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Abstract 19 

Ambient air pollution of fine particulate matter with diameters less than 2.5 μm (PM2.5) is associated 20 

with millions of premature deaths per year, recognized as a leading global health concern. The dose-21 

response relation between ambient PM2.5 exposure and mortality risk is the most fundamental 22 

information for assessments of the health effects of PM2.5. The existing dose-response relations were 23 

generally developed based on the assumption of equal contribution to toxicity from various sources. 24 

However, the sources of PM2.5 may significantly influence health effects. In this study, we conducted 25 

an ecological study to investigate the global long-term correlation between Source-specific PM2.5 26 

Exposure and Cause-specific Mortality risk (SPECM) based on the regional aggregate data of the 27 

publically available official health databases from 528 regions worldwide with a total registered 28 

population of 3.2 billion. The results provided preliminary epidemiological evidence for differing 29 

chronic health effects across various sources. The relative mortality risks of lung cancer and circulatory 30 

diseases were closely correlated with the primary emissions from industrial and residential combustion 31 

sources. Chronic lower respiratory diseases were mostly associated with the mass concentration of 32 

particulate matter.  33 

 34 

Keywords: Fine particulate matter, dose-response relation, source apportionment, mortality risk. 35 

 36 

Synopsis: The study investigated the health impacts of PM2.5 from different sources, raising the 37 

question that whether the current standards based on total PM2.5 are adequate to protect public health 38 

and welfare. 39 

  40 
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1 Introduction 45 

Exposure to ambient fine particulate matter with aerodynamic diameters less than 2.5 μm (PM2.5) is 46 

associated with many health impacts and is recognized as a leading global health concern 1, 2. The 47 

relation between long-term exposure to ambient PM2.5 and mortality risk is fundamental information 48 

for understanding the health impacts and setting air quality standards 3.  49 

 50 

Strong efforts have been devoted to identifying the exposure-response relation over the entire range of 51 

global PM2.5 concentrations, from the “Harvard Six Cities” study 4, 5 and the following American 52 

Cancer Society (ACS) study 6-8 beginning in the 1990s for relatively low concentrations in the United 53 

States, to the recent Integrated Exposure-Response model (IER) 3 and Global Exposure Mortality 54 

Model (GEMM) 9 covering most of the global PM2.5 exposure levels. The overall image of the PM2.5-55 

related global disease burden became clearer 1, but still not definitive, with a substantial difference 56 

among the estimates of PM2.5-related mortality by different models, e.g. about 8.9 million premature 57 

mortality globally estimated by GEMM and about 4 million estimated by IER 9. The uncertainties of 58 

the existing exposure-response relations are still high due to many factors, e.g. the insufficient 59 

geographical coverage of the available cohort studies, uncertainties in exposure measurement, 60 

differences in disease diagnosis, and distinct parameters adopted in documentation. 61 

 62 

The current exposure-response relations generally assumed equal contribution to toxicity from various 63 

PM2.5 components, independent of sources or composition 3, but more and more studies have suggested 64 

that sources or composition of particles may significantly influence their health effects 10-15. Various 65 

studies 12-14, 16-19, e.g. the U.S. National Particle Component Toxicity (NPACT) initiative 12, attempted 66 

to evaluate the toxicities of the components from different sources. Some regional panel or cohort 67 

studies have indicated that anthropogenic primary particles, e.g. particles from coal and oil combustion 68 

and traffic sources or elemental carbon, might be strongly responsible for the adverse health effects 12-69 
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14, 16-18, but some other studies found a secondary sulfate source might have a greater impact than other 70 

components on respiratory symptoms 19. The existing studies are ambiguous and lack sufficient 71 

geographical coverage or analyses of cause-specific outcomes 14. A clear “hierarchy” of the 72 

harmfulness of particulate matter from different sources remains unknown at present 20.  73 

 74 

Individual-based and ecological studies are the two basic strategies in epidemiology to investigate the 75 

association between exposure and disease respectively at individual and group levels 21. At the 76 

individual level, it becomes much more challenging to evaluate reliable source-specific health effects 77 

than those due to total PM2.5 exposure because cohort studies usually have limited variation in exposure, 78 

which reduces the power to detect the dependence of response on the exposure level. The errors in the 79 

exposure assessment would generally bias the associations toward the null at the individual level 21. 80 

Ecological studies investigate the association between disease rates and the average exposure in groups 81 

of individuals 22. The aggregate measures (e.g. means and proportions) of groups are utilized in 82 

ecological studies, so it becomes practical to collect the data across a wide range of populations and 83 

regions, enhancing the variation in exposure between groups. The exposure measurement error could 84 

be alleviated by aggregate data, which improves the detectability of the response due to exposure 21. 85 

There exist wide discussions about the limitations of ecological studies 23, including ecological bias, 86 

which suggests that ecological effect is unable to reflect biological effects at the individual level, 87 

problems of confounder control, and temporal ambiguity. However, each methodology has advantages 88 

and disadvantages, so a hybrid strategy, namely “multilevel analytic design” at both group and 89 

individual levels, was proposed 21. As a result, the ecological studies could be utilized as a preliminary 90 

step toward consistent source-specific PM2.5 exposure and response relations at the group and 91 

individual levels.  92 

 93 

In this study, we conducted an ecological study to preliminarily investigate the correlation between 94 
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long-term source-specific PM2.5 exposure and cause-specific mortality risk relations for the major 95 

PM2.5 sources and the main types of diseases related to fine particulate matter air pollution. We utilized 96 

the mortality data from 528 regions worldwide, the state-of-the-art PM2.5 exposure assessments, and 97 

the source apportionment for the primary PM2.5 from the major types of sources. A multipollutant and 98 

multi-factor statistical model was adopted to analyze the PM2.5 exposure and mortality risk relation. 99 

The results provided preliminary epidemiological evidence for differing chronic health effects across 100 

various sources. 101 

 102 

2 Data and methods 103 

2.1 Cause-specific mortality data 104 

The cause-specific mortality data were from 528 regions worldwide (Figure 1a) with a total registered 105 

population of 3.2 billion and compliant with the 10th version of the International Statistical 106 

Classification of Diseases and Related Health Problems (ICD-10). There were 247 regions from 107 

Europe, 78 regions from Asia and Oceania, 64 regions from Northern America, 98 regions from South 108 

America, and 41 regions from other areas. The boundaries of the regions are shown in Figure 1a. The 109 

mortality data were mostly between 2013 and 2016. Temporally averaged data among the available 110 

years were utilized in the analysis. Detailed information about the databases can be found in Section 111 

S1 and Tables S1 to S5 in the Supporting Information (SI). 112 

 113 

Three main types of air pollution-related diseases were investigated: lung cancer (LC, ICD-10: C33-114 

C34), diseases of the circulatory system (ICD-10: I00-I99), and chronic lower respiratory diseases 115 

(chronic LR, ICD-10: J40-J47). The data for lung cancer from India was excluded from the analysis 116 

due to their extremely low mortality rates, which were considered outliers. Due to the missing mortality 117 

data in some areas, the data from 501, 522, and 498 regions were respectively included for the effects 118 

of total ambient PM2.5 on mortality risk of lung cancer, circulatory diseases, and chronic lower 119 

respiratory diseases. For the source-specific analysis, we further excluded the data from 31 regions 120 
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with total anthropogenic primary contributions higher than the total PM2.5 concentrations, which could 121 

be caused by errors in the emission inventory. 122 

 123 

Figure 1 Regions included in the analysis, the locations with the source apportionment based on 124 

receptor models (yellow dots), and the comparisons between the source-oriented source apportionment 125 

and receptor-model studies: (a) the color indicated the dominant sector of the primary PM2.5 emission: 126 

agriculture emissions (AGS), energy production (ENE), industrial emissions (IND), residential 127 

combustion (RCO) and traffic emissions (TRO); (b) comparison between the satellite-derived total 128 

PM2.5 concentrations adopted in this study and the ground measurements from the receptor-model 129 

studies; (c) secondary aerosols and other sources; (d) primary contributions of industry, residential 130 

combustion and traffic emissions, (e) primary contributions of industry and residential combustion, (f) 131 

primary contribution of traffic emission. The solid line was a 1:1 ratio line, and the dashed lines were 132 

1:3 (or 3:1) ratio lines. 133 

 134 

The quality of the cause-specific mortality database based on death certificates is usually evaluated 135 

through systematic reviews of hospital medical charts by an expert panel, which is considered to be a 136 

“gold standard” 24. The numbers of deaths caused by diseases of the circulatory system (ICD-10: I00-137 
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I99) and chronic lower respiratory diseases (ICD-10: J40-J47) were respectively changed from 69 to 138 

68 and from 16 to 13 after the experts’ review based on a sample of 300 deaths in Hermosillo, Mexico 139 

24. An evaluation study based on a sample of 266 cases from the Dutch-Belgian lung cancer screening 140 

trial indicated that the number of deaths caused by lung cancer (ICD-10: C33-C34) recorded by death 141 

certificates was changed from 229 to 22725. It was shown that the differences between the death 142 

certificates and the outcome of experts’ review were relatively small for the number of cause-specific 143 

mortality at chapter and block levels of ICD-10 24, 25. It should be noted that the relatively small 144 

differences were only for aggregate numbers by considering both the false positive and negative cases 145 

which were mutually complementary. The number of misclassifications would be higher at individual 146 

levels. 147 

 148 

It becomes impossible to evaluate the whole database by expert review due to the extremely large 149 

number of records. Only aggregate parameters are utilized in ecological studies. We utilized the 150 

standard ascertainment of causes of mortality for major and common types of diseases at the chapter 151 

(I00-I99) and block (C33-C34 and J40-J47) levels of ICD-10 to minimize potential biases. Based on 152 

the extremely large number of records in the database, it is reasonable to assume that the possible 153 

biases in the statistics of ICD-10 at chapter and block levels are relatively small.  154 

 155 

2.2 Source-specific exposure assessment 156 

The ground level total PM2.5 concentrations were provided by the Global Annual PM2.5 Grids from 157 

MODIS, MISR, and SeaWiFS Aerosol Optical Depth (AOD) with Geographically Weighted 158 

Regression (GWR), version 4, with a resolution of 0.01 by 0.01 degrees 26, 27. We utilized the long-159 

term exposure quantified in terms of annual average exposure concentrations. The effects of temporary 160 

cloud cover on the satellite-based PM2.5 estimates should be limited considering the long-term average. 161 

We also calculated the population-weighted spatial average of the annual mean concentrations for the 162 

regions, which minimized the influence of the highly reflective background, e.g. snow and desert, 163 
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where the population was sparse. We also utilized another three datasets for total PM2.5 to conduct the 164 

sensitivity tests as shown in Table S6 in SI. More details about the PM2.5 datasets are available in 165 

Section S2 in SI. The surface NO2 and O3 concentrations as shown in Figures S1 and S2 were 166 

considered as confounders of the effects of PM2.5, as introduced in Section S3.  167 

 168 

Atmospheric model and emission inventories were adopted to evaluate the primary PM2.5 169 

concentrations from the five major sectors, i.e. industry (IND), residential combustion (RCO), power 170 

generation (ENE), traffic (TRO), and agriculture (AGS)28-32. We combined the three widely used and 171 

extensively validated emission inventories, i.e. the primary emission inventory of Multi-resolution 172 

Emission Inventory for China (MEIC) Version 1.333-35 averaged between 2012 and 2015 with a spatial 173 

resolution of 0.25 by 0.25 degrees for China, the mosaic Asian anthropogenic emission inventory (MIX) 174 

36 of 2010 with a spatial resolution of 0.25 by 0.25 degrees for the other Asian regions, and Emission 175 

Database for Global Atmospheric Research (EDGAR) Version 5.0 37 averaged between 2012 and 2015 176 

with a spatial resolution of 0.1 by 0.1 degrees for the other regions of the world. The detailed categories 177 

of sectors in EDGAR were combined according to the definition of the major sectors in MEIC and 178 

MIX to make them consistent. The grouping information was provided in Table S7. Temporally 179 

averaged data among the available years were utilized in the analysis. All the emission inventories 180 

were linearly interpolated onto the grid of the air quality model. 181 

 182 

Estimations of the secondary aerosols usually dominate uncertainties in air quality models due to the 183 

limited understanding of complicated chemical mechanisms in the actual atmosphere. In this study, we 184 

only calculated the dispersion of primary anthropogenic PM2.5, which was mainly driven by the 185 

physical processes. The PM2.5 concentrations caused by secondary aerosols and other unidentified 186 

sources (SA+Others) were estimated as the difference between the total PM2.5 concentrations and the 187 

estimated primary anthropogenic contributions.  188 
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 189 

The dispersion of primary anthropogenic PM2.5 emissions was simulated using the Eulerian chemistry-190 

transport model POLAIR 3D (version 1.10) in the POLYPHEMUS platform 38. Details about the model 191 

can be found in Section S4. We have successfully applied the model to reproduce the dispersion 192 

processes in the first European Tracer Experiment (ETEX) 39 and the Kincaid power plant tracer 193 

experiment 40. The horizontal resolution was 0.2 by 0.2 degrees for the regions with mortality data, 194 

and 1.0 by 1.0 degree for the other regions. There were 11 vertical levels from the surface to 4000 195 

meters altitude, which included the boundary layer with significant mixing41. The time step was 5 196 

minutes, and the utilized simulation period was 365 days starting from 00:00 UTC, January 1, 2015, 197 

which covered the whole year of 2015. Calculations of the two weeks before the utilized period were 198 

conducted for the spin-up of the model. The model was driven by the meteorological data from the 5th 199 

generation reanalysis product (ERA5) of the European Center for Medium-Range Weather Forecasts 200 

(ECMWF), with a temporal resolution of 1 hour and a horizontal resolution of 0.25 by 0.25 degrees. 201 

The meteorological data were linearly interpolated onto the grid of the air quality model. The results 202 

of the source-specific exposure assessments were shown in Figures S3 to S13 in SI.  203 

 204 

To evaluate the quality of the source-specific exposure assessments, we compared the source-oriented 205 

source apportionment results based on the emission inventories and air quality model with the results 206 

from 35 studies using receptor models worldwide in the literature, which utilized the measurements of 207 

chemical species of PM2.5 and mathematical analyses, e.g. the positive matrix factorization (PMF), 208 

chemical mass balance (CMB), or principal component analysis (PCA) to distinguish the contributions 209 

from different sources 42, 43. We also compared the total PM2.5 concentrations derived from satellite 210 

data and the ground measurements from the receptor-model studies. The locations of the source 211 

apportionment studies based on receptor models are shown in Figure 1a. The results of the dispersion 212 

model at the grid cells, where the observation sites of the source apportionment studies were located, 213 
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were adopted to compare with the results of the receptor model. Details about the receptor model 214 

studies can be found in Section S5. It should be noted that the dominant sources in different regions 215 

shown in Figure 1a only suggested the relative importance of the sources within each region. It does 216 

not necessarily mean that the dominant source induced higher absolute PM2.5 concentrations than those 217 

in other regions.  218 

 219 

Statistical metrics of correlation coefficient (r), mean fractional bias (MFB) and mean fractional error 220 

(MFE) were calculated for the comparisons. MFB and MFE were calculated as follows: 221 

 
1
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N C C=

−
=

+∑ ,  (1) 222 
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N C C=

−
=

+∑   (2) 223 

where Csource and Creceptor were respectively the results from the source-oriented models in this study 224 

and the receptor models in the literature. U.S. EPA suggested that the criteria for the performance of 225 

PM2.5 models were within ±0.60 for MFB and less than 0.75 for MFE 44.  226 

 227 

All the source apportionment results from the source-oriented model except the traffic contributions 228 

had good agreement with the receptor-model studies and satisfied the U.S. EPA criteria, as shown in 229 

Figure 1b to Figure 1f. The source-oriented results were able to depict the overall trend of the traffic 230 

contributions to distinguish the high exposure areas from the low exposure areas, but they were 231 

underestimated compared to the receptor-model studies, which could be caused by the relatively large 232 

size of the grids (0.2 by 0.2 degrees) with assumed homogeneous concentrations within them. The lack 233 

of receptors in Africa and Australia might increase the uncertainties in the estimates, but the influence 234 

should be limited considering that there were only 9 regions in South Africa and 8 regions in Australia, 235 

and the regions were mainly at the low exposure level, which was dominated by the 247 regions in 236 
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Europe in the current dataset. 237 

 238 

It should be noted that biomass burning is an important contributor to PM2.5 exposure. In the current 239 

study, the emission due to the combustion of solid biomass (wood products and residues) for household 240 

heating and cooking purposes was included in the sector of “energy for buildings” in the EDGAR 241 

emission inventory 45, and we classified the emissions as a part of residential combustion. The emission 242 

from field burning of agricultural residues in cropland was included in the EDGAR emission inventory 243 

as “agricultural waste burning” and was considered as agriculture emission in the current study. 244 

Biomass burning emissions from large-scale biomass burning with Savannah burning and forest fires 245 

were not included in the EDAGR emission inventory, so they were not explicitly considered in the 246 

current study. 247 

 248 

2.3 Statistical analysis 249 

Consistent with the previous studies in the literature 3, 9, the statistical models in the current study were 250 

based on the following underlying assumptions: 251 

 Exposure to PM2.5 or source-specific PM2.5 is associated with increased mortality due to lung 252 

cancer, circulatory diseases, and chronic lower respiratory diseases based on the studies on the 253 

health effects of PM2.5 in the literature 3, 7, 9. 254 

 The relative risk (RR) of mortality induced by the contributions from different sources and other 255 

confounders were assumed to be independent of each other without interaction terms in the 256 

statistical models. A similar assumption was utilized in the development of the IER model by using 257 

different types of exposure, i.e. ambient air pollution, secondhand tobacco smoke, household solid 258 

cooking fuel, and active smoking. 259 

 The total PM2.5 or source-specific RRs were assumed to be functions of the corresponding total or 260 

source-specific PM2.5 mass exposure.  261 

 The relations between PM2.5 or source-specific PM2.5 exposure and the RRs of cause-specific 262 
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mortality were not necessarily restricted to linear functions.  263 

 The RRs of cause-specific mortality induced by ambient PM2.5 or source-specific PM2.5 are 264 

functions of long-term exposure quantified in terms of annual average exposure concentrations, 265 

and they do not depend on the temporal pattern of exposure.  266 

 There is no statistically significant difference among the health effects of PM2.5 exposure on the 267 

RRs of cause-specific mortality induced by ambient PM2.5 or source-specific PM2.5 for different 268 

races and ethnicities. The assumption is based on the recent study on PM2.5-induced heart disease 269 

mortality risks by race and ethnicity in the United States 46, and it is further supported by the 270 

continental analysis and fix effects model accounting for the potential effects of ethnic groups in 271 

Section 3.2 of the current study. 272 

 273 

A multipollutant (PM2.5, Ozone, and NO2) and multi-factor (demographic structure, gross domestic 274 

product, annual mean temperature, obesity indices, and prevalence of tobacco smoking) model based 275 

on negative binomial generalized additive models (GAM)47 was adopted to analyze the PM2.5 exposure 276 

and mortality risk relation. Cubic regression splines were chosen as the basis function, and the 277 

smoothing parameters (degree of freedoms) were estimated by generalized cross-validation scores 278 

(GCV). The associations between the relative risk (RR) of mortality and the total ambient PM2.5 279 

exposure were first constructed to compare with the existing dose-response relations. Then, we 280 

examined the mortality risk caused by the source-specific particulate matter. 281 

 282 

The total PM2.5 model (referred to as SPECM-PM2.5 hereafter) can be specified as 283 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 1 2 3

4 5 6 7 8

log

+

f f f

f f f f f

β= + + +

+ + + + +

2.5 3 2

avg

Mortality PM O NO

T GDP GE65 BMI30 SMK ε
  (3), 284 

where Mortality was the vector of the number of deaths per 1 million population for the regions, with 285 

the size of n×1, where n is the number of the regions; PM2.5, O3, and NO2 were the vectors of 286 
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population-weighted spatial average of the annual mean concentrations for the regions; Tavg was the 287 

vector of population-weighted spatial average of the annual mean temperature; GDP was the GDP per 288 

capita, which has been converted into international dollars; GE65 was the fraction of senior population 289 

(>65 years old); BMI30 was the prevalence of obesity among the population over 30 years old; SMK 290 

was the prevalence of smoking; β0 was the scalar of intercept; ε is the vector of residual errors. fi 291 

represented the smoothing function. The same type of cubic regression splines with 8 knots was used 292 

for all the smooth terms (f) except BMI30 and SMK, which utilized linear relation due to the relatively 293 

low data resolution, only available at the country level. Detailed information about the databases for 294 

demographics, GDP, obesity, and smoking are available in Table S2 and Table S8. 295 

 296 

The source-specific PM2.5 model (referred to as SPECM hereafter) can be specified as 297 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 1 2 3

4 5 6 7

8 9 10 11 12

log f f f

f f f f

f f f f f

β= + + +

+ + + +

+ + + + + +

3 2

avg

Mortality SA &Others IND & RCO ENE

TRO AGS O NO

T GDP GE65 BMI30 SMK ε

  (4) 298 

where IND, RCO, ENE, TRO, AGS, and SA&Others are the population-weighted spatial average of 299 

the annual mean PM2.5 concentrations for the regions attributable to the corresponding sources. The 300 

aggregate data of each region were utilized in the ecological study. IND and RCO were combined due 301 

to their high correlation (as high as 0.63 between IND and RCO) at the regional level. The other terms 302 

were the same as those in Equation (3). The same type of cubic regression splines with 8 knots was 303 

utilized, but the coefficients of the splines were recalculated, which were close to, but not exactly the 304 

same as those in Equation (3). The correlations among the different air pollutants in the statistical 305 

model were shown in Figures S14 to S28. 306 

 307 

For the total PM2.5 model (Equation (3)), the relative risks for the three types of diseases were 308 

calculated as the ratio of the risk at a certain concentration to the risk at 10 μg·m-3, which is the former 309 

WHO guideline value for the annual mean PM2.5 concentration. In GEMM and IER, the relative risk 310 
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was originally calculated using the risk at the counterfactual concentration (2.4 μg·m-3) as the reference, 311 

but we recalculated the RR at a reference concentration of 10 μg·m-3 using GEMM and IER model RR 312 

to shift the curves to facilitate the comparison with the current study, which showed a positive 313 

correlation with PM2.5 concentrations mainly above 10 μg·m-3.  314 

 315 

For the source-specific PM2.5 model (Equation(4)), the relative risk induced by the PM2.5 attributable 316 

to SA+Others was calculated as the ratio of the risk at a certain concentration to the risk at 2.4 μg·m-317 

3, the same as GEMM and IER models. The minimum primary PM2.5 concentrations from the 318 

anthropogenic sources were all below 0.01 μg·m-3, so the relative risks due to the primary PM2.5 from 319 

anthropogenic sources were calculated using the risk at 0.01 μg·m-3 as the reference. 320 

 321 

In order to evaluate the influence of the potential effects of regional factors, e.g. ethnic groups and 322 

inconsistent PM compositions of the sources, the data were classified into 7 different groups, i.e. 323 

Australia, East Asia, Europe, India, Latin America, North America, and South Africa (Groups 1 to 7), 324 

which have more homogeneous ethnicity within each group than the classification in the global model. 325 

A fixed effects model was developed by extending the statistical model (Equation(4)) to include the 326 

group-specific effects as 327 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 1 2 3

4 5 6 7

8 9 10 11 12

log f f f

f f f f

f f f f f

β= + + +

+ + + +

+ + + + +

+ ⋅ +

3 2

avg

Mortality SA &Others IND & RCO ENE

TRO AGS O NO

T GDP GE65 BMI30 SMK

Dummies Eff ε

  (5), 328 

where Dummies is the matrix with the size of n×m for the dummy variables, n is the number of the 329 

regions, m is the number of classified groups, namely 7 for the current study. Each row of Dummies, 330 

e.g. [0 1 0 0 0 0 0], contains only 0 and 1, with 1 representing the group which the region belongs to. 331 

For example, [0 1 0 0 0 0 0] indicates that the region belongs to the second group, which is East Asia. 332 

Eff is the vector of the coefficients for the dummy variables, representing the group-specific effects, 333 
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e.g. the background disease prevalence in different groups. The fixed effects model was utilized to 334 

account for the potential effects of ethnic groups. 335 

 336 

The avoided or excess mortality attributable to ambient PM2.5 exposure was evaluated based on both 337 

the existing dose-response relations in the literature and the developed relations in this study. The 338 

avoided mortality depended on the allocation of the total reduction of PM2.5 into the five sources. The 339 

same fractional reduction for all the sources was assumed when the target exposure levels were higher 340 

than 10 μg·m-3, and the primary anthropogenic PM was reduced more strongly (as low as zero) than 341 

the secondary PM for the target exposure levels between 2.4 and 10 μg·m-3. The detailed methods were 342 

explained in Section S6 in SI. 343 

 344 

3 Results 345 

3.1 Relative risk for total ambient PM2.5 346 

The developed relative risks for total ambient PM2.5 from the ecological study were consistent with 347 

the most recent Global Exposure Mortality Model (GEMM) 9, which was developed based on the 348 

individual-based cohort studies with PM2.5 exposure up to 84 μg·m-3, but much higher than the 349 

Integrated Exposure-Response model (IER) 3, as shown in Figure 2. The upper boundaries of the 350 

relative risks in Figure 2 suggested that PM2.5 exposure had the strongest effects on chronic lower 351 

respiratory diseases and the weakest effects on lung cancer. In the current study, nonparametric 352 

smoothed exposure-response relations were utilized due to the wide range of the exposure. The relation 353 

was nonlinear. We reported the maximum attributable relative risk and the corresponding exposure 354 

concentrations in Figure 2. 355 
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 356 

Figure 2 Associations between the relative risk of mortality and annual mean ambient PM2.5 357 

concentration estimated in this study (red lines), with a 95% confidence interval (shaded area), for 358 

three diseases: (a) lung cancer, (b) circulatory diseases, and (c) chronic lower respiratory diseases. The 359 

bars indicated the total population at the corresponding exposure levels. The risk at 10 μg·m-3 (dashed 360 

lines) was utilized as the reference value. The relations were compared with previously developed 361 

models: Global Exposure Mortality Model (GEMM) 9 and Integrated Exposure-Response model (IER) 362 
3. The relative risks for ischemic heart disease (IHD, age>25) and lower respiratory infections (LRIs) 363 

in GEMM and IER models were selected respectively for the comparisons with the risks of circulatory 364 

diseases and chronic lower respiratory diseases in our study. The maximum relative risks (RRs) 365 

attributable to different sources were shown. The value after ‘@’ was the population-weighted annual 366 

mean concentration corresponding to the maximum RR, and the units were μg·m-3. The RRs were only 367 

shown for the statistically significant results. 368 

 369 

The differences between the current study and the GEMM/IER models might be caused by the larger 370 

amount of data for high exposure levels (above 60 μg·m-3) in this study, including 24 regions in 371 

Mainland China and 21 regions in India (Table S2). In contrast, the IER model 3 utilized exposure to 372 

indoor sources to estimate the dose-response relation at high exposure levels, and the GEMM model 9 373 

extended the relation up to 84 μg m-3 by including one cohort study in China. 374 
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As shown in Figure 2, the relative risk increased with the PM2.5 concentration above about 10 μg·m-3. 376 

However, the opposite trends were observed for lung cancer and circulatory diseases below 10 μg·m-377 

3. A similar V-shaped pattern was also observed in the cohort study in Canada for the low exposure 378 

level 48. The phenomena might be caused by the representativeness of the exposure assessment for 379 

low-exposure areas and the composition of the particulate matter. The population density was usually 380 

below 100 people per km2 where the ambient PM2.5 concentration was lower than 10 μg·m-3 (Figure 381 

S29a). The heterogeneous exposure within the sparsely populated area might cause high uncertainties 382 

in the exposure assessment. As a result, the dose-response relation at low exposure levels should be 383 

further investigated with high-resolution exposure assessments. It should be also noted that the low 384 

exposure area (below 10 μg·m-3) usually corresponded to a lower annual mean temperature (Figure 385 

S29b), and the contributions from anthropogenic emissions increased (Figure S29c), which might be 386 

caused by the high energy consumption in cold areas (e.g. residential combustion). The high 387 

contributions from anthropogenic emissions changed the composition of the particulate matter, which 388 

might influence the risks in the areas with low exposure. The background disease prevalence 389 

differences might also be the cause, but detailed information will be required to investigate the 390 

assumption. 391 

 392 

The effects of O3 and NO2 on mortality risk were generally smaller than PM2.5 (Figure S30). We found 393 

a consistent positive correlation between the estimated relative risk of mortality caused by chronic 394 

lower respiratory diseases and the increment in the ozone concentration (Figure S30c). The relative 395 

mortality risks of all the diseases were positively associated with the fraction of senior citizens and the 396 

prevalence of obesity (Figures S31a and S31d). The results indicated that the low temperature 397 

increased the RRs for lung cancer and lower respiratory diseases as shown in Figure S31(c). The 398 

correlation between SA+Others and annual mean temperature was weak (r=0.31). The prevalence of 399 

smoking increased the mortality risks of lung cancer and circulatory diseases (Figure S31e). Only the 400 
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mortality risk was considered in the current study. Smoking causes more chronic respiratory diseases, 401 

but the mortality might be associated to a more serious illness, e.g. lung cancer. Smoking drives the 402 

disease progression from chronic respiratory diseases to lung cancer, which might be the possible 403 

reason for the negative correlation between smoking and chronic lower respiratory diseases. However, 404 

the results should come with caveats due to the coarse ecological analysis in the current study. More 405 

details were introduced in Section S7. 406 

 407 

3.2 Effects of PM2.5 from various sources 408 

We examined the mortality risk caused by source-specific particulate matter. The ambient PM2.5 409 

concentrations attributable to different sources were shown in Figure 3, with Europe as an example. 410 

The secondary aerosols dominated the mass concentration of particulate matter (Figure 3), but the 411 

PM2.5-related mortality risks of lung cancer and circulatory diseases were largely explained by the 412 

primary emissions from anthropogenic sources (Figure 4a and Figure 4c), especially the industrial 413 

emission and residential combustion. The statistical model had high fitting performance (Figure 4b 414 

and Figure 4d). The decrease in the risk of circulatory diseases with IND+RCO and AGS at the higher 415 

end of the exposure (Figure 4c) had large uncertainties, which might be caused by the limited amount 416 

of data at high concentrations, and it does not necessarily mean that the risk really decreased. 417 

Sensitivity tests with various PM2.5 exposure datasets derived from satellite data and source 418 

apportionment results with different emission inventories showed that the leading effects of 419 

anthropogenic primary emissions were stable and insensitive to the adopted dataset (Figure S32). The 420 

health effects of the contributions from different sources were also investigated individually by 421 

including the PM2.5 concentration from one single source in the statistical model each time (Figure 422 

S33). The single-source approach also showed consistent results. Details about the sensitivity tests 423 

were introduced in Section S8. 424 



 

20 

 425 

Figure 3 Ambient PM2.5 concentrations in Europe (as an example, results for other regions are shown 426 

in Figure S18 to Figure S22) attributable to different sources: (a) secondary aerosol (SA) and the 427 

contributions from unidentified sources (Others); (b) industrial emissions (IND); (c) residential 428 

combustion (RCO); (d) energy production (ENE); (e) traffic emissions (TRO); (f) agriculture 429 

emissions (AGS). The concentration of SA+Others was calculated as the difference between the total 430 

PM2.5 and the primary concentrations caused by the five anthropogenic sources (IND, RCO, ENE, 431 

TRO and AGS).  432 

 433 

Our results agreed with the recent toxicological study 11, which found that the oxidative potential was 434 

mostly associated with anthropogenic sources, e.g. the organic particulate matter attributable to 435 

residential biomass burning and metals from vehicular non-exhaust emissions. The oxidative potential 436 
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has been shown to be significantly associated with lung cancer mortality 49, ischemic heart disease50, 437 

congestive heart failure 51, and myocardial infarction 52. The chemicals closely associated with 438 

oxidative potential include metals (e.g. copper and manganese) and primary or aged anthropogenic 439 

organic components 11, 53, which dominantly originated from biomass fuel combustion, traffic, and 440 

industries according to the speciation of emission inventories 54. The results suggested that the stronger 441 

chronic health effects of the PM components from anthropogenic sources on lung cancer and 442 

circulatory diseases could be explained by their higher oxidative potential than the other PM 443 

components.  444 

 445 

Figure 4 Correlations between Source-specific PM2.5 Exposure and Cause-specific Mortality risk 446 

(SPECM): relative risks caused by the PM2.5 attributable to different sources (SA+Others, IND+RCO, 447 

ENE, TRO and AGS) and the fitting performance for lung cancer (a, b), circulatory diseases (c, d) and 448 

chronic lower respiratory diseases (e, f). SA+Others, caused by secondary aerosol (SA) and the 449 
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contributions from unidentified sources (Others); IND+RCO, caused by the primary emissions of 450 

industry (IND) and residential combustion (RCO); ENE, caused by the primary emissions of energy 451 

production; TRO, caused by the primary traffic emissions; AGS, caused by the primary agriculture 452 

emissions. The concentration of SA+Others was calculated as the difference between the total PM2.5 453 

and the primary concentrations caused by the five anthropogenic sources (IND, RCO, ENE, TRO and 454 

AGS). The counterfactual concentrations, with a relative risk of 1, were defined at 2.4 μg·m-3 for 455 

SA+Others, and at 0.01 μg·m-3 for the anthropogenic sources. The bars indicated the number of regions 456 

in the dataset at the corresponding exposure levels. The maximum relative risks (RRs) attributable to 457 

different sources were shown. The value after ‘@’ was the population-weighted annual mean 458 

concentration corresponding to the maximum RR, and the units were μg·m-3. The RRs were only 459 

shown for the statistically significant results. 460 

 461 

By contrast, chronic lower respiratory diseases were found to be significantly influenced by the 462 

secondary aerosol (Figure 4e). The contributions from industry and residential combustion were also 463 

strong, but with relatively large uncertainties. Chronic lower respiratory diseases seemed to be mostly 464 

associated with the mass concentration of particulate matter, with marginal dependence on sources. A 465 

previous study 55 indicated that there was no association between oxidative properties of particulate 466 

matter and chronic obstructive pulmonary disease. Figure 2c showed the curve became steeper with 467 

the increasing PM2.5 concentration, suggesting that the relative mortality risk of chronic lower 468 

respiratory diseases caused by unit mass of PM2.5 increased with the concentration. The secondary 469 

aerosols and others (SA+Others) dominated the total mass concentration (about 84% on the global 470 

average), which led to their strong health effects on chronic lower respiratory diseases.  471 

 472 

The contributions from SA+Others included secondary inorganic, organic aerosols, dust, and sea salt. 473 

It is difficult to accurately assess the exposure to different components due to complicated chemical 474 

mechanisms in the atmosphere. We adopted the dataset for organic matter, sulfate, dust, and sea salt 475 

from the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis of global atmospheric 476 

composition (EAC4) 56 to investigate the effects of the various components in SA+Others. The relative 477 
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risks induced by the components (adjusted by the effects of ozone and NO2) were consistent with the 478 

results of SA+Others, with significant contributions to chronic lower respiratory diseases, but limited 479 

influences on circulatory diseases and lung cancer (Figure S34). The organic aerosol and dust tended 480 

to have stronger effects than sulfate and sea salt. It should be noted that the compositions from the 481 

EAC4 dataset were for the total aerosol instead of PM2.5, and nitrate and ammonium aerosols were not 482 

available for the analyzed period in this study. Further detailed investigations are needed to better 483 

identify the effects of the compositions included in SA+Others.  484 

 485 

It should be noted that the correlation between IND_RCO and TRO was relatively high globally for 486 

circulatory diseases (Figure S14) and lung cancer (Figure S19). The strong correlations might be 487 

caused by the two separated clusters respectively at low and high exposure levels, but the correlations 488 

were relatively weak within each cluster, e.g. weak correlations between IND_RCO and TRO in 489 

Europe (Figure S15) and in Asia (Figure S16), which leads to the different RRs for IND_RCO and 490 

TRO.  491 

 492 

The relations were also investigated for different continents: Europe, Asia and Oceania, Latin America, 493 

and Northern America. The general trends were consistent with the global analysis, implying that the 494 

mortality risks of circulatory diseases (Figure S35) and lung cancer (Figure S36) were mostly caused 495 

by the primary anthropogenic emissions from industry and residential combustion, but the chronic 496 

lower respiratory diseases (Figure S37) were largely influenced by secondary aerosols. The regional 497 

analysis demonstrates that the dose-response relationships on the continental and global scales are 498 

consistent qualitatively. For quantitative calculation of the mortality, only the global dose-response 499 

relationship was utilized. The results of the fixed effects model (Figure S38) also indicated consistent 500 

results. The primary emissions were associated with increasing risk of circulatory diseases and lung 501 

cancer, the secondary aerosols were associated with the increasing risk of chronic lower respiratory 502 
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diseases. 503 

 504 

The secondary aerosols dominated the mass concentration (SA+Others accounting for about 80% of 505 

PM2.5 on global average as shown in Table S9) but the primary anthropogenic contributions 506 

demonstrated stronger health impacts on lung cancer and circulatory diseases as shown in Figure 4a 507 

and 4c. These results suggested differing toxicities across various sources, implying optimization of 508 

air quality control targeting specific anthropogenic PM2.5 emissions could be more cost-effective to 509 

mitigate the health impacts. 510 

 511 

3.3 Avoided mortality associated with PM2.5 512 

We applied our developed exposure-response models for total PM2.5 concentration (Figure 2, SPECM-513 

PM2.5) and source-specific PM2.5 concentrations (SPECM) (Figure 4) to assess the global avoided 514 

mortality by continuously reducing the PM2.5 concentration from the current levels to 2.4 μg·m-3 (the 515 

counterfactual concentration in GEMM).  516 

 517 

The avoided global annual mortality with a reduction of PM2.5 to 2.4 μg·m-3 was estimated to be 9.01 518 

million by our source-specific SPECM model, close to the estimates by GEMM for all nonaccidental 519 

deaths (8.96 million) and GEMM for 5 diseases (7.09 million, including ischemic heart disease, stroke, 520 

chronic obstructive pulmonary disease, lower respiratory tract infections, and lung cancer), but nearly 521 

2.5 times of the estimate by IER model (3.67 million) (Figure 5a). Our source-specific SPECM model 522 

and total PM2.5 model SPECM-PM2.5 agreed well with each other for target concentrations larger than 523 

10 μg·m-3, below which our nonmonotonic total PM2.5 model (Figure 2) could not provide avoided 524 

mortality.  525 

 526 

We utilized the publically available official health databases from different countries, which were 527 

completely independent of the previous cohort datasets adopted by the GEMM or IER model. The 528 
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good agreement between our model and previous models showed that the framework of ecological 529 

study developed here provided consistent preliminary results with the cohort studies to estimate the 530 

chronic health effects due to long-term exposure to ambient particulate matter. The consistent results 531 

could be the first step toward further multi-level analysis of the health effects of source-specific 532 

exposure with both individual and aggregate data.  533 

 534 

Figure 5 Estimates of global annual avoided mortality attributed to PM2.5 reduction. (a) The 535 

comparisons among the estimates with the reduction to a certain target concentration by different 536 

models: our developed Source-specific PM2.5 Exposure and Cause-specific Mortality risk model 537 

(SPECM), total PM2.5 model (SPECM-PM2.5), and the Global Exposure Mortality Model (GEMM) for 538 

all nonaccidental deaths (GEMM-total), the GEMM for 5 diseases (GEMM-5 diseases) 9 and the 539 

Integrated Exposure-Response model (IER) 3. The estimated avoided mortalities for circulatory 540 

diseases, chronic lower respiratory diseases (chronic LR), and lung cancer by our source-specific 541 

model SPECM were shown as colored areas. (b) Comparisons between the disease-specific estimates 542 

with a reduction to 2.4 μg·m-3 by our source-specific model and the GEMM for 5 diseases (GEMM-5 543 

diseases) 9: ischemic heart disease (IHD), stroke, chronic obstructive pulmonary disease (COPD), 544 

lower respiratory tract infections (LRI) and lung cancer. The unidentified mortality was calculated as 545 

the difference between GEMM-total and GEMM-5 diseases.  546 
 547 

In Figure 5a, the SPECM-total showed that the avoided mortality by a reduction of PM2.5 to 10 μg·m-548 

3 had already reached about 80% of the avoided mortality by a reduction to 2.4 μg·m-3, but the fraction 549 

was only 60% according to GEMM. Our SPECM model indicated that the avoided mortality by further 550 
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reduction of PM2.5 became marginal below 5 μg·m-3 (the new WHO guideline value), whereas GEMM 551 

estimated a significant benefit to reduce PM2.5 until 2.4 μg·m-3. This is related to the difference between 552 

the dose-response relation of our model and the GEMM for very low PM2.5 concentrations (Figure 4).  553 

 554 

The disease-specific mortalities estimated by our SPECM model with a reduction of PM2.5 to 2.4 μg·m-555 

3 were comparable with those from the GEMM (Figure 5b). Circulatory diseases accounted for the 556 

majority of the avoided mortality (6.78 million). There were about 1.86 million avoided deaths with 557 

unidentified causes in the GEMM. Our estimation for circulatory diseases was about 2.32 million 558 

higher than the sum of avoided ischemic heart disease and stroke mortalities in the GEMM. The results 559 

suggested that the unidentified mortality in the GEMM could be caused by the other circulatory 560 

diseases not identified by the GEMM, which was in line with the assumption of cardiovascular disease 561 

burden due to ambient air pollution in Europe 57. The results implied that the chronic health effects of 562 

PM2.5 on circulatory diseases could be substantially stronger than the previous estimations by the 563 

GEMM.   564 

 565 

Figure 6a shows the avoided annual mortality estimated by our source-specific SPECM model with a 566 

reduction of PM2.5 exposure to 2.4 μg·m-3 normalized by the actual local annual mortality caused by 567 

the three types of diseases (circulatory diseases, chronic lower respiratory diseases, and lung cancer) 568 

in different countries. Air pollution of PM2.5 significantly contributed to the mortality of the three types 569 

of diseases in Asian countries, e.g. India and China, with contributions higher than 50%. The results 570 

of SPECM generally agreed with those from GEMM (Figure 6b). However, the avoided annual 571 

mortality rates (per 105) by SPECM were systematically higher than those by GEMM in the countries 572 

with high avoided mortality rates, and vice versa in the countries with low avoided mortality rates 573 

(Figure 6b). The relative differences in the country-specific avoided mortality between the SPECM 574 

model and the GEMM model were shown in Figure 6c. The countries, where our model estimated a 575 
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higher avoided mortality rate than GEMM, tended to have higher concentrations of primary 576 

anthropogenic PM2.5 (Figure 6d), implying the difference with GEMM was mainly caused by the 577 

higher toxicity of the primary PM2.5 in our source-specific model. The results suggested that the equal 578 

toxicity dose-response model for PM2.5 might overestimate the premature mortality in regions with 579 

less contribution of primary anthropogenic PM2.5 but underestimate the mortality in regions with a 580 

higher contribution of primary anthropogenic PM2.5, due to neglecting the source-specific health 581 

effects.   582 

 583 

Figure 6 (a) Country-specific fractions of the annual avoided mortality in the actual local mortality by 584 

a reduction of PM2.5 exposure to 2.4 μg·m-3 due to the three diseases (circulatory diseases, chronic 585 

lower respiratory diseases, and lung cancer) estimated by the Source-specific PM2.5 Exposure and 586 

Cause-specific Mortality risk (SPECM) model. (b) Comparison between our source-specific SPECM 587 

model and the Global Exposure Mortality Model for all nonaccidental deaths (GEMM) for country-588 
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specific estimates of avoided mortality rates with a reduction to 2.4 μg·m-3. The solid line represents 589 

the 1:1 line. The dots were coded as red when our estimates were larger than GEMM, otherwise coded 590 

as blue. (c) The relative differences in the country-specific avoided mortality between the SPECM 591 

model and the GEMM model. (d) The concentrations of primary anthropogenic PM2.5 in the two types 592 

of regions.   593 

 594 

4 Implications 595 

The ecological study estimated the global source-specific PM2.5 exposure and cause-specific mortality 596 

risk relations, and it provided preliminary epidemiological evidence for differing chronic health 597 

ecological effects across various sources. The results indicated that the relative mortality risks of lung 598 

cancer and circulatory diseases were closely correlated with the primary emissions from anthropogenic 599 

sources, but chronic lower respiratory diseases tended to be significantly influenced by the secondary 600 

aerosol, which dominated the mass concentration of particulate matter. It could be a starting point for 601 

further detailed multi-level analysis with the cohort data at the individual level.  602 

 603 

It is also noted that there is wide discussion about the limitations of ecological studies 23, including 604 

ecological bias, problems of confounder control, and temporal ambiguity. As a preliminary 605 

investigation, the ecological effects of source-specific PM2.5 exposure shown here are only for the 606 

aggregate mortality rates at group levels, which are not yet confirmed by the biological effects at the 607 

individual level. We utilized the standard ascertainment of causes of mortality for major and common 608 

types of diseases to minimize the potential bias, and it was assumed that the possible biases in the 609 

statistics of ICD-10 at chapter and block levels were relatively small. The assumption should be further 610 

evaluated when more validation studies based on systematic reviews of expert panels become available. 611 

Sensitivity tests were conducted to investigate the influence of confounders. Our cross-section study 612 

was for chronic diseases, which could alleviate the influence of temporal ambiguity. The multilevel 613 

analytic study should be further conducted to investigate the consistent source-specific PM2.5 exposure 614 

and response relations at both the group and individual levels. 615 
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 616 

The current study aggregated the exposure induced by industrial emission and residential combustion 617 

due to their high correlation, and the exposure assessment due to the traffic emission might have 618 

relatively high uncertainties due to the coarse model resolution. The effects of these primary 619 

anthropogenic emissions should be further investigated with high-resolution exposure assessment and 620 

detailed epidemiological data. The effects of secondary organic and inorganic aerosols might have 621 

large uncertainties due to the complicated chemical mechanisms in the atmosphere. The current study 622 

was mainly based on the source-oriented source apportionment, because the emission inventory is 623 

relatively well established and widely available making it possible to assess the source-specific 624 

contributions to PM at a global scale. That being said, the physicochemical compositions could directly 625 

influence the health effects. Further investigation should be conducted to identify which chemical 626 

components drive the associations between the source categories and the health effects. Further 627 

research is required to investigate the potential mechanisms of the different toxicities of particulate 628 

matter, e.g. oxidative stress. These results suggested that optimization of air pollution control targeting 629 

specific anthropogenic PM2.5 emissions could be more cost-effective to mitigate the health impacts. 630 

 631 
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