table 4 
Comparison of risk in different ecosystems. Soil and marine water data exclude HONEC values, whereas they are included in the freshwater assessment. The PNEC and 
MEC values for freshwater and marine water have been transformed into part.kg− 1 to make their results comparable with soil data. Calculations use a density of 1036 
kg/m3 for marine water (Pawlowicz, 2013) and 1000 kg/m3 for freshwater. The MEC data for freshwater represents mean values for the regions.   

PNEC MEC Risk characterization Ratios ≥ 1 Reference 

Soil 82,000 part.kg− 1 9,300 part.kg− 1  4.8 % This study 
Freshwater 950 part.kg− 1 0.014–19 part.kg− 1  0.12 % Adam et al. (2018) 
Marine 3,700 part.kg− 1 1.4 part.kg− 1  0.00002 % Adam et al. (2020)  
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nevertheless (e.g., share of MPs greater than 1 mm), but showed more 
discrepancies when examinations became more detailed (e.g., share of 
MPs < 50 µm). 

6. Conclusions 

With the current state of knowledge, the probabilistic risk assessment 
performed in this study showed that we could not exclude the proba-
bility that microplastics (MPs) in soils pose a risk to these environments, 
especially urban and industrial soils, where measured concentrations 
were the highest. This assessment could have been more accurate if the 
MPs tested in biological assays were more representative of those 
characterized in real-world environmental samples, especially regarding 
their shape and polymer composition. Moreover, uncertainties could be 

minimized if toxicity studies also reported particle-based concentrations 
or gave more detailed information (e.g., density, volume) on the MPs 
used in the experiments. 

It should be noted that this work’s risk assessments represented a 
first step towards a full environmental risk assessment for MPs in soils. 
As discussed above, both our exposure and hazard datasets had limita-
tions, and a new risk assessment should be performed when more data is 
available. However, as answers about the potential risks of MPs in the 
environment are urgently needed, it is of paramount importance to 
assess the available data in the light of requirements for robust envi-
ronmental risk assessment procedures. 

Fig. 6. Properties of the microplastics observed in soils and tested in ecotoxicity assays. A: Comparison of shapes. B: Comparison of polymer types. PA, Polyamide; 
PE, Polyethylene; *PES (PET + polyester); PP, Polypropylene; PS, Polystyrene; PVC, Polyvinylchloride. 
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