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ABSTRACT 
In this contribution, we study the transient scattering of waves from a structural bi-stable element modelled as an Euler elastica. 
The non-linear elastic element has localized inertia at its end points, each of which is connected to a semi-infinite straight rod. 
The focus is on longitudinal waves reflected and transmitted into the semi-infinite rods by the non-linear structural interface. 
The derivation of the transient governing ordinary differential equations for the reflected and transmitted amplitudes is outlined. 
The key point is the assumption that the semi-infinite rods are linear elastic, with non-linearity embedded into special transient 
transmission conditions for the scattering amplitudes. The governing equations are solved using standard numerical integration 
techniques. From a physical point of view, we focus on the effect of the bi-stability on the transmission resonances, identified 
in the linearized regime. Special attention is given to the up- and down-conversion of the frequency content of scattered 
amplitudes as a function of the amplitude of a harmonic impinging wave. 
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INTRODUCTION 
Geometric non-linear mechanisms and instability - traditionally associated with failure and strength limits of materials [1] - 
have recently allowed encoding diode-like, reversible, wave phenomena [5] and quasi-static configurations recovery and 
deployment [3,4] for soft robotics applications. The geometric non-linearity of buckled beams has also been associated with 
the onset of inherent non-linear damping of structural vibrations [7].  The seminal work [2] initiated the efficient modelling of 
static and time-harmonic response of micro-structured interfaces. In a similar spirit, in [6] the authors considered the transient 
scattering of longitudinal waves from a discrete interface featuring a non-linear elastica-like load-displacement response. The 
present contribution builds upon the models established in [6], with a special focus on bi-stability and its effect on the multi-
frequency spectrum of the scattering amplitudes.  

BACKGROUND 
In [6], the authors proposed the reduced governing equations for the transient scattering of longitudinal elastic waves in a bar 
from a massless elastica with clamped ends. Fig. 1(a) shows a schematic representation of the model, comprising two semi-
infinite bars joined by an Euler elastica. It is assumed that the mass of the non-linear interface is concentrated at the end of the 
elastica. This is pivotal in reducing the non-linear partial differential equations to a more tractable system of non-linear ODEs 
for the reflected and transmitted wave amplitudes 𝑅𝑅(𝑡𝑡) and 𝑇𝑇(𝑡𝑡). The system of ODEs for the aforementioned scattering 
amplitudes is 
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Figure 1Panel (a) is a schematic representation of the geometry. Panel (b) represents the exact interaction force 𝑭𝑭 as a function of 
the compression level 𝝌𝝌 of a clamped-clamped elastica. The inset is a magnification on the post-buckling regime. 

where 𝑢𝑢0 is the amplitude of the time-harmonic incident wave; 𝜏𝜏 = −𝑣𝑣𝑡𝑡, with 𝑡𝑡 the time variable and 𝑣𝑣 is the radian frequency 
of the incident wave; 𝑚𝑚+ (𝑚𝑚−) is the mass concentrated at the right (left) end of the elastica; 𝑣𝑣 = �𝐸𝐸/𝜌𝜌 is the longitudinal 
wave speed in the bar (𝐸𝐸 and 𝜌𝜌 being the Young’s modulus and the mass density of the bar respectively);  𝐸𝐸 is the cross-section 
area of the bar.  In Eq. (1) we have introduced 𝐹𝐹(𝑢𝑢−;𝑢𝑢+), the load-displacement relation of the elastica with clamped ends. In 
this context, the force represents the non-linear interaction between the masses. Figure 1(b) illustrates the functional dependence 
of the force on the compression level 𝜒𝜒 of the elastica. A critical length scale 𝑢𝑢𝑐𝑐𝑐𝑐 = 𝜒𝜒𝑐𝑐𝑐𝑐ℓ  exists above which the elastica 
buckles, introducing a bi-stability in the transient problem. In the following section, we analyse the transient scattering solution 
for R(t) and T(t) as the amplitudes of the impinging longitudinal wave is varied from a subcritical to a supercritical regime. We 
focus on the frequency of the impinging wave for which a transmission resonance in the linearized regime exists, i.e.  
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, with  𝑚𝑚 = 𝑚𝑚− = 𝑚𝑚+  and 𝐸𝐸𝑒𝑒 is the Young’s modulus of the elastica. In order for Eq. 
(2) to be real, the condition 𝐸𝐸𝑒𝑒 > ℓ 𝐸𝐸 𝐸𝐸2/(2 𝑚𝑚 𝑣𝑣2) has to be satisfied.

ANALYSIS 
The non-linear system (1) can be tackled with a Runge-Kutta algorithm, e.g. by using the MATLAB(R) “ODE45” function. 
We discretise the time variable 𝑡𝑡 ∈ [0,𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚] according to the frequency of the incident wave, by using 20 time-steps per period 
T = 2π/ω, with 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 100 𝑇𝑇. The initial conditions of the system are in principle arbitrary. Given the fact that the system is 
excited at the transmission resonance frequency in Eq. (2), it is reasonable to assume the initial condition 𝑅𝑅(0) = 𝑅𝑅′(0) =
𝑇𝑇′(0) = 0, and 𝑇𝑇(0) = 𝑢𝑢0, which heuristically emulates the transmission resonance. In order to gain insight into the multiple 
frequency generation phenomenon, it is useful to expand the load-displacement relation around a post-buckling pre-
compression (PBPC) 𝜒𝜒 = 𝜒𝜒𝑒𝑒𝑒𝑒 , which leads to  
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where  𝐹𝐹𝑖𝑖�𝜒𝜒𝑒𝑒𝑒𝑒� and  𝐶𝐶𝑖𝑖�𝜒𝜒𝑒𝑒𝑒𝑒�, 𝑖𝑖 = {1,2}, are given functions of the PBPC, whose detailed expression is rather involved and is 
here omitted for simplicity and 𝐹𝐹𝑒𝑒𝑒𝑒 = 𝐹𝐹(𝜒𝜒𝑒𝑒𝑒𝑒) (see inset of Fig. 1(b)). A comparison between the exact load-displacement 
relation (black solid line) and the approximate relation in Eq. (3) (red dashed line) is given in the inset of Fig. 1(b). The fact 
that the load-displacement relation admits an expansion in (odd and even) powers of 𝛿𝛿𝜒𝜒  gives insights on the up- and down 
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conversion phenomenon as is evident from Fig. 2, where we represent the fast Fourier transform (FFT) of the time series 
resulting from the solution of Eq. (1). 

Figure 2 FFT of the scattering coefficients at various amplitudes of the incident field. Panel (a) and (b) refer to R(t) and T(t) 
respectively. 

Figs 2(a) and 2(b) refer to the FFT of the reflected and transmitted amplitudes, respectively. We observe that, for incident wave 
amplitudes such that 𝑢𝑢0 < 𝑢𝑢𝑐𝑐𝑐𝑐, the reflection coefficient is low whereas the transmission coefficient admits a single resonance 
around the resonance frequency in Eq. (2).  For 𝑢𝑢0 > 𝑢𝑢𝑐𝑐𝑐𝑐, up to 10 𝑢𝑢𝑐𝑐𝑐𝑐 , both reflection and transmission spectra show a plethora 
of harmonics at integer multiples of the frequency of the incident wave 𝑣𝑣𝑇𝑇. This is consist with the polynomial form of Eq. 
(3).  

CONCLUSION 
We have quantified the amplitude-dependent, multi-frequency spectra of the scattering amplitudes from a buckling clamped-
clamped elastica with concentrated masses. The semi-analytical model shall be further refined and extended by including a 
distribution of point masses, multiple Euler elasticae and/or higher order buckling modes.   
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