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A B S T R A C T   

The Laser Power Bed Fusion (LPBF) process is of high interest to many industries, such as motors and vehicles, 
robotics, biomedical applications, aerospace, and others. LPBF workpieces can indeed achieve near full density 
and high resistance. However, a large amount of pore formation, in conjunction with the probabilistic nature of 
defect formation, results in a lack of process repeatability and reproducibility. This limits the range of industrial 
applications requiring high quality and defect free workpieces. To overcome this issue, we developed an acoustic 
monitoring system able to classify with high confidence three processing regimes (lack of fusion pores, conduction 
mode, keyhole pores) using a Convolution Neural Network (CNN). For the first time, we infer the processing 
regime based on AE waves produced during the LPBF process for conditions that are new and not part of the 
training database (>96%). The choice of processing conditions used in the database (training sets) is discussed in 
details, looking at the influence of their number, relative normalized distance, and position in the processing map 
on the classification accuracy. We found that the higher the number of processing conditions in the database, the 
higher the classification accuracies. Moreover, the higher the relative normalized “distance” between training 
and testing sets (measured in terms of laser speed and power), the lower the classification accuracies. Finally, the 
threshold defining the minimum number of training processing conditions is identified as eight to obtain a robust 
model able to identify the processing regimes for new laser parameters within the processing map. This number 
can be lowered to six if the training sets are in the surrounding region of the testing set. When one process 
parameter (speed, power, or normalized enthalpy) is constant between all the training and the testing sets, only 
four parameter sets allow a high classification accuracy (>88%). These results demonstrate the potential of in 
situ acoustic emission for monitoring the additive manufacturing process, in particular when the process con-
ditions may deviate from the conduction mode. Finally, for a well-chosen set of training conditions, the model is 
able to construct a full processing map without additional experiments.   

1. Introduction 

In the past years, additive manufacturing (AM) has brought a new 
paradigm in the production of metallic parts, allowing the design of 
complex and intricate geometries while minimizing both lead time and 
buy-to-fly ratios [1]. Among the various categories of AM processes, 
Laser Powder Bed Fusion (LPBF), also known as Selective Laser Melting 
(SLM), consists in building up successive layers of pre-alloyed metallic 
powder according to a predefined 3D CAD model by selectively melting 
each layer of powder with a high-power laser beam [5–8]. Although this 
technology has gained significant interest from many industries [2–8] 

due to its versatility and accuracy, a number of drawbacks still limit its 
range of applications and impede a wider industrial use [9–13]. 

In particular, LPBF suffers from a frequent and sometimes hard-to- 
predict formation of defects, such as pores, which impedes certifica-
tion processes. Porosity in as-built LPBF parts can originate from mul-
tiple causes, including the quality of the powder feedstock and the laser- 
material interactions. This latter source includes lack-of-fusion and 
keyhole pores. Lack-of-fusion pores result from an insufficient energy 
input, inducing incomplete melting of the powder during laser pro-
cessing [14–17]. On the other hand, keyhole pores are caused by an 
excessive heat input: vaporization of the metal creates a deep 
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keyhole-shaped depression zone whose collapse can generate a void in 
the lower region of the melt pool [18–23]. Optimal conditions for 
minimal porosity content are encountered in the conduction mode, a 
transition regime between lack-of-fusion and keyhole [23,24]. 

Different tools have been developed to determine and thus mitigate 
the occurrence of pores. For a given material, processing maps based on 
parameters such as laser power and speed can be built to find the opti-
mum conditions for high-density parts [24–28]. However, establishing 
such 2D-processing maps is a laborious procedure, requiring extensive 
printing of specimens using a variety of process parameters followed by 
a very time-consuming metallurgical characterization of the as-built 
parts. Furthermore, this trial-and-error process optimization needs to 
be reiterated when transitioning from either one alloy [29], or one LPBF 
machine, to another. 

In most laser processes dealing with powders, the laser-material 
interaction is highly non-linear and always exhibits a non-negligible 
stochastic component. This leads to non-reproducibility of microstruc-
tures and properties, and non-homogeneity of the printed parts. More-
over, the generation of unpredictable spatter [30–35] and 
contamination leads to irregular defect formation [12]. In order to 
detect the formation of defects during the LPBF process, and identify the 
melting regime (lack-of-fusion, conduction, or keyhole), real-time pro-
cess monitoring is a promising solution/approach. In the past 10 years, 
various optical techniques have been investigated, including spatially 
integrated sensors such as photodiodes [36–38], pyrometers [39–43], 
infrared and high speed cameras [36,37,41,43,44]. Complementary to 
these optical techniques, acoustic emission (AE) has been reported as a 
high sensitivity, low-cost and robust technique for monitoring laser 
processes. 

The analysis of AE was first identified as a valid technique for 
monitoring laser welding [45–48]. One drawback of the AE sensors is 
that they record any AE waves produced during the laser processes, 
including the undesired noise from the machine or the environment [38, 
49,50]. Consequently, it is not a trivial task to isolate the AE information 
coming from the laser-material interactions [51]. To address this issue, 
state-of-the-art machine learning algorithms were able to classify welds 
of various regimes and quality based AE signals [50,52–55]. More 
recently, the potential of AE as a monitoring tool has been extended to 
the field of laser-based additive manufacturing. Several papers have 
demonstrated the ability to differentiate lack-of-fusion, conduction, and 
keyhole regimes with high confidence, based on AE signal analysis [29, 
49,56–67]. 

To be specific, over the past few years, Convolutional Neural Net-
works (CNN) have become a common algorithm for acoustic classifica-
tion tasks [29,56], demonstrating great effectiveness and enabling the 
possibility of suppressing stationary noise. For example, Shevchik et al. 
[56] used a Fiber Bragg Grating (FBG) as AE sensor, and combined two 
types of CNN (a Spectral one and a conventional one). They have suc-
cessfully classified the quality of LPBF with a classification accuracy 
around 80%. In a following work, Shevchik et al. [62] used two running 
windows with various time span as input to several types of CNNs, to 
address the localization of defects. The classification accuracies varied 
between 73% and 91%, depending on the time span of the running 
window and the process quality. Similarly, Ye et al. [63] used a deep 
belief network to classify acoustic data of five category – balling, slight 
balling, normal, slight overheating, overheating –with high accuracy 
(95%) in the LPBF process. Eschner et al. [61] have designed a Neural 
Network to classify three density classes of laser operation with 90% 
accuracy. Drissi-Daoudi et al. [29] have compared four ML algorithms 
(Logistic Regression, Random Forest, Support Vector Machine and a 
CNN) for the classification of three process regimes (keyhole pores, con-
duction mode and LoF pores) for three different alloys (stainless steel, 
bronze, and Inconel), using a low cost airborne AE sensor. All algorithms 
had comparable and high classification accuracies (around 90%), for all 
alloys. The authors selected two process parameters per regimes, with 
specific normalized enthalpy, to prove that the extracted AE features 

used for training the ML algorithms relate to the laser-material inter-
action. Finally, they designed a CNN capable of simultaneously classi-
fying the alloy and the process regime. 

Tempelman et al. [64] used a Support Vector Machine (SVM) to 
detect keyhole and non-pore segments of single lines using process pa-
rameters scattered in the 2D processing map. The data segmentation and 
labeling were obtained by X-ray tomography. Their approach confirmed 
the previous works from Shevchik et al. [29,62] that keyhole pore for-
mation can be detected using airborne AE sensors combined with ML 
algorithms. However, in all AE-based studies for LPBF, the techniques’ 
performance was evaluated on random AE signals that are, obviously, 
not part of the training database but coming from the collected database 
using the same parameters set; which raises two questions. First, does 
the ML algorithm classify the process parameters or the laser-material 
interaction? Clearly, the main goal is to monitor the laser-material 
interaction leading to the different process regimes (LoF, conduction, 
and keyhole) and not the process parameters themselves; otherwise, we 
would just extract this information from the machine directly. The 
second question is the ability of the ML algorithm to classify AE signals 
from trained process regimes but from new (unseen) parameter sets. 
This generalization of the ML predictability is a critical step towards AE 
based process monitoring. Finally, significant factors and exhaustive 
details for constructing a robust database are overall lacking in the 
literature. Consequently, the novelty of this contribution is twofold. 
First, it focuses on the ability of ML algorithms to classify AE data 
outside the parameters sets they were trained on. Second, the present 
study provides all the necessary tools to help building an otherwise 
time-consuming processing map for a given alloy. 

The present work studies the classification of AE signals recorded by 
a microphone during LPBF of a 316 L stainless steel alloy The occurrence 
of three process regimes (keyhole pores, conduction mode and LoF pores) is 
identified through metallurgical characterization. The CNN algorithms 
are trained with three categories representing the three different process 
regimes; as well as with the background noise as the fourth category, i. 
e., the noise of the machine and process when the laser is off. A CNN is 
selected for the classification tasks of these four categories. 

The paper is organized into 4 Sections. Section 2 details the method 
and experimental plan, while Section 3 presents the results and discus-
sion. The generalization of the CNN model, trained with twelve 
parameter sets, is tested on an unseen thirteenth parameter set. We 
check in what extent the accuracy of the classification relates to: (i) the 
position (in the 2D space) and number of the parameter sets used in the 
training database with respect to the tested set, (ii) the influence of key 
process parameters – normalized enthalpy, laser power and speed, (iii) 
the relative normalized “distance” in terms of power, speed and 
normalized enthalpy between the training and the tested set. The results 
provide insights into the collection of a robust model for classification of 
LPBF processing regimes based on AE, which are summarized in the 
conclusion. 

2. LPBF experiments 

2.1. Experimental setup and data acquisition 

All experiments of this work were performed on an in-house LPBF 
system shown in Fig. 1. The customized LPBF contains a hopper filled 
with powder that deposits each layer by gravity when the piston below 
the substrate moves down by the required layer thickness. A continuous- 
wave (CW) modulated Ytterbium fiber laser is used for melting the 
powder. The fiber laser operates in a continuous mode with a 1070 ± 10 
nm wavelength and a maximum power of 500 W. The beam diameter is 
around 42 µm (1/e2) at the focal plane with M2 < 1.1. The laser scan 
speed is up to 20 m⋅s− 1. The chamber’s atmosphere is controlled under a 
laminar flow of argon and a monitored oxygen level of maximum 200 
ppm. The build chamber is equipped with a CM16/CMPA40–5 V ultra-
sound microphone (Avisoft Bioacoustics), as shown in Fig. 1 (6). This 
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main advantage of this microphone is that it has a flat response up to 
200 kHz. It is positioned on the top of the build chamber so that the 
recording face points to the process zone while not disturbing the 
deposition system and being protected from powder, spatters, and 
fumes. It is placed at a distance of approximately 23 cm from the center 
of the substrate. An Advantech Data Acquisition (DAQ) card (Advan-
tech, Taiwan) records the output from the microphone. The AE signals 
are acquired at a rate of 0.6 MHz and stored locally for processing with a 
custom-built C# code that interacts with the Advantech DAQ card. The 
data acquisition rate was chosen to ensure that the Nyquist Shannon 
theorem [68] is satisfied. The data acquisition is triggered by the laser 
head signal. This ensures synchronization between the LPBF process and 
the obtained data. 

All experiments were performed with a stainless steel MetcoAdd 
316 L micro powder (Oerlikon Metco) with a particle size distribution 
between 15 and 45 µm. Its composition is presented in Table 1 and the 
corresponding physical and optical properties are given in Table 2. The 
final composition of the LPBF fabricated samples may slightly differ as a 
result of the evaporation of the most volatile elements, such as carbon, 
silicon, and phosphorus. The absorptivity α (Table 2) of the powder was 
experimentally measured with a Perkin Elmer Lambda 900 spectro-
photometer for wavelengths from 900 to 1′200 nm and a layer thickness 
of 40 µm. Fig. 2 presents an SEM image of the powder used to fabricate 
the samples. 

2.2. Experimental plan 

We considered three distinct process regimes: LoF pores, conduction 
mode, and keyhole pores. For each regime, thirteen cubes of 13×13×3 
mm3 with thirteen different parameter sets were printed. The thirteen 
process parameters are given in Table 3 and plotted in Fig. 5. 1-mm- 
thick porous structures were built on top of the base plate as support 
for the samples in order to ensure that the experiments would have the 
same heat flow as when processing bulk material. On top of these sup-
port structures, high-density layers were built over 2 mm to guarantee 
similar initial conditions for all experiments. Finally, for each of the 
three above-mentioned process regimes, 10 layers (above the red line in 
Fig. 4 and schematically in Fig. 3) of 110 overlapping line tracks were 

produced, during which the AE signals were recorded with the micro-
phone. The scanning strategy was unidirectional and parallel, with a 
hatch distance of 0.1 mm and a layer thickness of 40 µm (Fig. 3). The 
hatch spacing and layer thickness are critical factors for defect forma-
tion, but for the purpose of this study, they were kept constant. The 
unidirectional parallel scanning strategy was adopted for ease of 
acoustic signal acquisition. The hatch distance and layer thickness were 
selected to be consistent with the laser beam size while still enabling the 
formation of the three regimes studied. Fig. 3 presents a schematic of the 
built samples and their dimensions. 

For all 39 cubes, the data labeling of the process regime was iden-
tified via cross-section analysis, and a metallography analysis was per-
formed on all of the samples. Typical examples of the microstructure for 
each process regime are presented in Fig. 4. The micrographs of the four 

Fig. 1. Experimental set-up of the custom-built LPBF with the CM16 microphone.  

Table 1 
Chemical composition of stainless steel (316 L) powder (weight fraction %).  

Fe Cr Ni Mo Other C 

Balance  18  12  2 < 1.00 < 0.03  

Table 2 
Physical and optical properties of stainless steel 316 L.   

Parameters values 

Absorptivity α [-] 0.52 
Density ρ [kg/m3] 7′900[70] 
Specific heat C [J/kg.K] 490[70] 
Melting point [K] 1′640[70] 
Latent heat of melting Lm [kJ/kg] 260[70] 
Laser spot radius [µm] 42 
Thermal diffusivity [m2/s] 3.5⋅10− 6[70]  

Fig. 2. SEM picture of the SS 316 L powder used.  
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extremes parameters samples (samples 1, 4, 5, and 8, presented in Fig. 5) 
are presented in the supplementary materials. 

The samples were etched with diluted Aqua regia (100 ML HNO3, 
100 ML HCl, 100 ML H2O) for 30 s to reveal the microstructure and melt 
pool morphology. Micrographs were taken with a Leica DM6000M light 
optical microscope in bright field mode. 

As illustrated in Fig. 5, the process parameters were chosen to have, 
for each process regime, five sets of parameters with iso-power 
(P = 61 W, P = 89 W, and P = 251 W), five with iso-speed 

(v=350 mm/s or v=450 mm/s), and five with iso-normalized enthalpy 
(ΔH=17, ΔH= 25 or ΔH= 80). 

The normalized enthalpy ΔH is defined as [24,69]: 

ΔH =
αP

ρ(CΔT + Lm)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
πω3VD

√ (1)  

Where α is the absorptivity of the powder layer, as defined in reference 
[24], P is the laser power (W), ρ the density (kg/m3), C the specific heat 
(J/kg.K), ΔT the difference between the melting and initial temperature 

Table 3 
Process parameters (power, speed, and normalized enthalpy) used for the experimental plan for the three categories, keyhole pores, conduction mode, and LoF pores. The 
values in bold are iso-speed, iso-power, and iso-normalized enthalpy for each category. The sample n◦13 in Italics Bold is the black central point in Fig. 5, common for 
the three iso-parameters.   

Keyhole pores Conduction mode LoF pores 

N◦ Power 
[W] 

Speed [mm/ 
s] 

Normalized enthalpy 
[-] 

Power 
[W] 

Speed [mm/ 
s] 

Normalized enthalpy 
[-] 

Power 
[W] 

Speed [mm/ 
s] 

Normalized enthalpy 
[-] 

1  282  350  89.9  107  450  30.1  68  450  19.1 
2  267  350  85.1  96  450  27.0  64  450  18.0 
3  235  350  74.9  82  450  23.1  57  450  16.0 
4  220  350  70.1  71  450  19.9  51  450  14.3 
5  251  276  90.1  89  350  28.4  61  358  19.2 
6  251  310  85.0  89  400  26.5  61  400  18.2 
7  251  398  75.1  89  500  23.7  61  500  16.3 
8  251  457  70.0  89  550  22.7  61  550  15.5 
9  240  320  80.0  85  410  25.0  59  430  17.0 
10  245  333  80.1  87  432  25.0  60  443  17.0 
11  256  364  80.0  91  466  25.1  61  457  17.0 
12  261  378  80.1  93  490  25.0  62  470  17.1 
13  251  350  80.0  89  450  25.0  61  450  17.1  

Fig. 3. A schematic of the printing of samples and their 
dimensions. High-density layers were first built over 2 mm 
(black cube) to establish repeatable initial conditions for all 
experiments. For each of the three process regimes, 10 
layers of 110 overlapping line tracks were then produced, 
during which the AE signals were recorded with the 
microphone. The scanning strategy was unidirectional and 
parallel, with a hatch distance of 0.1 mm and a layer 
thickness of 40 µm. The red plane represents the cutting 
plane for cross-sections.   

Fig. 4. A typical example of the microstructure of the three regimes. a. keyhole pores, b. conduction mode, c. LoF pores. The dotted red line delimits the recorded lines 
from the printed cube. 
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(K), Lmthe latent heat of melting (kJ/kg), ω the laser spot radius (m), v 
the laser speed (m/s), D the thermal diffusivity (m2/s). 

All three iso-conditions share a common central point (in black in 
Fig. 5) corresponding to line n◦13 in Table 3, which leads to a total of 
thirteen experiments for each regime. The enumeration in Fig. 5, given 
for the keyhole regime, is transferable to the two other process regimes 
(Table 3). 

The DoE is designed such as to allow predicting the process regime 
with an unseen parameter set (central point, n◦ 13) with the training 
performed on a database composed of 12 parameter sets surrounding it. 
It also allows predicting the process regimes related to parameter sets 
that are off-centered (n◦ 1, 4, 5, and 8) with 12 parameter sets that are 
further away in the processing map. 

The boundaries in grey in Fig. 5 are for illustrative purposes only. 
Although the normalized enthalpies provided a starting point for the 
DoE parameters, the actual boundaries were determined through 
experimental analysis using cross-section and metallography techniques 
on all samples. The influence of the “distance” (in the processing map) 
between the data points used for the training and the prediction will be 
studied by comparing the results of the classification when the database 
is formed with the 6 closest points (full markers in Fig. 5, n◦ 2, 3, 6, 7, 10, 
11) to the results when the training is based on the 6 other more distant 
points (empty markers in Fig. 5, n◦1, 4, 5, 8, 9, 12). Moreover, the 
prediction of the central point process regime will be tested with three 
databases trained with the 4 parameter sets in iso-power, iso-speed, or 
iso-normalized enthalpy, respectively, in order to highlight the influence 
of the choice of process parameters on the training. Finally, the influence 
of the relative normalized “distance” in terms of normalized enthalpy, 
power, and speed, as well as the number of parameter sets needed for a 
high-confidence prediction of an unseen point, will be determined. The 
relative normalized “distance” in terms of normalized power is defined 
in Eq. (2). 

dP =

∑n

1
(Ptraining − Punseen)

∑n
1Ptraining

• 100[%] (2)  

where n is the number of parameter sets in the training database, Ptraining 
the power [W] of each set in the training database, and Punseen the power 

[W] of the unseen parameter set. The same definition can be applied to 
dS and dΔE, by considering the laser speed values and the normalized 
enthalpy values, respectively. 

A one-second delay was applied between each line track to ensure 
that the recording of each line was performed under the same thermal 
conditions. Moreover, this delay guarantees that the reverberation of the 
sound inside the build chamber, which can last ~100 ms after the laser 
stops, is completely attenuated. Again, this guarantees that the 
recording of a new line always starts under the same conditions [71]. 
However, compared to the processing maps reported by Tucho et al. 
[25], the one-second delaying time reduces the size of the conduction 
regime domain and, even more significantly, the one of the LoF regime. 
In contrast, the stable keyhole regime domain (i.e., with no porosity 
formation) becomes larger. 

2.3. Data processing 

A pre-delay of 0.5 ms is implemented to make sure that the acoustic 
signal is recorded from the beginning of the laser process. To ensure 
having recorded the signal over the entire line, 27′000 data points were 
acquired for the keyhole pores process regimes, 21′000 for the conduction 
mode, and 18′000 for the LoF pores. All acoustics signals were then 
extracted as follows: the first 3′000 points were removed, the next 
10′000 points were kept, and the remaining points were also removed. 
With this procedure, all analyzed signals have the same length, and the 
non-steady state conditions (when the laser has not yet reached the 
required speed) are excluded from the analysis. 

A CNN is chosen for the classification tasks. CNNs have been proven 
to be effective for noisy signals [29,62], and they avoid the feature 
extraction step. It is implemented using the PyTorch library, chosen for 
the classification tasks. The AE signals have been filtered with a low pass 
filter at 60 kHz, as the microphone is polarized for higher frequencies, 
and because [29] showed that the information responsible for the three 
regimes formation where mostly below 40 kHz. The signals were then 
downsampled by a factor of four, and finally normalized between 0 and 
1. 

For all signals, spectrograms, after the post-processing, were 
extracted from the acoustics signals. A short window increases the time 
and spatial resolution of defect detection, but could be more affected by 
noise. The time span must also be large enough for at least one defect to 
form. A good compromise was obtained with a window of 16 ms (10′000 
data points). In order to have the best tradeoff between the resolution in 
time and in frequency, a spectrogram of size 97 × 626 was selected after 
an exhaustive search. A typical spectrogram for each process regime is 
presented in Fig. 6. Visualizing patterns in the spectrograms may be 
challenging for humans, which is why we proposed using CNNs to 
extract relevant features from the spectrograms. CNNs are prone to 
overfitting, and without proper data management, the results might be 
overly optimistic. To address this issue, we took several measures, 
including using a large dataset, carefully separating the training and 
testing data. 

1′100 acoustics signals were taken per sample. As a result, if twelve 
parameter sets (samples) are included in the training set, then 13′200 
signals (and thus the same amount of spectrograms) are considered per 
category. 

The training of the CNN is performed on 80% of the signals 
(randomly picked), and the remaining 20% of the signals are kept for the 
validation of the model’s performance. The model is then tested on 1100 
signals from the same process regime or category but with another 
parameter set unseen by the algorithm. This temporal split approach is 
utilized to further improve the model’s generalization capabilities. AE 
signals have a temporal component, indicating that signals generated 
during a specific period may share common features or characteristics. 
By splitting the dataset based on the time of data acquisition — by 
printing the test samples after the training ones — we ensured that the 
model was trained on a diverse range of features over time, which can 

Fig. 5. Process parameter map with the thirteen parameter sets for each 
category, in green for the keyhole pores domain, in orange for the conduction 
mode, and in blue for LoF pores. The parameter sets are numbered from 1 to 13 
for the keyhole pores domain. The same numbering strategy can be transferred 
to the two other domains. The “central point” is depicted in black. Three iso- 
normalized enthalpies at 80, 25, and 17 are plotted. The full markers are the 
six parameter sets closest to each central point, and the six empty markers are 
the six parameter sets the furthest away from the central points. 
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improve its ability to generalize to new data. Additionally, using a 
temporal split helps simulate a more realistic setting where the model is 
tested on data that has not been seen before. This approach mimics the 
real-world scenario where the model is trained on historical data and 
used to make predictions on new data. The CNN architecture is illus-
trated in Fig. 7. It includes two 2D convolution layers max pooled by 
2 × 2; each batch-normalized to avoid overfitting as well. The Rectified 
Linear Units (ReLU) activation function is applied to both layers. Two 
fully connected layers are following these layers. The model is trained 
for 50 epochs with a batch size of 1000, a learning rate of 5e-4, and the 
Adam optimizer. The same architecture is kept unaltered for all the 
classifications in this work for comparison purposes. The use of back-
ground noise in training is only to help the algorithm. The classification 
accuracy for the background noise was always 100%. Hence, it will not 
be further mentioned in the description of this work. 

3. Results and discussion 

3.1. Toward the generalization of the ML model over the entire processing 
map 

One important objective of this paper is to investigate to what extent 
the proposed ML algorithm can predict the process regime of an unseen 
parameter set (i.e., not part of the training) from its recorded AE signals. 

As already described in Section 2.2, the airborne AE signals from a 
chosen number of parameter sets are used for training the ML, which is 
then tested on a new parameter set. In this work, the CNN architecture in 
Fig. 5 has been trained first with twelve parameter sets (experiments 
n◦1–12 in Fig. 3 and Table 3) for each process regime (LoF pores, con-
duction mode, and keyhole pores). Then, the model was tested by classi-
fying the process regime on an unseen parameter set (black point in 
Fig. 5, n◦13 in Table 3). As shown in Fig. 3, the unseen parameter is 
surrounded by the ones used for training the ML model. 

The results of the classification accuracies for the three process re-
gimes (LoF pores, conduction mode, and keyhole pores) are given in the 
confusion matrix Table 4. 

The algorithm was tested on 1′100 signals acquired when all samples 
13 were fabricated (for the three regimes). True positive classification is 
defined as when the model recognizes the test signal to belong to the 
correct category. Conversely, a false negative occurs when the signal is 
classified as belonging to another category, while a false positive occurs 
in the detected category. The accuracy, expressed as a percentage and 
represented by the diagonal values in Table 4, is calculated as the 
number of true positives divided by the total number of tests in each 
category. The misclassifications, including false positives and false 
negatives, are represented by the number of such occurrences divided by 
the total number of tests in each category. As an example, in Table 4, the 
keyhole pores tested signals were accurately classified as keyhole pores 
with a high accuracy rate of 96%, while 2% were classified as conduc-
tion mode and 2% as LoF pores. From this table, it is observed that 
classification results are higher than 96% for all three categories. We can 
therefore conclude that the model can be generalized to predict, with 
high confidence, the regime of a new, unseen parameter set if it is sur-
rounded (in the processing map) by parameter sets used to train the 
algorithm. The generalization here can be thought of as a type of 
interpolation. 

Fig. 6. Example of a spectrogram for the three regime related categories.  

Fig. 7. Scheme of the CNN architecture with two convolutional layers and two 
fully connected layers. 
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3.2. Influence of the position, number of parameter sets and choice of 
process parameters on the classification accuracy 

While the previous sub-section demonstrated the interpolation 
abilities of our CNN algorithm, the present section investigates the in-
fluence of different factors on the classification accuracy of the tested 
parameter sets to establish the conditions required to construct a robust 
model. 

For each process regime, the factors considered to influence the 
classification accuracy are:  

• The position (in the processing map) of the parameter sets chosen for 
the training database as compared to the tested (unseen) parameter 
set.  

• The number of sets in the training database  
• The influence of the chosen process parameters: laser power, laser 

speed, and normalized enthalpy.  

• The relative normalized “distance” in terms of laser power, laser 
speed, and normalized enthalpy (dp, ds and,dΔE) between the average 
values of the parameter sets considered in training and the tested 
(unseen) parameter set. 

The same CNN architecture (Fig. 6) is used. 

3.2.1. Influence of the position of the parameter sets in the training 
database with respect to the tested (unseen) parameter set 

To study the influence of the position of the training parameter sets 
with respect to the unseen parameter set, the four extreme parameter 
sets (n◦ 1, 4, 5, and 8 in Fig. 3 and Table 3), in terms of laser power and 
speed, are successively chosen as the unseen parameter set. The 
remaining 12 other parameter sets are, each time, used for training the 
ML. Table 5 shows the corresponding 3-by-3 confusion matrices for the 
classification of the three regimes. The unseen parameter set has either 
the highest speed (n◦8, Table 5 a.), the highest power (n◦ 1, Table 5 b.), 
the lowest speed (n◦5, Table 5 c.), or the lowest power (n◦4, Table 5 d.). 

Table 4 
Confusion matrix for a CNN model trained on 12 parameter sets and tested on an unseen 13th parameter set.  

Table 5 
Confusion matrices for CNN models trained with twelve parameter sets and tested on the a. highest speed set, b. highest power set, c. lowest speed set, and d. lowest 
power set.  
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Overall, it can be seen that the classification accuracy remains high, 
although slightly lower values are obtained in keyhole pores and con-
duction modes for the “highest speed” unseen parameter set when 
compared to the earlier case for which the unseen parameter was the 
central black point (Table 4). However, the classification accuracy in 
conduction mode for the “lowest power” unseen parameter set, sample 
n◦4, is significantly lower (75%). This decrease can be correlated to the 
fact that this set is located near the boundary between the conduction 
mode domain and the LoF pores domain (see Fig. 5). The micrographs of 
sample n◦4 of the conduction mode and of sample n◦1 of the LoF mode are 
displayed in Fig. 8.a. and Fig. 8.b., respectively. Although scattered LoF 
pores can be observed in Fig. 8.b., it can be seen that the microstructures 
are similar in terms of melt pool dimensions. The average melt pool 
depth and length for the conduction mode sample are equal to 63 µm and 
87 µm, respectively. In the case of the LoF pores sample, they are 57 µm 
and 82 µm, respectively. In Ghasemi et al. [24], the minimum ratio 
between the melt pool depth and the layer thickness that guarantees the 
conduction mode state was reported to be around 1.5. This ratio is here 
equal to 1.57 and 1.43 in sample 4 (conduction mode) and sample 1 (LoF 
pores mode), respectively. It is possible that a low amount of LoF pores is 
present in sample 4 (conduction mode) while not visible in the analyzed 
cross-sections. The proximity between these microstructures could 
explain the decrease in classification accuracy for this sample set, as the 
AE signals are expected to have many similar features. This means that 
for a reliable and robust model, a local decrease in accuracy could be 
indicative of a parameter set located at the border between two pro-
cessing regimes. In other words, it could help identify the frontiers of the 
processing regime domains when constructing a processing map. 

3.2.2. The number of parameter sets 
The influence of the number of sets in the training database was also 

evaluated. In addition to the 12 sets previously used (Table 3), training 
databases with six, eight, and ten different process parameter sets were 
employed. Once again, the trained CNN algorithm was used to predict 
the process regime of an unseen parameter set, chosen among the four 
most extreme points in the processing map (n◦1, 4, 5, and 8 in Fig. 5). 
The parameter sets present in each training database were selected in 
order to maximize dS and dP. Similar to Table 5, Table 6 presents the 3- 
by-3 confusion matrices for the three categories (process regimes) on the 
four tested unseen conditions when ten, eight, and six parameter sets are 
included in the training database. The classification accuracies with ten 
parameter sets in the training database are similar to the ones obtained 
with twelve parameter sets (Table 5). The accuracies are high, except for 
the prediction of the unseen parameter set n◦4, located at the border of 
the conduction mode domain. The lower accuracy can again be explained 
by this particular location, as discussed above, when using 12 parameter 
sets. The average classification accuracy for the models trained with 8 
parameter sets is remarkably high for all tested unseen parameter sets. 
However, when six parameter sets are included in the training, the 
classification accuracies on unseen parameter sets are, on average, lower 
and more scattered, depending on the considered tested point. Six 
parameter sets do not seem to be sufficient to obtain a robust model able 
to perform accurate predictions in other unseen locations of the 

processing map. 
In addition to the number of parameter sets in the training database, 

the position of the sets with respect to the unseen parameter set was also 
considered. In the first case, the six sets with full markers (n◦ 2, 3, 6, 7, 
10, 11) in Fig. 5 constitute the training database, and the model is 
applied for predicting the processing regime of the central point, n◦13 
(in black in Fig. 5). The accuracy results are compared with those ob-
tained in the second case, i.e., when the six sets with empty markers 
(n◦1, 4, 5, 8, 9, 12) in Fig. 5 are in the training database, and the model is 
also applied on the unseen central point, n◦13. In both cases, the average 
value of the process parameters considered in the training database are 
the same as for the unseen parameter set (both in terms of laser power 
and speed). However, the full marker sets are closer to the central point 
than the empty markers. It can be seen in Table 8 that all classification 
accuracies are very high (>91%) and that no significant difference be-
tween the two configurations can be noted. 

From these results, it can be highlighted that the number of param-
eter sets in the training base can be lowered down to six if the points are 
surrounding the unseen parameter set. The average RMS “distance” in 
power (dp_RMS) and in speed (ds_RMS) between the training sets and the 
unseen parameter set is given in Table 7, considering either the closest or 
the most distant sets. Table 8. 

dP RMS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

1
(Ptraining − Punseen)

2

√

(3) 

The RMS distances (dp_RMS, ds_RMS) give us an evaluation of how far 
the training set is from the testing set. Where the normalized relative 
distances (dS, dP) give us an indication on how the training sets are 
distributed around the tested set. 

The model has a good classification accuracy both when the sets are 
close to the unseen set (small dp_RMS and ds_RMS values as shown in 
Table 7) as when the sets are more distant from the tested set. Therefore, 
the parameters that seem to have a higher importance are the relative 
normalized distances. 

3.2.3. The process parameters: speed, power, normalized enthalpy 
The influence of the choice of process parameters in the training set 

was also studied. The processing map is expressed in terms of laser speed 
and power. The normalized enthalpy (Eq. 1) is a function of these two 
process parameters. In each process regime, the four-parameter sets with 
the same speed (i.e., “iso-speed” parameter sets, n◦1, 2, 3, 4 in Fig. 3) 
were chosen to compose the training database, and the trained CNN was 
used for predicting the process regime of the central unseen parameter 
set (n◦ 13). The same strategy was used with the four “iso-power” (n◦ 5, 
6, 7, 8 in Fig. 3) and four “iso-normalized enthalpy” (n◦ 9, 10, 11, 12 in 
Fig. 3) parameter sets. The aim was to determine how the algorithm 
behaves if one parameter (speed, power, or normalized enthalpy) is 
constant for all parameter sets in the training database, and remains the 
same for the unseen parameter set. The confidence matrices in Table 9 
show that for the three considered training sets, the classification ac-
curacies are high (> 88%), despite the fact that only four parameter sets 
were used for the training. 

Fig. 8. Micrograph of a cross section of the sample. a) n◦4 in the conduction mode domain and b) of the n◦1 in the LoF pores domain. The parameter sets used for these 
samples are at the boundary between the conduction mode and LoF pores domains. 
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Additionally, for each process regime (keyhole pores, conduction 
mode, and LoF pores), the set with the highest power (n◦1) was selected 
as the unseen parameter set, and the two sets with the lowest power 
values (n◦ 3 and 4) were used for the training database. The resulting 
classification accuracy was then compared with the one obtained with a 
training database made of the two sets with the smallest dP to the unseen 
parameter set n◦1 (i.e., n◦2 and 13). The same procedure was applied 
considering the laser speed or the normalized enthalpy instead of the 
power. In the former case, the unseen parameter was chosen as n◦8, and 
the CNN was either trained with the parameter sets n◦5 & 6 or with the 

Table 6 
Confusion matrices for CNN models trained with ten, eight, and six parameter sets and tested on the highest speed set, lowest speed set, highest power set, and lowest 
power set.  

Table 7 
The RMS “distance” values dp_RMS (considering laser power) and ds_RMS 
(considering laser speed) between the training parameter sets and the central 
unseen parameter set. The close parameter sets and distant ones are 
distinguished.   

dP_RMS (W) ds_RMS (mm/s) 

Distant training sets to the unseen set  12  61 
Closest training sets to the unseen set  5  16  
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n◦13 & 7. In the latter case, the unseen parameter was chosen as n◦12, 
and the CNN was either trained with the parameter sets n◦9 & 10 or with 
the n◦11 & 13. The results are presented in Table 10. 

One can observe that the average classification accuracy is 18% 
higher when the training parameter sets are closer to the unseen 
parameter set in terms of laser speed (smaller dS) and 5% higher when 
they are closer in terms of laser power (smaller dP). The difference can be 
explained by the fact that, in the present DoE, the power range is smaller 
than the speed range. It can still be concluded that the smaller dS and dP, 
the higher would be the classification accuracies for the unseen 

parameter set. 
However, when comparing the influence of dΔE, it can be seen that 

the accuracies are similar for both conditions (on average, 75% for a 
smaller dΔE, and 78% for a higher dΔE). Table 11 presents the values of 
dΔE along with the corresponding values of dS and dP, for the predictions 
where the difference in dΔE is considered. While dΔE is higher for the 
sample in conduction mode, the corresponding dS is equal to zero, which 
could explain that a higher classification accuracy (94% compared to 
64%) is achieved, even though dΔE is higher. It can be presumed from 
these observations that the relative normalized distance in terms of 

Table 8 
Confusion matrices for CNN models trained with the a. six closest parameter sets to the unseen central parameter set, and the b. six more distant points, for each regime.  

Table 9 
Confusion matrices for CNN models predicting the process regime of an unseen ‘central’ parameter set, with one of the parameters being the same as the one in the 
training set. Three training databases made of 4 parameter sets were considered with a. iso-speed, b. iso-power, and c. iso-enthalpy.  
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normalized enthalpy is not a very relevant parameter. 

3.2.4. Relative normalized distance in terms of power and speed 
All the aforementioned CNN prediction results motivate an in-depth 

investigation of the influence of the number of parameter sets and the 
relative normalized distance in terms of power and speed (dP and dS) on 
the robustness of the model’s performance. Several models were trained 
with various numbers of parameter sets (from two to twelve), with 
different relative positions of the training sets with respect to the unseen 
parameter set, and with different values of dP and dS. The resulting 
classification accuracies were averaged between the three process re-
gimes (keyhole pores, conduction mode, and LoF pores). Fig. 9 and Fig. 10 

Table 10 
Confusion matrices for CNN models trained on two parameter sets and used for predicting the process regime on an unseen condition with the highest power, speed or 
enthalpy values compared to the training parameter sets, distinguishing training databases with the smallest and highest dS, dP, and dΔE values.  

Table 11 
Values of dS, dP, and dΔE when predicting the process regime of an unseen 
condition with the lowest and the highest dΔE.   

dS [%] dP [%] dΔE [%] 

Closest Most 
distant 

Closest Most 
distant 

Closest Most 
distant 

Keyhole pores  21  31.6  8.6  6.6  3  28.6 
Conduction 

mode  
6  0  15.7  39.8  12.5  40 

LoF pores  6  5.3  8.5  18  5.5  22  

Fig. 9. Average classification accuracy of the processing regime of the unseen 
parameter set, as a function of the relative normalized distance in terms of 
speed dS for different numbers of parameter sets included in the training 
database (from 2 to 12). 

R. Drissi-Daoudi et al.                                                                                                                                                                                                                         



Additive Manufacturing 67 (2023) 103484

12

present the average classification accuracy for the unseen parameter sets 
as a function of the relative normalized distance in terms of speed (dS) 
and power (dP), respectively, for the different numbers of training sets 
used in the CNN database. The linear regressions of accuracies, obtained 
with a common number of training sets, are plotted in dotted lines 
(Fig. 9 and Fig. 10) in order to highlight tendencies. 

It can be first observed that the higher the number of parameter sets 
included in the training database, the higher the average classification 
accuracy. Additionally, a general trend can be highlighted: the higher 
the relative normalized distance (for both dP and dS), the lower the 
classification accuracies. One outlier is the prediction of the sample n◦4 
regime (conduction mode), when using 10 and 12 training sets. The 
processing conditions refer, as aforementioned, to the intersection be-
tween the conduction mode domain and the LoF pores domain. In the 
context of predicting processing maps, and as already noted, this feature 
is interesting, as it indicates a transition zone between 2 process regimes. 
When eight parameters are included in the database, the prediction for 
this condition n◦4 has a higher accuracy (93%), which explains the 
excellent average results with 8 training sets, even better than those with 
10 or 12 training sets. The relatively scattered nature of the results can 
be explained by the statistical behavior of the CNN. 

Nevertheless, if at least eight parameter sets compose the training 
database, the resulting model seems to be robust and able to predict with 
high confidence (>88%) the entire studied processing map, regardless of 
the distance in terms of speed and power (up to a difference of 
approximatively 30%). When training with only two parameter sets, the 
results are very scattered and seem more related to the process param-
eters differences (power and speed) than to the laser-material interac-
tion. In other words, using only two training sets is not enough to have a 
reliable model. 

In order to compare the influence of the relative normalized distance 
in power and the relative normalized distance in speed, Fig. 11 presents 
the linear regressions of all results displayed in Fig. 9 and Fig. 10, when 
at least four parameter sets were included in the training database, and 
distinguishing between the two types of distance. The systematically 
larger slopes of accuracies as a function of dP point towards a bigger 
influence of the relative normalized distance in power. The difference in 
slope between the two considered linear regressions (as a function of dS 
and dP) varies significantly depending on the number of training 
parameter sets (from 17% with 4 and 6 parameter sets up to 80% with 10 
parameter sets). Although the influence of dp appears somehow larger, 
both dS and dP should be minimized to guarantee high classification 

accuracies. 

4. Conclusions 

This work presents the results of a CNN model applied to spectro-
grams extracted from measurements of an airborne acoustic sensor for 
the classification of LPBF processing regimes. The microphone placed 
inside a custom-design LPBF machined recorded the acoustic signals of 
the process for 39 different process parameters, i.e., thirteen parameter 
sets per process regime (keyhole pores, conduction mode, or LoF pores). 
The labeling of the categories for each process condition was verified by 
cross-section analysis. A CNN model was optimized for spectrograms 
extracted from the acoustic signals filtered with a low pass filter at 
60 kHz, downsampled 4 times, and normalized. 

The aim of this contribution was to establish a methodology for the 
construction of a robust training database, leading to a CNN able to 
predict the processing regime in conditions unseen in the database, 
covering the entire LPBF processing map of 316 L steel. The three 
considered regimes are LoF pores, conduction mode, and keyhole pores. 
The CNN model is trained on a given number of laser parameter sets and 
used for predicting the process regime of an unseen parameter set. The 
resulting classification accuracy is very high (>97%), proving that it is 
possible to construct a model general enough to identify the features 
related to specific laser-material interactions and leading to specific 
metallurgical states. Three main parameters are found to influence the 
classification accuracy. The first one is the relative normalized distance 
in terms of power and speed between the average laser parameters used 
in the training sets and those of the unseen parameter set (dS, dP). The 
second is the number of parameter sets included in the training data-
base, and the third is the position (in the processing map) of the training 
sets relative to that of the unseen parameter set. These three parameters 
have been proven to be interdependent. Results highlight that higher dS 
and dP values lower the classification accuracies. The influence of the 
relative normalized distance in terms of normalized enthalpy dΔEdoes 
not seem to be relevant. However, the influence of dP seems to be higher 
than that of dS. Moreover, it has been concluded that, on average, the 
higher the number of parameter sets in the training database, the higher 
the classification accuracy. Two parameter sets are not enough to allow 
a model to generalize. A minimum number of eight training sets is 
identified, leading to high classification accuracies (>88%) for all 
relative normalized distances and positions considered in the present 
DoE. This number can be lowered to six if the training sets surrounding 
the unseen parameter set have a dS and dP lower than 5%. If one process 
parameter (speed, power, or normalized enthalpy) is constant among all 

Fig. 10. Average classification accuracy of the processing regime of the unseen 
parameter set, as a function of the relative normalized distance in terms of 
power dP for different numbers of parameter sets included in the training 
database (from 2 to 12). 

Fig. 11. Linear regressions of the average classification accuracy when pre-
dicting the process regime of an unseen parameter set as a function of the 
distance dS (speed) and dP (power). 
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sets in the training database and common to the unseen parameter set, 
then four training sets are enough for predicting the process regime with 
high accuracy, regardless of the particular choice of process parameters. 

In summary, one model trained with eight distinct laser parameter 
sets randomly distributed in each process regime domain would be 
sufficient to classify the entire processing map. Once a robust model is 
obtained, a decrease in the classification accuracy can help identify the 
boundaries between different domains in the 2D processing map. This 
can significantly facilitate the time-consuming building of an LPBF 
processing map for a given alloy. In the context of in-situ acoustic 
monitoring for the control of the LPBF process, we demonstrate here that 
unexpected processing conditions happening during the fabrication of a 
3D part could be detected, for example, by predicting from the AE sig-
nals a regime different from the conduction mode. In future work, the 
understanding of the features and frequencies responsible for specific 
laser material interactions, in each process regime, will be investigated 
based on the present results. The same methodology could be applied to 
the detection of other various critical events, such as crack propagation 
or microstructure changes. 
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