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A B S T R A C T

Within the framework of many-body perturbation theory integrated with density functional theory (DFT),
a novel defect-subspace projection GW method, the so-called p-GW, is proposed. By avoiding the periodic
defect interference through open boundary self-energies, we show that the p-GW can efficiently and accurately
describe quasi-particle correlated defect levels in two-dimensional (2D) monolayer MoS2. By comparing two
different defect states originating from sulfur vacancy and adatom to existing theoretical and experimental
works, we show that our GW correction to the DFT defect levels is precisely modeled. Based on these findings,
we expect that our method can provide genuine trap states for various 2D transition-metal dichalcogenide
(TMD) monolayers, thus enabling the study of defect-induced effects on the device characteristics of these
materials via realistic simulations.
1. Introduction

The physical dimension of Si logic transistors is approaching the
atomic limit, thus requiring novel architectures and/or high-mobility
channel materials for future technology nodes. Logic switches based on
two-dimensional (2D) transition-metal dichalcogenide (TMD) monolay-
ers have thus been proposed to continue Moore’s scaling law, thanks
to their remarkable electronic properties. However, several works [1,
2] reported that various defects inside these monolayers may limit
their performance as logic devices, mainly through charged impurity
scattering and defect-induced trap levels. In particular, the ‘‘mid-gap’’
states introduced by those impurities are presumably at the origin of
large Schottky barriers (SB) and high contact resistances. Therefore, in
order to understand the physics related to defects in 2D TMD mono-
layers and to guide device design, ab initio simulations are required.
In this work, we propose an efficient GW algorithm combined with
density functional theory (DFT) to accurately describe defect levels in
2D TMD monolayers. In conventional GW calculations, environmental
effects from substrates are included to obtain the realistic bandgap
of 2-D monolayers, which requires huge computational resources [3].
Our method, so-called projected GW (p-GW), overcomes this issue by
projections onto a defect subspace while removing spurious interactions
between periodic images by means of open boundary conditions. This
algorithm can correctly predict the position of defect levels in the
bandgap and ensure efficiency by resorting to the DFT-level bandgap.
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We then apply this method to the most common defects in MoS2
monolayers: S vacancy and adatom.

2. p-GW algorithm

The p-GW algorithm is based on Green’s function theory and aims at
describing isolated defects. We consider a device region 𝛺𝐷 containing
a defect and consisting of integer repetitions of a unit cell called
‘‘principal layer’’ (PL), as illustrated in Fig. 1. p-GW yields a device
Green’s function 𝐆𝐷 which couples to the Bloch states of the host
material at the boundaries and includes the correlation of the electrons
localized around the defect. The algorithm is summarized in Fig. 2.
The starting point is a DFT calculation of 𝛺𝐷 with periodic boundary
conditions (PBCs). From the DFT Hamiltonian and overlap matrices we
replace the matrix elements connecting the boundaries with an energy-
dependent boundary self-energy Σ𝐵 . Correlations are included via GW
theory [4] only in a narrow region 𝛺𝐶 ⊂ 𝛺𝐷 surrounding the defect
where the GW self-energy Σ𝐺𝑊 is computed.

2.1. Boundary self-energy

The boundary self-energy Σ𝐵 describes the coupling of 𝛺𝐷 with
the electrons in the Bloch states of the host material. It is efficiently
computed from a 𝑘-point DFT calculation of the PL [5,6]. The algorithm
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Fig. 1. Schematic view of a device region 𝛺𝐷 containing a defect and consisting of
integer repetitions of a PL. The boundary self-energy Σ𝐵 describes the interaction of 𝛺𝐷
with the hosting material and is used to describes the system with OBCs. GW corrections
are calculated only in a narrow region 𝛺𝐶 surrounding the defect and included in the
p-GW algorithm via a GW self-energy Σ𝐺𝑊 . The screened interaction used to calculate
Σ𝐺𝑊 , however, includes screening processes arising from the formation of electron–hole
pairs in a larger polarization region 𝛺𝑃 .

articulates itself around four sequential steps which are described in the
following with the visual aid of Fig. 3. First, we perform a partial Bloch
sum, along one direction, of the PL Hamiltonian and overlap matrices
𝐇𝑘,𝐒𝑘 calculated on the 𝑘-grid for two consecutive cells, i.e. we obtain
𝐇0,𝑘𝑡 ,𝐇1,𝑘𝑡 and similarly for the overlap, where 𝑘𝑡 is a 𝑘-point in the
remaining (transverse) direction. Those matrices are used to compute
the surface Green’s functions Σ

𝐿∕𝑅
𝑘𝑡

[7], independently, for each 𝑘𝑡.
Second, we construct the Green’s function of a row of PLs with the same
number repetitions that make up 𝛺𝐷 in that direction. Here, OBCs are
included via the calculated Σ𝑘𝑡 ’s. Third, we expand the row of PLs in
the transverse direction with a partial Bloch sum to obtain the Green’s
function 𝐆(𝑧) of the pristine 𝛺𝐷 region with OBCs. Finally, we calculate
the boundary self-energy Σ𝐵(𝑧) from the Dyson equation

Σ𝐵(𝑧) = 𝑧𝐒 −𝐇 −𝐆−1(𝑧), (1)

where 𝑧 is a complex energy with an infinitesimal shift along the
imaginary axis and 𝐇 and 𝐒 are the Hamiltonian and overlap of the
pristine 𝛺𝐷 obtained from 𝐇𝑘,𝐒𝑘 similar to 𝐆(𝑧).

This efficient and precise algorithm allows us to treat the system
as ‘‘open’’ and effectively simulates the defect as isolated. Indeed, this
avoids undesired interferences or bound state patterns related to the
PBCs.

2.2. GW self-energy

The GW self-energy Σ𝐺𝑊 is computed only for a narrow region 𝛺𝐶
around the defect, as shown in Fig. 1. 𝛺𝐶 includes the set of atoms with
orbitals having a non-negligible contribution to the defect level states.
The interaction among electrons in 𝛺𝐶 on the other hand is calculated
including screening processes arising from the formation of electron–
hole pairs in a larger polarization region 𝛺𝑃 ⊃ 𝛺𝐶 . Due to the strong
atomic character of the defect level states, 𝛺𝑃 extends to the immediate
vicinity of 𝛺𝐶 . Σ𝐺𝑊 is obtained by a two-step projection of 𝐆𝐷. The
projection is defined such that the resulting subspace is orthogonal to
the rest:

𝐆𝑋 = 𝐒−1𝑋 𝐒𝑋𝐷𝐆𝐷𝐒𝐷𝑋𝐒−1𝑋 . (2)

Here, 𝑋 is a subspace of 𝐷, 𝐒𝑋 is the overlap matrix of 𝑋 and 𝐒𝑋𝐷
between 𝑋 and 𝐷. This choice is essential when extracting physical
quantities associated with the subspace [5,8–10]. A first projection
is performed onto 𝛺𝑃 and yields 𝐆𝑃 . From 𝐆𝑃 we compute the po-
larizability from which the screened Coulomb interaction 𝐖𝑃 can be
calculated in the random phase approximation (RPA) [11,12]. A second
projection onto 𝛺𝐶 gives 𝐆𝐶 which is multiplied by the part of the
screened interaction 𝐖 in 𝛺 , 𝐖 , to obtain Σ .
2

𝑃 𝐶 𝐶 𝐺𝑊
2.3. Self-consistency

The device Green’s function 𝐆𝐷 with OBCs and GW corrections can
be written as

𝐆𝐷(𝑧) =
(

𝑧�̃�𝐷 − �̃�𝐷 −Σ𝐵(𝑧) − 𝐒𝐷𝐶𝐒𝐶Σ𝐶 (𝑧)𝐒𝐶𝐒𝐶𝐷

)−1
, (3)

where �̃�𝐷 and �̃�𝐷 are the device Hamiltonian and overlap matrices with
removed PBCs and

Σ𝐶 (𝑧) = −𝐕𝑥𝑐 +Σ𝐺𝑊 (𝑧) + 𝛿𝐕𝐻 , (4)

where 𝐕𝑥𝑐 is the DFT exchange–correlation (XC) potential that needs
to be subtracted to avoid double counting of the correlations included
in Σ𝐺𝑊 . 𝛿𝐕𝐻 is the deviation from the DFT Hartree potential and is
calculated from the change in the density matrix 𝐃𝐶 in the 𝛺𝐶 region.
Because 𝛿𝐕𝐻 and Σ𝐺𝑊 depend on 𝐆𝐷 themselves, Eq. (3) is solved
self-consistently until convergence of 𝐃𝐶 .

3. Results

We study the effect of S vacancies (S-) and adatoms (S+) in 2D MoS2
monolayers. The device region is composed of 4 × 6 repetitions of a PL
composed of 6 Mo and 12 S atoms, as shown in Fig. 1. The electronic
structure calculation of the PL is over-sampled with a 11 × 6 × 1 k-
mesh to obtain a Σ𝐵 that precisely describes the bulk MoS2 states. The
polarization region 𝛺𝑃 is shown in Figs. 4 and 5 together with the
wavefunction of the states created by the defect. 𝛺𝑃 includes up to the
2nd nearest neighbor to 𝛺𝐶 , i.e. 12 Mo and 13 S atoms for S- and 3 Mo
and 15 S atoms for S+. The defect states have a strong atomic orbital
character: they are essentially a superposition of the 3𝑑 Mo orbitals
closest to the vacancy for S- and an unpaired electron in the in-plane
𝑝 orbital of the S adatom for S+. This allows us to define 𝛺𝐶 as the 3
Mo and their surrounding S atoms for S- and the single S adatom for
S+. Σ𝐶 is then computed in this region only.

We calculated the corresponding density-of-states (DOS), the pro-
jected DOS (PDOS), and the electron transmission and report these
results in Fig. 6. It is apparent from the DOS and the PDOS that
the effect of the many-body correction is to shift the energy levels
of the defect while preserving the DFT properties, i.e. the bandgap,
as also corroborated by the conservation of the bulk-like electronic
transmission. The DFT study for S- reveals that the dangling bonds
left by the vacancy trigger the emergence of an unoccupied deep state
at 0.4 eV below the conduction band minima (CBM), which is shifted
down by an additional 0.2 eV from the GW correction. Recently an
experimental investigation of defects in MoS2 flakes [13] revealed deep
level states around 0.8 eV below the CBM associated with S vacancies,
which clearly indicates the correct trend of the GW correction. Previous
k-point GW studies of full defect+MoS2 S- structures found values of
the defect level position with respect to the CBM [3] similar to our
calculations. This indicates that our p-GW algorithm can accurately
predict trap-levels with minimal computational burden. The DFT study
for S+ predicts a shallow state close to the valence band. The GW
correction pulls the defect-level position down into the valence band, as
suggested by experimental studies that show a strong p-type behavior
in the presence of S adatoms [14]. This indicates that such defects may
act as doping center, a behavior that is not captured by pure DFT.

4. Conclusions

We proposed a novel algorithm to locally and efficiently apply
many-body corrections using GW to a region surrounding a defect. Pe-
riodic self-interactions are removed by virtue of an efficient boundary
self-energy calculation. The presented algorithm is then applied to S
vacancy and adatom defects in a MoS2 monolayer. Our method is a
first step toward the inclusion of many-body methods beyond DFT in
large scale simulations of realistic devices.
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Fig. 2. Flowchart of the p-GW method for efficient modeling of defected structures with GW corrections. (Orange box) Σ𝐵 is constructed from the DFT calculation of a periodic
PL. (Blue box) The �̃�𝐷 and �̃�𝐷 of the defected region are obtained from a separate DFT calculation by removing the PBCs. (Gray box) Σ𝐺𝑊 is computed for a subspace containing
the defect where 𝐆𝐶 is constrained to the defect and 𝐖𝑃 includes its surroundings. (Purple box) Equation for the full Green’s function coupling all boxes. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Steps summarizing the construction of the connected Green’s function 𝐆 starting from the Hamiltonian and overlap matrices, 𝐇𝑘 and 𝐒𝑘, of a DFT calculation of a PL on a
𝑘-grid. (1) A partial Bloch sum of 𝐇𝑘 and 𝐒𝑘 is performed for two consecutive cells and the matrices 𝐇0,𝑘𝑡 ,𝐇1,𝑘𝑡 ,𝐒0,𝑘𝑡 ,𝐒1,𝑘𝑡 are obtained. These serve to compute the surface Green’s
functions Σ

𝐿∕𝑅
𝑘𝑡

at each 𝑘𝑡. (2) The Green’s functions 𝐆𝑘𝑡 of a row of PLs with OBCs is constructed for each 𝑘𝑡. (3) A partial Bloch’s sum of 𝐆𝑘𝑡 in the remaining direction leads
to 𝐆.
Fig. 4. Atomic structure of single S vacancy in MoS2 monolayer. Gray spheres, Mo
atoms; yellow, S atoms. The blue and red isosurfaces represent the wavefunction of
the state created by the defect. The defect region 𝛺𝐶 (white) is defined by the 3 Mo
and their surrounding S atoms. The polarization region 𝛺𝑃 (light blue) includes atoms
up to the second nearest neighbor to 𝛺𝐶 . (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
3

Fig. 5. Atomic structure of S adatom absorbed on top of MoS2 monolayer. Gray
spheres, Mo atoms; yellow, S atoms. The blue and red isosurfaces represent the
wavefunction of the state created by the defect. The defect region 𝛺𝐶 (white) is defined
by the S adatom. The polarization region 𝛺𝑃 (light blue) includes atoms up to the
second nearest neighbor to 𝛺𝐶 . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Results for S- (a–c) and S+ (d–f) obtained by DFT and the proposed p-GW method. The shaded gray area represents the DOS of bulk MoS2. The total density-of-states of
the device region (a, d) and projected onto the GW subspace (b, e) show that the many-body correction shifts the defect level states while maintaining the DFT bulk properties.
(c, f) Transmission function through the defected structure. The onset of the electron transmission around the fundamental gap is also preserved by the p-GW correction. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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