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A B S T R A C T

A fully variable valve train significantly increases the degree of freedom of the control of internal combus-
tion engines. Cylinder deactivation, thermal management, alternative combustion strategies, and minimized
pumping losses are just a few examples enabled by freely adaptable intake and exhaust valve timings. This
paper presents a method to achieve the accurate tracking of load trajectories under stoichiometric conditions.
A feedback controller is designed with a mixed-sensitivity ∞ synthesis method. The underlying system plant
is modeled by a combination of a mean-value model of the cylinder-internal processes and a neural network
to map the correlation between valve timings and cylinder charge. All experiments are conducted on a test
bench with a spark-ignited engine equipped with an internally developed fully variable valve train called
FlexWork. With this method, a mean absolute error of 0.07 bar in indicated mean pressure and of 0.009 in
air–fuel equivalence ratio is achieved for the tracking of the reference trajectory. Furthermore, a cost function
dependent online optimization of the internal exhaust gas recirculation is conducted without affecting the
tracking performance of the load and stoichiometry. Depending on the parametrization of the cost function,
nitrogen oxide or hydrocarbon pollutants can be reduced by up to 46% or 17%, respectively.
. Introduction

Electric vehicles (EVs) are becoming more popular and penetrate
ome market segments faster than others (Fuinhas et al., 2021; Tch-
tchik, Zvi, Kaplan, & Blass, 2020). In 2021, the global market share of
Vs lies below 9% (IEA, 2022). Today, the internal combustion engine
ICE) propels the majority of vehicles and contributes to about 23% of
lobal greenhouse gas emissions (Hoeft, 2021). Segments such as long-
ange, heavy-duty, off-road and marine applications will in the near
uture still largely rely on chemical fuels (Horvath, Fasihi, & Breyer,
018; Kalghatgi, 2018; Malaquias et al., 2019). To decarbonize these
egments, renewable chemical energy carriers, such as hydrogen (Sha-
idi, Najafi, & Yusaf, 2021; Stepien, 2021), methane (Akansu, Dulger,
ahraman, & Veziroglu, 2004; Distaso et al., 2020), methanol (Sarıkoç,
021; Verhelst, Turner, Sileghem, & Vancoillie, 2019), ammonia (Car-
oso et al., 2021; Dolan, Anderson, & Wallington, 2021), dimethyl
ther (Awad et al., 2020; Awogbemi, Kallon, Onuh, & Aigbodion, 2021;
utrasari & Lim, 2021), or polyoxymethylene dimethyl ether (Pélerin,

∗ Corresponding author at: Automotive Powertrain Technologies Laboratory, Empa Swiss Federal Laboratories for Materials Science and Technology, 8600
ubendorf, Switzerland.

E-mail address: andyn.omanovic@empa.ch (A. Omanovic).

Gaukel, Härtl, Jacob, & Wachtmeister, 2020; Popp et al., 2019), are
required to substitute fossil oil based fuels. However, since manufactur-
ing cost and availability of renewable energy sources are challenging,
the decarbonization of fuel will be decision based rather on economical
than on ecological considerations (Pischinger, 2019; Schemme et al.,
2020; Towoju, 2021).

To effectively and immediately reduce global greenhouse gas emis-
sions, not only the share of EVs must be increased, but the technological
advancements of ICEs, such as electric hybridization and more efficient
combustion strategies, must be further stimulated. Electric hybridiza-
tion with charging capability is becoming a common standard in vehi-
cles with an ICE since this approach promises a significant reduction
of tailpipe emissions. However, if the hybrid vehicle is not charged
as often as intended, the ICE is operated instead, which mitigates
the expected reduction of emission. Thus, the further improvement of
thermal efficiency and minimization of pollutants of ICEs will remain a
crucial part of research and development efforts (Muratori et al., 2021;
Song & Aaldering, 2019).
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1.1. Current technologies

To increase the maximal thermal efficiency across the relevant
operating range of an ICE, various methods can be applied. In this
paper, these methods are grouped as follows:

Propulsion system. The reduction of friction and weight of moving
parts generally improves the efficiency (Mafrici, 2020; Usman & Park,
2016). Downsizing and supercharging or electric boosting as well
lead to a higher power density and increased efficiency (Alshammari,
Alshammari, & Pesyridis, 2019; Emran et al., 2019; Xia et al., 2020;
Xue & Rutledge, 2017). Electric start-stop system also eliminate idling
losses (Dvadnenko, Arhun, Bogajevskiy, & Ponikarovska, 2018). An-
other advantage of an additional electric motor in the power train
is the possibility of recuperating circulating energy and of shifting
the operating point, which improves fuel economy (Benajes, Gar-
cía, Monsalve-Serrano, & Martínez-Boggio, 2019; García, Monsalve-
Serrano, Martínez-Boggio, & Wittek, 2020).

Combustion. The thermal efficiency is improved by increasing the com-
pression ratio, which on the other hand is restricted by knock lim-
itations in the case of spark-ignited engines. However, the risk of
knock can be reduced by methods such as direct injection or water
injection (Bozza, Bellis, & Teodosio, 2016; Hoppe, Thewes, Baum-
garten, & Dohmen, 2015; Zhu et al., 2019). Furthermore, reducing
wall heat losses, for instance by thermal swing coating of combustion
chamber surfaces, positively affects the thermal efficiency (Caputo
et al., 2019; Saputo et al., 2020). Also lean combustion concepts with
diffusion flame, pre-chamber, or pilot ignition are helpful to improve
efficiency (Alvarez, Couto, Roso, Thiriet, & Valle, 2018; Zurbriggen,
Hutter, & Onder, 2016). Thereby, an efficiency above 45% is achievable
for passenger car sized engines (Soltic, Hilfiker, & Hänggi, 2019).
However, such lean spark- and compression-ignited concepts require
an adequate exhaust aftertreatment system.

Gas exchange. Currently, the gas exchange of an ICE is being improved
with various mechanisms acting on the valves such as phase and
lift controllers or switching cam profiles. Nonetheless, these systems
can be optimized only for a certain operating range. The full po-
tential of a gas exchange optimization can only be exploited by a
fully variable valve train (FVVT). In the following, the focus lies on
spark-ignited engine systems. However, most of these concepts are
also applicable to compression-ignited engine systems. The pumping
losses occurring in part-load operation can be minimized by setting
the cylinder charge with appropriate valve timings instead of with the
conventional throttle (Balmelli, Zsiga, Merotto, & Soltic, 2020). For
instance, with Miller valve timings (Judith, Neher, Kettner, Schwarz,
& Klaissle, 2020) the intake valve closes early and with Atkinson valve
timings (Oh et al., 2018) the intake valve closes late. Both approaches
are not just minimizing pumping losses, but they also increase the
thermal efficiency due to an extended expansion stroke relative to the
compression stroke (Zsiga, Omanovic, Soltic, & Schneider, 2019b). Fur-
thermore, the variable compression ratio in combination with external
exhaust gas recirculation (EGR) allows the reduction of the formation
of nitrogen oxides (NOx) and hydrocarbons (HC) while the thermal
efficiency improves (Feng, Wei, & Pan, 2018). As efficiency increases
with load, cylinder deactivation is advantageous in part-load operation
since it disables a certain number of cylinders while the remaining
cylinders remain operational at an increased load (Kuruppu, Pesiridis,
& Rajoo, 2014; Leone & Pozar, 2001; Ritzmann, Zsiga, Peterhans, &
Onder, 2020; Zhao, Xi, Wang, & Wang, 2018).

Research into FVVTs has focused primarily on accurately determin-
ing the expected improvements in efficiency and examining novel con-
trol strategies, such as cylinder deactivation. Studies that have gathered
empirical data from prototype systems to validate theoretical studies

almost exclusively use steady-state measurements, but do not analyze
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transient operation (Fernandes, Pimenta, Rodrigues, de Souza Monte-
mor, & Barros, 2016; Flierl, Lauer, Breuer, & Hannibal, 2012). Nowa-
days, model predictive control algorithms are often used and studied
to optimize transient operation (Gosala et al., 2021; Hänggi, Frey, van
Dooren, Diehl, & Onder, 2022; Koli, Egan, Zhu, & Prucka, 2023; Yang
et al., 2019; Yin, Turesson, Tunestal, & Johansson, 2020). Although
these studies are conducted on engine systems with variable valve
timing, the valve actuation is still based on a camshaft and is therefore
not fully variable. Of the few studies done on the dynamic control of
FVVT systems, the most extensive investigation of which the authors
are currently aware, Pischinger, Salber, van der Staay, Baumgarten,
and Kemper (2000), outlines various high-level operating modes to
achieve load control and variable internal EGR. However, a general
system-theoretic design of a control system for FVVT applications is
not discussed. Several variable valve concepts have been introduced by
industry. The most advanced include BMW’s valvetronic system (Unger,
Schwarz, Schneider, & Koch, 2008), the MultiAir system by Fiat Power-
train Technologies (Haas & Rauch, 2010), the intelligent variable valve
timing and lift control system i-VTEC by Honda, and the continuous
variable valve duration system CVVD by Hyundai (Lou & Zhu, 2020).
For commercial reasons, the control system design methods for these
systems are not scientifically published. However, none of these sys-
tems are fully variable as all systems still rely on a mechanical cam
which limits the crank angle range in which valves may be opened.
Overall, no significant previous research has been found that is relevant
to the objective of this paper. A novel control synthesis method to
enable transient operation of a FVVT system is thus presented here.

1.2. Objective

The development of an FVVT for use in internal combustion engines
has been investigated in various forms over the last decades (Fernandes
et al., 2016; Flierl et al., 2012; Haas & Rauch, 2010; Maas, Neukirchner,
Dingel, & Predelli, 2004; Pischinger et al., 2000; Unger et al., 2008).
Conceptually, the introduction of an FVVT significantly increases the
number of degrees of freedom in the control of each combustion cycle.
However, to make the most of the flexibility offered by a variable
valve train system, a novel control design is required. Therefore, the
objective in this paper is to synthesize a controller to allow the dynamic
operation of an internally developed fully variable valve train system
called FlexWork (Zsiga, Omanovic, Soltic, & Schneider, 2019a). The
FlexWork system operates without a cam, allowing a greater flexibility
than current industrialized systems. Previous work shows significant ef-
ficiency improvements in steady-state operation enabled by FlexWork,
such as an x-stroke operation (Omanovic, Zsiga, Soltic, & Onder, 2021)
and cylinder deactivation (Zsiga et al., 2019a).

The control system presented in this paper contributes to the goal of
following trajectories of the mean indicated pressure 𝑝mi as accurately
as possible with a desired air–fuel equivalence ratio 𝜆 of 1 and an
emission-optimal EGR rate. The mean indicated pressure is chosen over
torque as the tracking objective since it can be evaluated for each
cylinder individually. By applying Miller valve timings and a wide open
throttle, the desired charge is adaptable for each cylinder and each
combustion event individually. Furthermore, an FVVT allows to adapt
not only the intake valves but also the exhaust valves on a cycle-to-cycle
basis. Thus, the amount of EGR can be set almost arbitrarily for every
cycle as long as it does not prevent a charge of fresh air/fuel mixture
sufficient for the requested load and does not exceed certain maximal
rates where an ignition of the mixture is not reliably possible. The
𝑝mi value of the trajectory is fed into a cost function which estimates
NOx and HC emissions. The optimization of this cost function which
depends on a weighting parameter leads to a required EGR rate, which
is achieved by setting the valve timings at the gas exchange top dead
center accordingly. The controller is designed to consider the changes
in EGR rate such that 𝑝 and 𝜆 are not affected.
mi
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Table 1
Details of the equipment used on the engine test bench.

Equipment Details

Dynamometer Dynas3 LI250 (Horiba)
Engine basis EA111 (Volkswagen)
Displacement 1.4 L, 4 cylinders
Bore/stroke 76.5 mm/75.6 mm
Compression ratio 10
Fuel Port-injected CNG
Injectors NGI2 (Bosch)
Valve train FlexWork

(internally developed)
Valve lift measurement Linear encoders

(Elgo Electronics)
Valve lift 1-9 mm, exhaust and intake
Valve timing individual on all valve pairs
Engine control unit MicroAutoBoxII (dSPACE)
Stoichiometry sensors Wide-range, LSU 4.9 (Bosch)
In-cylinder piezoelectric
pressure sensors Type 6061B (Kistler)
Fuel flow measurement RHM015 (Rheonik)
Air flow measurement Sensyflow P (ABB)
Torque transducer T40 (HBM)
Flywheel Standard dual mass
Gearbox None
Exhaust gas analyzer Mexa-One (Horiba)

1.3. Structure

The paper at hand is structured as follows: In Section 2 the engine
test bench used is presented. Section 3 discusses the formulation,
parameter identification, and validation of a cylinder-specific mean-
value engine system model, followed by the analysis and development
of a control synthesis technique for the fully variable valve train
engine system. The results of the trajectory tracking with this controller
and the discussion are presented in Section 4. Section 5 contains the
conclusion and the outlook.

2. Setup of the engine test bench

In the first part of this section, the base engine used and the test
bench equipment are presented. In the second part, the functionality
principle of the internally developed FVVT is explained.

2.1. Engine test bench

The base engine for this project is a 1.4 L spark-ignited Volkswa-
gen engine of the type EA111 whose camshaft driven valve train is
replaced by an electro-hydraulic actuated FVVT called FlexWork (Zsiga
et al., 2019a). While the original engine supercharging setup consists
of a mechanical compressor and a turbocharger, for simplicity, the
setup is reduced to the mechanical compressor only. The operation
of a turbocharger can be emulated with an additional flap to create
back pressure in the exhaust. The engine control software developed
in-house runs on a MicroAutoBoxII, a rapid prototyping system by
dSPACE. All cylinders are equipped with pressure transducers such that
the center of combustion can be evaluated and controlled in real-time
to remain at an efficient optimal value of 8◦ crank angle (CA) after
the top dead center (TDC). In each exhaust manifold runner a wide-
band lambda sensor is installed to ensure a stoichiometric combustion
by cylinder-individual feedback control. Compressed natural gas (CNG)
is used as a fuel, which is port-injected. The fuel mass flow is measured
with a Coriolis sensor and the air mass flow is measured with a hot
film anemometer. The exhaust gases are extracted directly after the
exhaust manifold and are analyzed in the motor exhaust gas analyzer
of the type Mexa-One. All emission-related results stem from raw
emission measurements. The aftertreatment system is not considered

here. Details of the equipment used are listed in Table 1.
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2.2. FlexWork – The fully variable valve train

FlexWork is a cam-less, electro-hydraulic, fully variable valve train.
Valve lift and valve timings can be selected independently and freely
on the intake and exhaust sides. To compete with current cam-based
systems, besides a maximal degree of freedom, an FVVT must offer a
low energy demand and minimal complexity in terms of design and
operation. This is achieved in the FlexWork valve train with a specific
arrangement of check valves, which offer the following advantages:

• The maximal valve lift is maintained without any additional
control action.

• During the closing procedure, the working fluid is automatically
recuperated into the high-pressure reservoir.

• Since no control input is required at high flow rates, relatively
slow actuators are sufficient.

• During the valve motion, no low-level electronic feedback control
is required.

Furthermore, the hydraulic fluid is a 1:1 mixture of water and ethylene
glycol, as it is often used as an engine coolant. This mixture possesses
a higher stiffness compared to hydraulic oils, which causes lower
capacitive losses during the operation of the FVVT. The energy demand
of FlexWork is comparable to the operation of a camshaft-driven valve
train. Additionally, FlexWork allows for a completely oil-free cylinder
head design, which makes it possible to reduce additives in the engine
oil since high surface pressures at the cam lobes do not occur.

The working principle of FlexWork is based on an asymmetric
hydraulic pendulum that can be described as a mass–spring-system
(Schechter & Levin, 1996). Fig. 1 shows the core components of the
FlexWork mass–spring system on the left-hand side as a schematic and
on the right-hand side as a computer-aided design (CAD) rendering,
which depicts one intake-side module cut in its half-plane. The hy-
draulic circuit comprising check valves and the detailed assembly of
the hydraulic valve are not shown. A solenoid (a) actuates a three-way,
two-positions valve (b). When actuated, the hydraulic valve enables
the fluid in a high-pressure reservoir (c) to apply a hydraulic force
on the working piston (e). As a consequence, two gas exchange valves
(h) connected over a valve bridge (f) are opened and the gas exchange
valve springs (g) are compressed. During this opening process, the
system overshoots its equilibrium point and fluid is replenished. At
the turn-over point, i.e. at the maximal valve lift, the fluid is trapped
by check valves and the gas exchange valves cannot return to the
equilibrium point. As a consequence of the energy stored in the springs
(g), the pressure of the hydraulic fluid exceeds the level of the high-
pressure reservoir (c). With the deactivation of the solenoid (a) the
recuperation of the hydraulic fluid into the high-pressure reservoir (c)
is enabled. The remaining fluid is then drained to the low-pressure
reservoir (d) until the gas exchange valve springs reach their initial
length, i.e. until the gas exchange valves are fully closed.

The equation

𝑇valve = 𝜋 ⋅

√

𝑀comp

𝑘spring
(1)

expresses the duration of half a period which such a mass–spring
system excites. This is the time the gas exchange valves require to
go from zero lift to the final lift, as well as the time required for
the closing procedure. It depends on 𝑘spring, the cumulative stiffness of
both gas exchange valve springs (g), and the mass 𝑀comp of all moving
components, i.e. the mass of the working piston (e), the valve bridge
(f), the gas exchange valves (h), and approximately one third of the
mass of the springs (g). Once the system design is fixed and thus the
value of 𝑇valve is known, the hydraulic circuit is designed such that the
recuperation procedure, which takes 𝑇valve seconds, can be completed
before the remaining fluid is purged to the low-pressure reservoir.
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Fig. 1. A schematic of the hydraulic core components and a CAD rendering of the
fully variable valve train mass–spring system named FlexWork with the following
components: (a) solenoid, (b) hydraulic 3/2-way valve, (c) high-pressure reservoir,
(d) low-pressure reservoir, (e) working piston, (f) gas exchange valve bridge, (g) gas
exchange valve springs, and (h) gas exchange valves.

Fig. 2. A schematic representation of the control circuits and the various stages of a
gas exchange valve lift of the FlexWork system.

Fig. 2 shows in the lower part the various stages during a single
gas exchange valve lift and in the upper part the individual control
circuits of the intake and the exhaust side of the FlexWork system.
The only difference between the intake and exhaust sides are the lift
adjustment mechanisms. For the former, the lift 𝑦INT is determined by
he hydraulic pressure level 𝑝hydr . For the latter, the lift 𝑦EXH is given

by a slanted edge which is set by a stepper motor 𝜑stepper . The slanted
edge and the increased hydraulic pressure enable the exhaust valves to
open against high cylinder pressures without overshooting. The current
system is set up with a maximum hydraulic supply pressure of 200 bar.
This allows the exhaust valves to open approximately 60 ◦CA after the
ignition TDC. The opening and closing instances of the intake and
exhaust valves, 𝑢IVO, 𝑢IVC, 𝑢EVO, 𝑢EVC, are determined by the current
duration 𝐼INT and 𝐼EXH, respectively. During 𝐼INT∕EXH the solenoid is
energized and, hence, the valves are kept open. The termination of
the current supply initializes the closing process which begins with the
recuperation procedure. Subsequently, the remaining fluid is purged
 a

4

Fig. 3. A schematic overview of the overall engine model structure.

into the low-pressure reservoir. Finally, to avoid wear, shortly before
landing the gas exchange valves are decelerated with a fixed reduction
of the flow cross-section. Details on each stage of the valve lift are
published in Zsiga et al. (2019b).

3. Mean value model and controller synthesis

In this section, the choice for the development of a mean-value
model underpinning the control design and the ∞ method of con-
troller synthesis are discussed. To minimize the dimensionality of the
required mapping, the following restrictions are applied:

• Constant engine speed of 𝜔e = 2000 rev∕min.
• The engine load is set by Miller valve timings, i.e. 0◦ < 𝑢IVC < 180◦

after gas exchange TDC, while the throttle is always wide open.
• 𝑦INT is kept constant at approximately 2.2 mm.
• No valve overlap, i.e. intake and exhaust valves are never simul-

taneously open and 𝑢IVO = 𝑢EVC.
• For a fuel optimal expansion, 𝑢EVO equals 170◦ after ignition TDC

for all operating points.
• All sub-models are identified only under stoichiometric engine

operation.

The model assumes a stoichiometric operation of the engine. Deviations
from such operation are considered in the controller synthesis.

3.1. Model setup

To describe the engine system, the model is split into a neural
network and a mean-value model 𝑃grey(𝑠) as shown in Fig. 3. The
neural network describes the expanded actuation capabilities that the
FlexWork system offers and takes 𝑢IVO∕EVC(𝑡), 𝜔e, 𝑢IVC(𝑡) and 𝜃FlexWork
as inputs. Here, 𝜃FlexWork contains parameters of the valve train such
as 𝑝hydr and 𝜑stepper . The output of the neural network is the inducted
air mass flow rate 𝑚̇𝛽 (𝑡). The mean-value model 𝑃grey(𝑠) models the
emaining physical processes taking place in the engine. Its inputs are
IVO∕EVC(𝑡), 𝜔e, 𝑚̇𝛽 (𝑡) and the injection duration 𝑢𝜑(𝑡). The cylinder-
pecific mean indicated pressure, 𝑝mi(𝑡), and the air–fuel equivalence
atio, 𝜆(𝑡), comprise the model outputs. Three main sub-models make
p the mean-value model: an injector model, a steady-state model of
he exhaust gas recirculation (EGR) rate, and a Willans approximation
f the engine’s 𝑝mi(𝑡) and efficiency characteristics. This approach al-
ows the nonlinear FlexWork system behavior to be described while
aintaining the ability to use first-principle models to describe the

emaining processes taking place in the engine system. In addition, this
tructure enables a controller to be developed for 𝑃grey(𝑠) separately,

llowing the FlexWork system behavior to be isolated.
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Neural network for the FlexWork system. The additional degrees of
freedom to control the combustion process enabled by the FlexWork
valve train all affect the volumetric efficiency of the engine system.
Furthermore, the relation between the inputs to the FlexWork system
and the inducted air mass flow rate into the cylinder, 𝑚̇𝛽 (𝑡), is highly
nonlinear. These effects could be captured by computational fluid
dynamics simulations. However, as a more computationally efficient
approach, the volumetric efficiency is represented by a neural network,
i.e. a multi-layer perceptron regressor (scikit documentation page of
MLPRegressor , 2022). The architecture consists of one hidden layer with
three neurons and a rectified linear unit activation function. The target
of the neural network is 𝑚̇𝛽 . The choice of features depends on the
desired accuracy. A full neural network has the following features:

• The IVC instance, 𝑢IVC,
• the cylinder volume at the EVC instance, i.e. 𝑉EVC,
• the lift of the exhaust valves expressed by 𝜑stepper ,
• and the pressure in the intake manifold 𝑝IM relative to the envi-

ronment.

his setup allows a high accuracy of the estimation. However, 𝑝IM is
sensor output which underlies noise and physical delays. Thus, at

he cost of a marginally worse accuracy but for a more robust output,
reduced neural network is introduced. It has the same architecture

s the full neural network, but does not comprise 𝑝IM in its features.
o allow the neural network to be used in the engine control system
iscussed in Section 4, the neural network is not inverted, as it is done
ith 𝑃grey(𝑠) to form a feedforward controller. Rather, the network is

etrained with 𝑚̇𝛽 becoming a feature and 𝑢IVC the target. This approach
s feasible since for a given set of features and the boundary condition
IVO < 𝑢IVC ≤ 180 ◦CA after TDC, for each 𝑚̇𝛽 exists an unique 𝑢IVC.

rey box mean-value model. Once the inducted air charge mass flow
ate has been calculated, this quantity is used in a cylinder-specific
ean-value model. For each cylinder and for a given 𝜔e, this model

akes inlet valve opening/exhaust valve closing timing, 𝑢IVO∕EVC(𝑡),
he inducted air mass flow 𝑚̇𝛽 (𝑡), and the injection duration 𝑢𝜑(𝑡) as
nputs. Subsequently, it calculates the cylinder-specific indicated mean
ffective pressure 𝑝mi(𝑡) and the air–fuel equivalence ratio 𝜆(𝑡).

The main assumption underlying this mean-value model is that
hysical quantities (e.g. mass flows, 𝑝mi(𝑡)) are assumed to be continu-
us. This neglects the inherent discrete and reciprocating behavior of
nternal combustion engines, which is only a valid assumption at time
cales greater than that of the discrete combustion behavior (Guzzella &
nder, 2004). Given the delays present in the input–output behavior of
ngine systems and the fundamental limitations this poses to feedback
ontrol performance (Postlethwaite, 1996), this choice of model does
ot limit the feedback control performance achievable. More detailed
rocess models are therefore of limited value for feedback control
ynthesis while adding significant complexity. It is for this reason that
ynamic sensor models, such as lambda sensors in the exhaust mani-
old, can safely be neglected, and (discrete) 𝑃grey(𝑠) model quantities,
uch as 𝑢𝜑(𝑡) and 𝑝mi(𝑡), are assumed to be continuous.

njection model. A standard injection model for gaseous fuels is utilized
o relate the injection duration 𝑢𝜑(𝑡) in ◦CA to the average flow rate
̇ 𝜑(𝑡) at which fuel is injected. Under the assumptions of constant
lectrical excitation characteristics of the injection solenoid, a min-
mum fuel injection amount such that a steady-state injection rate
̇ 𝜑,ss is achieved temporarily during the combustion cycle and choked
sentropic valve behavior, as well as general mean-value behavior,
here exists an affine relationship between the average injected fuel
ass per cylinder per combustion cycle, 𝑚𝜑(𝑡), and the injection du-

ation, 𝑢𝜑(𝑡) (Cammalleri, Pipitone, Beccari, & Genchi, 2013; Onofrio,
apolitano, Abagnale, Guido, & Beatrice, 2021). This is described as

𝑚̇𝜑,ss = 𝑐d ⋅ 𝐴 ⋅
𝑝𝜑(𝑡)

√

√

𝜅 ⋅
( 2 )

(

𝜅+1
𝜅−1

)

, (2)

𝑅𝜑 ⋅ 𝜗𝜑 𝜅 + 1

5

𝑚𝜑(𝑡) =
( 𝑢𝜑(𝑡)
180◦

𝜋
𝜔e(𝑡)

− 𝜏inj

)

⋅ 𝑚̇𝜑,ss. (3)

The mean fuel flow rate, under the mean-value assumption, then fol-
lows as 𝑚̇𝜑(𝑡) = 𝑚𝜑(𝑡)

𝜔e
4⋅𝜋 . The variables 𝑐d and 𝜏inj are two constants

that can be identified for each cylinder using linear regression on
steady-state fuel injection measurements.

EGR model. The FlexWork system enables the adjustment of the ex-
haust valves such that an arbitrary EGR rate can be achieved. The
minimal EGR rate results from 𝑢IVO∕EVC(𝑡) being set to the TDC. Note
that through scavenging, i.e. the simultaneous opening of the ex-
haust and the intake valves while the pressure in the intake is higher
than in the exhaust, the amount of residual gas could be further
decreased. However, to allow for the calculation of the composition
inside the cylinder with simple geometrical approaches, we refrain
from scavenging methods. Thus, during all experiments conducted
𝑢IVO = 𝑢EVC = 𝑢IVO∕EVC. By setting 𝑢IVO∕EVC later than the TDC, a
variable amount of exhaust gases can be reinducted from the exhaust
manifold and be trapped in the combustion chamber. The lift of the
exhaust valves can be sufficiently decreased such that the piston can
pass TDC while these valves are kept open. The downward motion of
the piston causes a reinduction of the afore discharged exhaust gases.
The term used for this concept is internal exhaust gas recirculation
(EGR). Unlike conventional EGR systems, FlexWork allows adapting the
internal recirculation rate on a cycle-to-cycle basis. Furthermore, since
with internal EGR the temperature of the reinducted gas is much higher
than with external EGR, the indicated efficiency of the combustion
remains basically constant. Modeling this phenomenon and its effect
on the composition of the air–fuel mixture present in the cylinder
therefore requires a recursive model formulation. For this purpose a
EGR model which assumes thermal equilibrium is used in which the
mean total inducted mass in one cylinder per combustion cycle, 𝑚m(𝑡),
and the mean total recirculated exhaust gas mass in one cylinder per
combustion cycle, 𝑚EGR(𝑡), are modeled as mixing homogeneously and
diabatically during the intake stroke.

The value of 𝑚̇m(𝑡) and the composition of the inducted gases,
m(𝑡), are calculated using the mass flow rates 𝑚̇𝛽 (𝑡) and 𝑚̇𝜑(𝑡) from
he aforementioned neural network and injection model. Under the
ssumption that the mean fuel flow rate and valve timings lead to a
toichiometric mixture and assuming that the air and fuel mass flows
ix homogeneously, 𝜆m(𝑡) and 𝑚̇m(𝑡) may be described as

𝜆m(𝑡) = 1
𝜎0

𝑚̇𝛽 (𝑡)
𝑚̇𝜑(𝑡)

, (4)

̇ m(𝑡) = 𝑚̇𝛽 (𝑡) + 𝑚̇𝜑(𝑡), (5)

here 𝜎0 represents the fuel ratio normalization constant. Under the
ssumption that the closed-loop model inputs result in an approximate
toichiometric plant operation, the relations given by (4) and (5) are
alid. Any remaining errors are treated as model mismatch errors and
re explicitly accounted for in the controller synthesis.

The quantity of recirculated exhaust gases is calculated via the
deal gas law. Here, the cylinder geometry is assumed to be known,
he exhaust manifold pressure assumed constant and the exhaust gas
omposition assumed stoichiometric. The temperature of the exhaust
ases at time 𝑡, 𝜗exh(𝑡), is found by identifying a bilinear relationship
rom the cylinder-specific 𝑝mi value and the rotational speed 𝜔e to
he exhaust gas temperature 𝜗exh(𝑡) under steady-state conditions. The
omposition of the reinducted exhaust gases is found by using the air–
uel ratio corresponding to the relevant combustion having previously
aken place 𝜏IEG − 𝜏IPS = 3⋅𝜋

𝜔e
− 2⋅𝜋

𝜔e
= 𝜋

𝜔e
seconds ago, in accordance

with the overall mean value assumptions. This results in the following
recursive formulation:

𝜗exh(𝑡) = 𝑓 (𝑝im
(

𝑡 − (𝜏IEG − 𝜏IPS)
)

, 𝜔e), (6)

𝑚EGR(𝑡) =
𝑝em ⋅ 𝑉EVC(𝑡) , (7)

𝑅exh ⋅ 𝜗exh(𝑡)
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𝑚m(𝑡) = 𝑚̇m(𝑡)
4 ⋅ 𝜋
𝜔e

, (8)

𝜆(𝑡) =
𝑚m(𝑡) ⋅ 𝜆m(𝑡 − 𝜏IEG) + 𝑚EGR(𝑡) ⋅ 𝜆(𝑡 − 𝜏IEG)

𝑚m(𝑡) + 𝑚EGR(𝑡)
, (9)

Here, the variables 𝑉EVC(𝑡), 𝑅exh, and 𝜆(𝑡) denote the cylinder volume
at the instant the exhaust valve closes, the specific gas constant of
stoichiometric exhaust gases, and the total normalized air–fuel ratio of
the gases in the combustion chamber at inlet valve closing, respectively.

Willans approximation. Finally, to establish the mean effective pressure
𝑝me(𝑡), the thermodynamic efficiency of the system is captured by means
f a Willans model (Guzzella & Onder, 2004; Guzzella & Sciarretta,
013). In this model, the output, 𝑝me(𝑡), is calculated by relating the fuel

mean effective pressure, 𝑝𝑚𝜑(𝑡) =
𝑚𝜑(𝑡)⋅𝐻l,CNG

𝑉d,cyl(𝑡)
, a property of the charge in

the cylinder as the inlet valve closes at time 𝑡, to the torque produced by
one cylinder, 𝑇cyl(𝑡), expressed as, 𝑝me(𝑡) =

𝑇cyl(𝑡)⋅4⋅𝜋
𝑉d,cyl(𝑡)

, 𝜏IPS seconds later,
as

𝑝me(𝑡) = 𝑒(𝑡 − 𝜏IPS) ⋅ 𝑝𝑚𝜑(𝑡 − 𝜏IPS) + 𝑝me0f (𝑡) + 𝑝me0g(𝑡) (10)

𝑒(𝑡) = 𝑒𝜆(𝑡) ⋅ 𝑒nom(𝑡). (11)

Here, the variable 𝐻l,CNG represents the lower heating value of the
CNG fuel. The quantity 𝑒(𝑡) represents the indicated efficiency of the
combustion. It consists of a nominal value under stoichiometric opera-
tion, 𝑒nom(𝑡), as well as a multiplicative factor taking into account the
effect of non-stoichiometric combustion, 𝑒𝜆(𝑡). The variable 𝑒nom(𝑡) is
fitted over 𝑚̇𝛽 (𝑡) and 𝑢IVO∕EVC(𝑡), while 𝑒𝜆(𝑡) is normalized with respect
to a stoichiometric mixture and directly dependent on the air–fuel
equivalence ratio of the gases present in the cylinder, 𝜆(𝑡). This factor
is of great importance to correctly model the cross couplings present in
the engine system. The remaining terms 𝑝me0f (𝑡) and 𝑝me0g(𝑡) represent
the mechanical friction in the engine system and the pumping losses
of the gases, respectively, that result over the course of the combustion
cycle. All of the above parameters are identified and/or calculated from
measurements in steady-state operation.

Model validation results. The accuracy of the injection, the FlexWork
neural network and the Willans approximation sub-models were identi-
fied by calculating the coefficient of determination (𝑅2) and root-mean-
square error (RMSE) values over the specified operating range. The
accuracy of the EGR sub-model cannot be validated with steady-state
measurements as 𝜆(𝑡) asymptotically approaches 𝜆m(𝑡) in steady-state.
The provided values are averaged over all cylinders.

Comparing the measured fuel mass flow rate to that predicted by the
injector model, 𝑅2 and RMSE values of 0.997 and 3.28 mg

s are found,
espectively. The full neural network achieves an 𝑅2 score of 0.985
nd an RMSE value of 2.40◦. The reduced neural network achieves
n 𝑅2 score of 0.979 and an RMSE value of 2.89◦. Finally, as the 𝑝mi
alue of the Willans approximation is utilized in the control design,
he calculated indicated efficiency under stoichiometric conditions is
ompared to that predicted by the model. The Willans approximation
chieves 𝑅2 and RMSE values of 0.972 and 0.22%, respectively.

.2. Controller synthesis

Based on the plant model shown in Fig. 3, an overall controller
onsisting of a feedforward controller 𝐾f f (𝑠), a feedback controller
fb(𝑠), and an inverted neural network is designed, as shown in Fig. 4.
he synthesis of 𝐾f f (𝑠) is based on the plant inversion of 𝑃grey(𝑠).
iven the strong cross-coupling effects present between the input and
utput channels of the model, 𝐾fb(𝑠) is a MIMO feedback controller

synthesized via ∞ synthesis. The ‘inverted’ neural network is not a
direct inversion of the neural network presented above but trained
anew such that 𝑢IVC becomes the target of the estimation instead of
𝑚̇𝛽 .

The structure shown in Fig. 4 has the clear advantage of allowing
linear control design techniques to be used to control the nonlinear sys-
tem since the highly nonlinear relation between valve timings and air
 c

6

Fig. 4. A schematic overview of the overall controller structure, consisting of a
feedforward controller 𝐾f f (𝑠), a feedback controller 𝐾fb(𝑠), and an ‘inverted’ neural
etwork.

low is treated in isolation in the neural network. From this perspective,
he neural network may be viewed as enabling a reparametrization to
more suitable and linear domain for control design. In addition, the
∞ synthesis method explicitly allows the specific model uncertainty

rising from the model inversion and simplifying assumptions to be
ncorporated in the synthesis process.

inear control design. The linear control elements are synthesized under
the assumption that the neural network achieves the desired effect of
model inversion. Hence, the plant for controller synthesis is 𝑃grey shown
in Fig. 3 which receives the cylinder-specific inducted air mass flow rate
̇ 𝛽 and the injection duration 𝑢𝜑 as inputs.

The feedforward controller 𝐾f f (𝑠) is obtained via the inversion of a
inearized minimum-phase model of 𝑃grey. This inversion implies that
ll delays present in the model formulation are set to 0 and that steady-
tate inputs leading to stoichiometric combustion at a set 𝑝mi value are
ound. Using the linearize function available as part of the Simulink
ontrol Design toolbox in MATLAB (Mathworks, 2022), a linearized
odel may be obtained numerically. This model is finally inverted to

orm 𝐾f f (𝑠).
The feedback controller 𝐾fb(𝑠) is constructed with a mixed-sensitivity

∞ synthesis method. In principle, this method of controller synthesis
inds an optimal controller that minimizes the induced 2-norm of
he system between a set of vector-valued inputs and outputs. The
ontrol designer is able to express the importance of particular in-
ut or output channels or frequency ranges by introducing suitable,
requency-dependent weights on the input and output channels. To
pply this method to the case at hand, first, 𝑃grey is linearized around a
uitable operating point. An operating point is found in steady state by
sing the boundary conditions 𝑚̇𝛽 (𝑡) = 0.002 kg∕s, 𝜆(𝑡) = 1,∀𝑡. Using

the aforementioned numerical linearization techniques available in
MATLAB, a suitable linear model of the grey-box formulation is found.
Next, before application of the ∞ methods, the resulting internal
elays of the model that capture the delay between induction and
xhaust of quantities which are physically ‘stored’ in the combustion
hamber, are approximated via the use of first-order Padé elements.
his process ensures that the transfer function, now referred to as 𝑃 (𝑠),

is in a form with a finite number of pole-zeros. Next, the structure of
the ∞ problem is set up by selecting the inputs and outputs of the
ptimization problem. Given the primary role of the feedback controller
f disturbance rejection under the assumption of feedforward control
nputs, the model inputs for the optimization problem are chosen
o be disturbance inputs acting on the controller output. This setup
ncapsulates the combined effect of all previous model uncertainties.
he performance output is selected to be a stacked vector of the
ontroller inputs and deviations from the desired model outputs, 𝑣(𝑡).

This formulation is represented schematically in Fig. 5.
The chosen generalized plant formulation of 𝑃 (𝑠) allows require-

ents to be placed directly on the stacked vector of the input comple-
entary sensitivity function, 𝑇I(𝑠) = (𝐼 +𝐾(𝑠) ⋅ 𝑃 (𝑠))−1, and the output

ensitivity function times the plant, 𝑆O(𝑠) = (𝐼 + 𝑃 (𝑠) ⋅𝐾(𝑠))−1 ⋅ 𝑃 (𝑠).
his formulation allows to specify the frequency up to which a good

ontrol performance is required and the maximum control frequency,
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Fig. 5. A schematic overview of the generalized plant 𝑃 (𝑠) used in the ∞ design
process.

which is limited by the delays present in the plant model as well as by
the neglected discrete event behavior.

Once the system has been brought to this general form, static
normalizations are performed on the model inputs and outputs in order
to correctly be able to compare differing physical quantities against one
another. Scaling matrices 𝐷𝑑 = diag

(

2.5𝑒−4, 5
)

, 𝐷𝑢 = diag
(

5𝑒−4, 10
)

,
and 𝐷𝑦 = diag (0.5, 0.05) are used for normalization purposes of 𝑑(𝑡) =
𝑚̇𝛽,𝑑 (𝑡), 𝑢𝜑,𝑑

)𝖳, 𝑢(𝑡) =
(

𝑚̇𝛽 (𝑡), 𝑢𝜑
)𝖳, 𝑦(𝑡) =

(

𝑝mi(𝑡), 𝜆(𝑡)
)𝖳.

Additionally, the frequency-dependent weights 𝑊𝑢(𝑠) and 𝑊𝑝(𝑠),
normalized to 1 at DC frequency, are introduced to specify the fre-
quency range at which 𝑇I(𝑠) and 𝑆O(𝑠), respectively, should be large. To
achieve zero steady-state offset from the modeled disturbances up to a
bandwidth close to the theoretical maximum of a pure delay system,
𝜔max = 1

𝑇max
, proper weights of 𝑊𝑢(𝑠) = diag

(

1000⋅𝑠+5000
5⋅𝑠+5000 , 1000⋅𝑠+50005⋅𝑠+5000

)

nd 𝑊𝑝(𝑠) = diag
(

𝑠+2
2⋅𝑠+0.002 ,

𝑠+5
2⋅𝑠+0.005

)

are chosen. These weights result
n a system with approximate bandwidths of 1 rad∕s and 2.5 rad∕s in
𝑦(𝑡), respectively. To maintain validity of the model formulation, the
maximum controllable frequency is set at a conservative 5 rad∕s.

The final feedback controller is then found through the use of
the hinfsyn command available as part of the MATLAB robust control
toolbox (Balas, Chiang, Packard, & Safonov, 2022).

4. Cylinder individual reference tracking

For a cycle-based 𝑝mi and 𝜆 reference tracking, the following actu-
ating variables are necessary: the injection duration, the valve timings,
and the ignition timing. The model described in Section 3 outputs the
injection duration and the valve timings accordingly to the requested
𝑝mi. The model is capable to consider variations in 𝜆. However, the
scope of this project is limited to 𝜆 = 1, i.e. to stoichiometric com-
bustion. Furthermore, the EGR rate is included in the Willans fit of
the model, although measurements have shown that its influence on
𝑝mi and 𝜆 are marginal and thus can be neglected in the feedforward
control. The ignition timing required for an optimal combustion with
a center of 8 ◦CA after TDC is stored in a two-dimensional fit, which
is dependent on the desired value of 𝑝mi and the amount of EGR. The
value stored in this fit is applied in a feedforward manner to the ignition
coil. The center of combustion is computed in real-time for each firing
event and used in a feedback control circuit to adapt the ignition timing
such that the combustion is optimal.

4.1. Reference tracking of 𝑝mi and 𝜆

In this section, the performance of the reference tracking controller
is presented and analyzed. Here, the EGR rate is kept at its minimal
value, i.e. 𝑢IVO and 𝑢EVC remain at 0 ◦CA which is at TDC. The

ean absolute errors of all experiments conducted are summarized in
able 2.
7

Fig. 6. Results of reference tracking obtained from the engine test bench the feedfor-
ward controller 𝐾f f only and a full neural network. The upper plots show the outputs
of the controller, i.e. the air mass flow 𝑚̇𝛽 and the injection duration 𝑢𝜑, for each
cylinder. The lower plots show the 𝑝mi and 𝜆 values for each cylinder over the reference
trajectory, which contains steps in 𝑝mi and is constant for 𝜆.

System behavior with feedforward only control. In Fig. 6, the results from
the reference tracking with the feedforward controller 𝐾f f only and
a full neural network are visualized over time. The upper left plot
shows the controller output 𝑚̇𝛽 in 𝑔∕𝑠, which is the desired air mass
flow for each cylinder. The value of 𝑚̇𝛽 required to achieve a certain
𝑝mi is dependent on the air-to-fuel ratio, which is kept constant, and
the Willans efficiency, which does not vary substantially between the
individual cylinders. Thus, the differences in 𝑚̇𝛽 from Cylinders 1 to
4 are marginal and, thus, not clearly distinguishable in the plot. The
upper right plots shows the cylinder individual injection duration 𝑢𝜑
in ◦CA. Between Cylinders 1 to 4, it varies for the same load by up to
6.4% from the overall mean value. This result indicates the significance
of the parameter identification for every individual fuel injector.

The bottom plots present the outputs of the plant, i.e. the engine.
In the left plot, the 𝑝mi value of each combustion event and of each
cylinder as well as the reference trajectory are shown. The load refer-
ence trajectory starts at a 𝑝mi value of 5 bar, increases its value to a 𝑝mi
of 8 bar, and decreases it back to the initial value over a measurement
duration of 60 seconds. The step size is kept at a constant value of 1 bar.
On the right-hand side, the 𝜆 value measured in the exhaust runner of
each cylinder is plotted as well as the constant reference value of 1.
The air-to-fuel equivalence factor 𝜆 has a mean absolute error (MAE)
of 0.033 averaged over all cylinders. The inner cylinders, Cylinder 2
and 3, are running at a very similar, rather lean value of 𝜆. The outer
cylinder group is running at almost stoichiometric values. The MAE
in 𝑝mi averaged over all cylinders is 0.14 bar. At lower 𝑝mi values, an
overshooting and subsequent convergence to a steady state is observed
for the outer cylinder group. This is valid especially for load shedding,
i.e. at the time stamps 38 s and 47 s, but also for load steps such as
at time stamp 5 s. Such a behavior can be explained by the output of
the neural network. At low loads, i.e. for values smaller than 7 bar, the
volumetric efficiency of Cylinders 1 and 4 is significantly more affected
by the value of 𝑝IM than the one of the inner cylinder group. Thus, the
prediction of 𝑢IVC with a full neural network is highly sensitive to the
value of 𝑝 . This behavior can be prevented by training the neural
IM
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Fig. 7. Comparison of a full and a reduced neural network, i.e. a neural network with
he intake manifold pressure 𝑝IM as a feature included and one without it.

etwork without comprising 𝑝IM as a feature, which leads to a reduced
eural network, as it is called in this paper.

omparison of a full and a reduced neural network. In this paper, the
nputs of a full neural network are the cylinder specific air mass flow
̇ 𝛽 , the pressure in the intake manifold 𝑝IM, the cylinder volume at the
VC instance 𝑉EVC, and the stepper motor position 𝜑stepper . The engine
s always operated with a wide open throttle, since the FlexWork FVVT
llows to adjust the cylinder charge by Miller valve timings. Never-
heless, when comparing low load to full load operation, variations
n the range of a few hundred pascals are observed in the 𝑝IM signal.
xperiments have shown that the volumetric efficiency is affected by
hese variations, which is particularly evident for the outer cylinder
roup. However, the input 𝑝IM is a measured signal and thus underlies
ensor noise and system dynamics, i.e. delays. By excluding 𝑝IM from
he feature set, a reduced neural network is trained. This increases
he robustness of the prediction of 𝑢IVC at the cost of accuracy. In
his section, the 𝑝mi and 𝜆 tracking performance is analyzed depending
n the choice of the neural network. Fig. 7 visualizes the effect of a
articular neural network on the 𝑢IVC prediction. In the upper plots,
he inputs normalized by their respective maxima are visualized while
he predicted IVC valve timing and the IVC valve timing realized by
he valve train are presented in the lower plots in ◦CA after TDC. The
redicted 𝑢IVC is the desired value sent to the low-level controller of
he FVVT which is subsequently translated into a current duration and
pplied to the magnetic coils. The 𝑢IVC realized is the measurement
f the crank angle when the valve lift during the closing procedure
quals a threshold of 0.25 mm. On the left-hand side, the results of
he full neural network are shown, while on the right-hand side the
esults of the reduced neural network are shown. In this particular
how case, only 𝑚̇𝛽 and 𝑝IM are relevant since 𝑉EVC and 𝜑stepper remain
onstant for both variants of the neural network. The main difference
etween the two is the 𝑢IVC prediction visualized by the black solid

◦
ines. For low-load operating points, i.e. for 𝑢IVC < 120 CA after TDC,

8

Table 2
Mean absolute errors in 𝑝mi and 𝜆 for all cylinders when tracking a
given trajectory either with a feedforward (FF) controller only or with
an additional feedback (FB) controller. Additionally, the different errors
measured by applying either a full neural network (NNfull) or a reduced
neural network (NNred) are stated. Values marked with ̄(⋅) are averaged
over all cylinders.

FF NNfull FF NNred FB NNfull FB NNred

𝑝mi,1 0.09 bar 0.16 bar 0.08 bar 0.07 bar
𝑝mi,2 0.19 bar 0.16 bar 0.08 bar 0.07 bar
𝑝mi,3 0.15 bar 0.21 bar 0.07 bar 0.07 bar
𝑝mi,4 0.14 bar 0.20 bar 0.07 bar 0.07 bar
𝑝̄mi 0.14bar 0.18bar 0.07bar 0.07bar

𝜆1 0.019 0.025 0.010 0.009
𝜆2 0.050 0.054 0.011 0.009
𝜆3 0.049 0.068 0.008 0.009
𝜆4 0.016 0.025 0.010 0.011
𝜆̄ 0.033 0.043 0.010 0.009

the prediction of the full neural network is affected by the 𝑝IM signal.
t load transitions, where 𝑝IM is delayed due to the physical properties
f the intake manifold, the neural network attempts to compensate
or this effect by predicting 𝑢IVC accordingly. Since it is trained only
n steady-state measurement data, this compensation is actually an
vercompensation which eventually leads to an overshooting in 𝑝mi and
as shown in Fig. 6. In contrast, the prediction of the reduced neural

etwork relies only on the controller output 𝑚̇𝛽 and thus exhibits a very
obust behavior.

Regardless of the choice of the neural network, the 𝑢IVC realized
ollows the predicted 𝑢IVC well for small steps. However, at larger steps
uch as at the time stamps 5 s, 13 s, or 22 s, a mismatch occurs stemming
rom the electrical part of the valve train. A desired valve timing is
onverted with a feedforward map to a timing of the electric current.
he valve lift realized is measured, followed by a feedback controller
djusting the electric current timing such that the desired valve timing
s achieved. However, the effect of the inaccuracy between predicted
nd realized IVC is negligible.

As summarized in Table 2, in a pure feedforward control setting a
ull neural network performs approximately 29% better than a reduced
eural network. Despite the unsteady 𝑢IVC prediction, the volumetric

efficiency is estimated closer to its true value if 𝑝IM is known, causing
the improvement in 𝑝mi and 𝜆. However, if 𝐾f f is extended by 𝐾fb, the
performance of the two neural networks are almost identical. In fact,
the reduced neural network performs marginally better than the full
one since the feedback controller handles a static offset better than a
dynamic one.

The simultaneous steps in 𝑢IVO and 𝑢EVC cause significant peaks in
the 𝑝IM signal, which leads to a wrong prediction of 𝑢IVC. Thus, during
the EGR rate optimization presented in the following section, a reduced
neural network is used for the 𝑢IVC prediction.

System behavior with feedforward and feedback control. Fig. 8 shows the
results obtained when in addition to the feedforward controller 𝐾f f , 𝐾fb
is an ∞ controller, as presented in Fig. 4. The reference trajectories
here are identical to those presented in Fig. 6. However, for a clearer
visualization, only the data obtained from one cylinder is plotted Fig. 8.
Additionally, for a detailed view, only the time window from 37 s to
50 s, i.e. the two load steps from 7 bar to 5 bar, are shown. However,
the observations made here are valid for all cylinders and the complete
reference trajectory.

The upper left plot shows the inputs to the reduced neural network,
which are the cylinder specific air mass flow 𝑚̇𝛽 , the cylinder volume
at the EVC instance 𝑉EVC, and the stepper motor position 𝜑stepper . All
inputs to the neural network are normalized with respect to their
respective maxima. Here, as in the scenario of the pure feedforward
control shown in Fig. 6, 𝑉EVC and 𝜑stepper remain constant. The upper
middle plot shows the controller output 𝑚̇ . The gray dashed line is
𝛽
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Fig. 8. Results of 𝑝mi and 𝜆 reference tracking obtained with a combination of a feedforward controller 𝐾f f , an ∞ feedback controller 𝐾fb, and a reduced neural network. For a
detailed analysis, only the data obtained from one cylinder and during a restricted time frame is plotted.
-

the output from the 𝐾f f controller and the black solid line represents
the sum of the 𝐾f f and 𝐾fb controllers. The same holds true for the
upper right plot, which shows the injection duration 𝑢𝜑. The plot on
the bottom left shows the value of 𝑢IVC predicted by the neural network
and realized by the FVVT in ◦CA after TDC. The 𝑝mi value of each
combustion event of one cylinder as well as the reference trajectory
are plotted in the middle bottom plot. In the right bottom plot, the 𝜆
value measured in one exhaust runner is plotted as well as the constant
reference value of 1.

The MAE of the 𝑝mi averaged over all cylinders is equal to 0.07 bar,
while the MAE of the 𝜆 value equals 0.009. For both outputs 𝑝mi
and 𝜆, all cylinders exhibit a similar performance. Compared to the
tracking performance with pure feedforward control and a reduced
neural network, an improvement of 62% in 𝑝mi, and of 79% in 𝜆 is
achieved with feedback control.

The output of Controller 1 clearly shows that towards higher loads
the mismatch between the feedforward and the feedback output is
larger than towards lower loads. This mismatch can be explained by
the linearization point of 𝑚̇𝛽 , which is set to 2 𝑔∕𝑠. The reason for
this rather low value is twofold. On the one hand, at low loads the
Willans efficiency shown in (11) has a steep gradient. On the other
hand, at values of 𝑢IVC around 90 ◦CA after TDC, the piston speed and
therefore the air flow over the intake valves is maximal. Thus, at low
loads, small errors in the estimation of the required air flow, either
due to the Willans approximation or due to the 𝑢IVC prediction, lead to
high discrepancies in the target 𝑝mi value. These discrepancies can be
minimized when the plant model is linearized at a low-load operating
point, such that it fits the nonlinear model. At high loads, both the
Willans approximation and the 𝑢IVC prediction are less sensitive to the
change in the corresponding inputs, and thus, the model is more robust.

Comparing Output 1 and Output 2 of the controller, a much more
aggressive strategy for 𝑚̇𝛽 can be observed. This is due to the parametriza
tion of the ∞ controller. In this scenario, an accurate tracking of the
target 𝑝mi value is chosen over the tracking of the 𝜆 value. Output
1 of the plant shows that after a load step the target value of 𝑝 is
mi

9

achieved in a few cycles. The overshoot at the instance of the load
step is not present when using the feedforward controller 𝐾f f only
in combination with a reduced neural network. Thus, at the cost of
a slower convergence to the target value, the feedback controller 𝐾fb
can be parameterized to minimize overshooting. Since Output 2 of the
controller, the injection duration 𝑢𝜑, is set to be much less aggressive,
peaks in the value of 𝜆 during load steps are unavoidable when 𝑚̇𝛽 is
over- or underestimated. Since both the air flow rate and the injection
duration are affecting the 𝑝mi and 𝜆 value, strong cross-coupling effects
are present. Thus, it is not feasible to set both controller to an equal
sensitivity. However, if necessary, the 𝜆 tracking can be favored over
the 𝑝mi tracking in the controller design.

Finally, with the reduced neural network the prediction of 𝑢IVC
solely depends on the controller Output 1, i.e. on 𝑚̇𝛽 . The aggressive
changes in 𝑚̇𝛽 are well converted in a fast changing 𝑢IVC and is well
tracked by the FVVT. Only if a full neural network is used, the noisy 𝑝IM
signal adds an additional disturbance to the tracking objective, which
leads to a slightly worse overall performance.

4.2. Reference tracking with online optimization of the EGR rate

Among other things, using an EGR can help to reduce the emission
of pollutants such as NOx. As described in Section 3, with this test bench
setup the amount of residual gas is minimized when 𝑢IVO∕EVC = 0 ◦CA,
i.e. at TDC. To increase the amount of residual gas, 𝑢IVO∕EVC is delayed
such that it occurs after TDC. An external re-induction over the intake
manifold is not required. Thus, with an FVVT the rate of EGR can be
set arbitrarily by choosing 𝑢IVO∕EVC accordingly, which is much faster
than the adjustments of an external EGR path leading over the intake
manifold. Fig. 9 shows an overview of the emission measurement data
obtained from steady-state operation. On the left-hand side, emission
concentrations in ppm are visualized over the measured range of 𝑝mi
and over 𝑢IVO∕EVC. The concentration of NOx pollutants is plotted in
the upper left corner, while the concentration of HC pollutants is
plotted in the lower left corner. Each triangle represents a steady-
state measurement and the two planes show the corresponding fit.



A. Omanovic, A. Detailleur, P. Soltic et al. Control Engineering Practice 135 (2023) 105526

i
H
4
t
𝑢
a
t
o
t
o
d
f
l
m
u
l
a
p
g
N
4
g
c
c
i
a
v
p

Fig. 9. Emission data obtained from steady-state operation. On the left-hand side, the measurement points are indicated with triangles and the accordingly fitted models as planes.
The upper right plot shows the boundaries for 𝑢IVO∕EVC and the achieved EGR rate in percent. The bottom right plot shows the achievable minimal and maximal pollutant emission
concentrations in regard to the 𝑢IVO∕EVC boundaries. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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For both pollutants, the fit is obtained with a quadratic relation to
𝑝mi and a linear relation to 𝑢IVO∕EVC. The 𝑅2 value for the NOx fit
s 0.997 with a root mean squared error of 35 ppm. In case of the
C fit, the 𝑅2 value is 0.956 with a root mean squared error of
9 ppm. In the upper right corner, the boundaries of 𝑢IVO∕EVC and
he estimated EGR rate in percent are plotted over 𝑝mi. The minimal
IVO∕EVC, plotted as dots, leads to a minimal EGR rate and always lies
t TDC. The maximal 𝑢IVO∕EVC, plotted as a solid line, is determined by
he maximally possible EGR rate for a certain cylinder load. Below a 𝑝mi
f 4.6 bar, 𝑢IVO∕EVC must be decreased linearly to the load. Otherwise
he combustion duration becomes too long and a center of combustion
f 8 ◦CA cannot be maintained. Above a 𝑝mi of 6.4 bar, 𝑢IVO∕EVC must be
ecreased proportionally to the increase of the load such that enough
resh mixture can be inducted into the cylinder to achieve the desired
oad. Between 𝑝mi values of 4.6 bar and 6.4 bar, 70 ◦CA after TDC is the
aximal 𝑢IVO∕EVC instance, because a further increase would lead to an
nstable combustion since the mixture would not ignite reliably. In the
ower right corner, the concentration extrema of the pollutants, which
re bounded by the achievable EGR rates depending on the load, are
lotted over 𝑝mi. The maximal NOx concentration, plotted as a solid
reen line, increases monotonically over the 𝑝mi range. The minimal
Ox concentration is plotted as dots. From a 𝑝mi value of 2.8 bar to
.6 bar, the minimal NOx concentration decreases monotonically to a
lobal minimum of 557 ppm. Up to a 𝑝mi of 6.4 bar, the minimal NOx
oncentration increases linearly with the load since 𝑢IVO∕EVC remains
onstant. Above a 𝑝mi of 6.4 bar, the increase rate rises since a further
ncrease in load requires a decrease in the EGR rate. At the low and
t the high end of the 𝑝mi range, the minimal and maximal 𝑢IVO∕EVC
alues are identical. The minimal and maximal concentrations of both
ollutants, respectively, thus coincide there.
 𝐶

10
The HC concentration is plotted in brown, with a solid line for the
aximal values and with dots for the minimal values. In contrast to the
Ox emissions, the HC exhibits a switching behavior with regard to the
GR rate. Below a 𝑝mi value of 7 bar, an increase in the EGR rate leads
o an increase of HC emissions. Above a 𝑝mi value of 7 bar, the tendency
s inverted and an increased EGR rate leads to a reduction of HC
missions. This is explained as follows: At a high load, the compression
atio and thus the charge density increases and there is more turbulence
han at a low load. This also increases the pre-combustion temperature
evel, which ultimately leads to an increase in exhaust gas temperature.
s a result, HC molecules are more likely to be oxidized when the
xhaust gases are recirculated at high engine loads. On the other hand,
ncreasing the EGR rate at a low load dilutes the charge, which slows
own the combustion process and causes more HC emissions due to
ncomplete combustion.

The highest difference between the minimum and the maximum for
oth pollutants lies at a 𝑝mi value of 4.6 bar and amounts to 70% for
he NOx concentration and to 25% for the HC concentration.

In order to prioritize the minimization of either NOx or HC pollu-
ants, a cost function with a weighting factor is required, as defined
y

NOx
= 𝛼 ⋅

(

𝐶NOx

)2
, (12)

𝐽HC = (1 − 𝛼) ⋅
(

𝐶HC
)2 , (13)

𝐽tot = 𝐽NOx
+ 𝐽HC. (14)

he variable 𝐽tot represents the sum of the pollutant-specific cost
unctions 𝐽NOx

and 𝐽HC and is subject to optimization, while 𝐶NOx
and

are the pollutant-specific concentrations and 𝛼 is the weighting
HC



A. Omanovic, A. Detailleur, P. Soltic et al. Control Engineering Practice 135 (2023) 105526

t
f
f

f
d

w

Fig. 10. Results of the 𝑝mi and 𝜆 reference tracking with an online optimization of
he internal exhaust gas recirculation rate. These results are achieved with the cost
unction parameter 𝛼 set to 1. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

actor. Fig. 10 shows the results of an online 𝑢IVO∕EVC optimization
uring the reference tracking of 𝑝mi and 𝜆 for a fixed 𝛼 value of 1.

The upper left plot shows the 𝑝mi values of a single cylinder and the
reference trajectory. The mean absolute error in 𝑝mi equals 0.08 bar
and in 𝜆 a value of 0.008. These values are in the same range as the
MAE for the trajectory tracking with a constant 𝑢IVO∕EVC, as listed in
Table 2. This results confirms the prediction that the input responsible
for the EGR rate is rather well decoupled from the inputs responsible
for the load and the stoichiometry of the combustion. The bottom left
plot shows the realized values of 𝑢IVO and 𝑢EVC as well as the load-
dependent maximally possible values of 𝑢IVO∕EVC. Since for this scenario
𝛼 = 1, the EGR rate is maximized for every operating point in order to
minimize the NOx emissions without regard to the HC emissions. Thus,
𝑢IVO and 𝑢EVC coincide with the maximally possible value of 𝑢IVO∕EVC
for the complete trajectory duration. Conspicuously, the 𝑢IVO follows
the desired steps accurately, while 𝑢EVC overshoots at every step. This
is explained by the current duration applied on the magnetic coils of
the FVVT system. Delaying 𝑢IVO tends to shorten the duration during
which the intake valves are open, i.e. the current duration applied
on the magnetic coils. In contrast, delaying 𝑢EVC prolongs the current
duration applied on the magnetic coils of the exhaust valves. The longer
the current duration applied on these coils is, the more significant are
the electrical effects such as magnetic hysteresis. Thus, the feedforward
controller for 𝑢EVC is more prone to errors than for 𝑢IVO. The right-hand
side of these plots shows the results of pollutants concentrations. The
gray areas represent the possible range between minimal and maximal
pollutant concentrations that can be achieved with the appropriate
𝑢IVO∕EVC setting. The green lines show the predicted pollutant concen-
trations, which are the results of the minimization of (14) with the
given 𝛼. The blue lines are the actual measurement of the corresponding
pollutants. As expected due to the choice of 𝛼 = 1, the prediction of the
NOx concentration lies at the bottom end of the gray area. Although
the edges are less distinguished, the measurement fits the prediction
well. This is true for the concentrations of NOx as well as for HC. In
the lower right plot the switching behavior in the HC concentration is

well illustrated. From 0 s to 13 s and from 38 s to 60 s the reference

11
Fig. 11. Comparison of the prediction and the measurement of the cost 𝐽NOx and 𝐽HC
hen varying the weighting factor 𝛼. Each data point is the result of averaging the

particular cost values over the complete duration of the trajectory tracking during
which the 𝛼 value is kept constant.

𝑝mi is clearly below 7 bar. A maximal 𝑢IVO∕EVC value thus leads to a
maximal HC concentration. From 13 s to 22 s and from 30 s to 38 s the
reference 𝑝mi is at 7 bar, which marks the switching point of the trend
in HC concentration. Thus, in this region, basically no optimization is
possible, i.e. any value of 𝑢IVO∕EVC leads to the same HC concentration.
Finally, from 22 s to 30 s the reference 𝑝mi is above 7 bar. Hence, a
maximal 𝑢IVO∕EVC value leads to a minimal HC concentration.

Fig. 11 shows the influence of the cost function parameter 𝛼 on
the cost 𝐽 for both pollutants. For each 𝛼 value, the optimization of
𝑢IVO∕EVC is conducted on the trajectory shown in Fig. 10. The values
of 𝐽NOx and 𝐽HC then are averaged over the trajectory and normalized
with respect to the global maximum. The solid lines represent the cost
prediction based on the emission fits. The dashed lines represent the
cost obtained from measurement data. The mean relative error between
fit and measurement equals 3.6% for the NOx cost and 2.3% for the HC
cost. As (14) shows, for low 𝛼 values the minimization of HC pollutants
is favored over NOx pollutants and vice versa for high 𝛼 values. Over the
range from 𝛼 = 0 to 𝛼 = 0.5, the average NOx cost is reduced by 46%.
Meanwhile, the average HC cost is increased by 17%. For the given
trajectory and cost function 𝐽tot , a further increase of the 𝛼 value above
0.5 does not lead to any further changes in the specific cost values.

5. Conclusion and outlook

In this paper we investigated the possibilities of a cylinder-individual
load and air-to-fuel equivalence factor 𝜆 reference tracking enabled
by a fully variable valve train, which is able to adapt the intake and
exhaust valve timings on a cycle-to-cycle basis. A mean-value model
is used to mathematically describe the processes inside an internal
combustion engine such as injection, exhaust gas recirculation, and
torque generation. The influence of the valve timings on the air flow
through the engine is treated in separation. A neural network is trained
to map the volumetric efficiency in order to predict the intake valve
closing instance corresponding to the desired cylinder charge. The
inversion of this neural network leads to cancellation of non-linearity
which simplifies the application of common linearization methods. All
models are fitted with data obtained from measurements on an engine
test bench. The experiments are conducted on a 1.4 L spark-ignited
engine which is equipped with an internally developed fully variable
valve train called FlexWork. The main findings of this study can be
summarized as follows:
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• Based on a mean-value model, a feedback controller is con-
structed with a mixed-sensitivity 𝐻∞ synthesis method.

• A single multi-layer receptron regressor with a single hidden
layer and a rectified linear unit activation function estimates the
required intake valve closing instance for a specific air mass flow
with an 𝑅2 score of 0.99.

• The model-based feedforward controller achieves a mean absolute
error of 0.14 bar in the mean indicated pressure and of 0.033 in
𝜆 for the given trajectory. With a feedback controller based on a
𝐻∞ synthesis method a mean absolute error of 0.07 bar in the
mean indicated pressure and of 0.009 in 𝜆 is achieved for the
given trajectory.

• The internal exhaust gas recirculation rate is adapted online
depending on an emission cost function without significantly
affecting the tracking performance.

• By adjusting the weighting parameter of the emission cost func-
tion, either the NOx emissions are reduced by up to 46% or the
HC emissions by up to 17% over the range of the trajectory. The
mean relative error between pollutant fit and measurement equals
3.6% for the NOx cost and 2.3% for the HC cost.

Outlook. In the current model, the stoichiometry sensors are modeled
with a time delay only. To further improve the tracking performance,
an advanced sensor model or state estimator would be desirable. The
scope of this paper was to investigate a stoichiometric combustion
only. Any extension to non-stoichiometric applications, as e.g. for the
aftertreatment system beneficial rich/lean oscillations, would require
an extension of the measurement grid. While a reduced neural network
proved to be useful due to its robustness, a full neural network might be
required for applications with the use of a throttle, as e.g. the control
of external EGR. In addition to load and emission trajectory tracking,
such an FVVT system can be used to improve the heat-up process of
exhaust gas aftertreatment systems. One approach that requires further
investigation is early exhaust valve opening to allow for increased
enthalpy flow to the exhaust while maintaining an optimal center of
combustion.
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