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A B S T R A C T

In this paper, the concept for modelling materials with fibre network microstructures introduced
in Part I of this series is reconsidered. At first, an alternative representation of the theory
is provided that entails advantages in terms of numerical implementation. Next, the new
constitutive approach is applied to affine networks, whose fibre stretches are distributed
according to the affine distribution. Despite the tremendously widespread use of this model, it
seems that the general form of the corresponding distribution has remained largely unexplored
to date. The thus obtained reformulation of the affine full network model provides deep insight
into this concept, and may help overcoming well-known numerical problems with the associated
spherical integration, e.g. when highly non-linear or piece-wise defined fibre laws are used.
The latter case is typical for applications in biomechanics, where fibres are frequently assumed
to have negligible compressive resistance. While the developments of our theory thus far had
focused on isotropic networks, we here showcase for the affine case how the anisotropy caused
by non-uniform directional distributions of the fibres can be incorporated in the novel approach.
Finally, it is shown that several earlier approaches to model networks of affinely deforming
fibres or polymer chains result as special cases of our theory.

. Introduction

In Part I of this work we proposed a new method to model the homogenised behaviour of materials with random fibre network
icrostructure, based on the distribution of stretch among the fibres within the network.

The stretch distribution was assumed to be characterised through its probability density function. While this seems the natural
hoice, averaging over the latter can become cumbersome since it may contain essential discontinuities. Even arguably just a
echnical detail, the density function formally does not even need to exist (see e.g. Durrett, 2019). For this reason, the first goal of
his paper is to reformulate the new modelling strategy in terms of the cumulative distribution function, which in some cases might
epresent the favourable choice.

One of these cases concerns affine kinematics. Although the method proposed in Part I applies to central force networks in
eneral and is in particular not restricted to affine networks, it clearly includes the latter as a special case. Even if the discussion on
hether affine or non-affine kinematics better apply to network materials is ongoing (see e.g. Chandran and Barocas, 2006; Fan and
acks, 2014; Amores et al., 2021; Stracuzzi et al., 2022), and most probably conclusions can only be drawn on a material-specific
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basis, the affine network is still of paramount interest in many fields of mechanics including rubber-elasticity and biomechanics,
where the corresponding modelling approaches are frequently referred to as ‘affine full network’ (Treloar et al., 1979; Wu and Van
Der Giessen, 1993) and ‘structural approach’ (Lanir, 1979; Billiar and Sacks, 2000; Kassab and Sacks, 2016), respectively. These
concepts have become a state-of-the art method in soft material constitutive modelling, and it is therefore even more surprising
that the corresponding distribution of stretch among the fibres of an affine network has apparently never been studied rigorously,
notwithstanding some special cases and visual representations discussed later. A comprehensive analysis and representation of the
affine stretch distribution thus forms the second goal of this paper.

Effectively, the affine network is used as an averaging operation to deduce the mechanical response of a large ensemble of
olymer chains or biological fibres, which form the macroscopic material, from the mechanical behaviour of the individual ones.
he behaviour of the latter is typically considered in terms of their ‘axial’ properties, i.e. their response to a change in end-to-end
istance. Therefore, the averaging not only generalises from one to many fibres, but also from one to two or three-dimensional
pace, in which the fibre ensemble forms a macroscopic body. The single chain or fibre – and for simplicity, we will restrict to
he latter term – is associated with a direction in space, so that the implementation of the averaging operation is based on an
ntegral over the set of unit vectors in 𝑑-dimensional Euclidean space, i.e. the unit sphere. In many relevant cases the integrand,
.e. the strain-energy density of the fibre expressed in terms of measures of axial strain, does not allow for analytical integration,
nd the integral is approximated by numerical cubature, so that the integral turns into a finite sum of terms evaluated for a set of
patial directions. Although these ‘discretised’ versions of the concept have proven excellent applicability in various fields, the
ethod is not free of problems. Evidently, these quadrature rules on the sphere only approximate the exact solution, and for
any types of quadrature, the limits can be expressed by the degree of spherical polynomials up to which the integration rule

s exact (see e.g. Freeden and Gutting, 2017). While a certain numerical error might be acceptable, it was noted regularly that the
orresponding discretisation of the sphere with fixed positions of the integration points also induces (additional) anisotropy (e.g.
ažant and Oh, 1986; Badel and Leblond, 2004; Alastrué et al., 2009a; Ehret et al., 2010; Verron, 2015; Itskov, 2016). Both refined

ntegration methods as, e.g., non-linear transformations (Alastrué et al., 2009b; Goldberg and Ihlemann, 2017), as well as the steady
ncrease in available computational power may serve to overcome these problems inherent to numerical quadrature. Nevertheless,
he spherical integration of constitutive equations has also been addressed in alternative ways. For isotropic networks Itskov et al.
2010) proposed a method based on a Taylor series expansion of the integrand whose single terms can be integrated over the
phere in closed form. In this way, the approximated integral was solved analytically and expressed in terms of isotropic strain
nvariants. Independently, several authors have used Taylor series expansions of the integrand in models for soft biological tissues
ith non-uniformly distributed fibres, and included terms up to order 2 in their formulations (Pandolfi and Vasta, 2012; Vasta
t al., 2014; Gizzi et al., 2014). Cortes and Elliott (2014) developed models up to a general order 𝑛, including the components of the

corresponding ‘generalised higher order structural tensors’ (Cortes and Elliott, 2014), essentially ‘fabric tensors’ (Kanatani, 1984;
Ken-Ichi, 1984) that characterise the anisotropy. A further rigorous analysis of the series expansion-based approach for distributed
fibres was elaborated by Hashlamoun et al. (2016), who developed the series with respect to different arguments. In the present
contribution we will show that these approaches for tissues with non-uniformly distributed fibres and the analytic isotropic full
network approach (Itskov et al., 2010) are closely related if interpreted in terms of the statistics of stretch.

While the mentioned concepts to include non-uniformly distributed fibres were all based on integrating the terms of the series
over the unit sphere, Gizzi et al. (2016) noted that the integral can be re-expressed in special deformation states by a change of
variables in terms of the probability density of an invariant that represents the squared fibre stretch. The associated benefit when
using models that exclude compressed fibres was discussed and the approach was further elaborated for more general isochoric
states of deformation (Vasta et al., 2018). The results can be interpreted as special cases of the theory presented in Part I (Britt
and Ehret, 2022), when the probability density of the affine model is used and applied to a particular class of materials. We will
show in the present Part II of this work that this special case can be generalised and that the full affine network – isotropic or
anisotropic – can be integrated by use of the probability density of stretch. However, we also explain why this formulation comes
with computational disadvantages and therefore adapt the new strategy, based on the cumulative distribution function, to the affine
case.

Hence the third goal of the present work is resuming and extending the strategies at hand to integrate full network and structural
models.

The paper is organised as follows: In Section 2 the key aspects of the approach proposed in Part I of this work (Britt and
Ehret, 2022) will be resumed. Section 3 then focuses on an alternative representation of the concept in terms of the cumulative
distribution function of the stretch in the general non-affine case, and introduces the distribution of squared stretch. Sections 4
and 5 are dedicated to the affine distribution of stretch and square stretch, and to the moments of the latter. After an intermediate
summary in Section 6, we discuss and exemplify reformulations of affine full-network models in terms of these moments (Section 7)
and the cumulative distribution function (Section 8). The paper closes with summarising conclusions and several appendices with
supporting and additional content.

2. Modelling with stretch distributions

Microstructurally motivated models that account for the mechanical behaviour of fibre network materials typically consider two
length-scales: The macroscopic length scale at which the network appears as a continuous material since each macroscopic material
‘point’ comprises a sufficiently large region of the network, and the microscopic length scale, associated with the behaviour of single
fibres or their end-to-end links within the network. Further length scales of relevance may occur, e.g. when, in turn, the behaviour
of the single fibres is explained in terms of their internal structure, but such considerations are beyond the scope of the present
paper. Therefore, we briefly resume in this section the description of kinematics and free energy at the two length scales of interest,
and how the two scales were bridged in the approach proposed in Part I of this work.
2
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2.1. Macroscopic kinematics and constitutive theory

At the macroscopic length scale, the kinematics and properties of the network material are expressed in terms of the framework
f rational continuum mechanics (see e.g. Truesdell and Noll, 2004). The deformation of a material body from the reference to
he current configuration 0 and 𝑡, respectively, is described through the motion 𝒙 = 𝝋(𝑿, 𝑡) at fixed time 𝑡 of its material points

with referential and current position vectors 𝑿 and 𝒙, respectively. Let 𝐅 = 𝜕𝝋∕𝜕𝑿 denote the corresponding deformation gradient
with determinant 𝐽 = det𝐅 > 0, based on which one defines the right Cauchy–Green tensor 𝐂 = 𝐅T𝐅. The latter has the spectral
epresentation

𝐂 =
3
∑

𝑖=1
𝛬𝑖𝑵 𝑖⊗𝑵 𝑖 (1)

ith eigenvalues 𝛬𝑖 and eigenvectors 𝑵 𝑖, and its invariants are given by

𝐼1 = tr𝐂 = 𝛬1 + 𝛬2, 𝐼2 = det𝐂 = 𝛬1𝛬2 (2)

n 2D space (𝑑 = 2) and

𝐼1 = tr𝐂 = 𝛬1 + 𝛬2 + 𝛬3, 𝐼2 =
1
2
(

𝐼21 − tr𝐂2) = 𝛬1𝛬2 + 𝛬2𝛬3 + 𝛬3𝛬1, 𝐼3 = det𝐂 = 𝛬1𝛬2𝛬3 (3)

n 3D space (𝑑 = 3). For a macroscopically hyperelastic network material arguments of material frame indifference (Truesdell and
oll, 2004, Sec. 10) suggest to express the free energy 𝛹 per unit reference volume of the network material at 𝑿 in terms of a scalar
alued tensor function of 𝐂. Since in the present work the heterogeneity of the network material at the macroscopic length scale
s irrelevant, we omit the potential explicit dependence of 𝛹 on 𝑿 in writing and define the function �̂� ∶ 𝐂 ↦ 𝛹 , which defines
he free energy density for any given state of strain expressed in terms of 𝐂. For a hyperelastic unconstrained material the second
iola–Kirchhoff stress 𝐒 and the fourth-order tangent tensor C calculate as

𝐒 = 2 𝜕�̂�
𝜕𝐂

, C = 2 𝜕𝐒
𝜕𝐂

= 4 𝜕2�̂�
𝜕𝐂𝜕𝐂

. (4)

e assume that the reference configuration 0 is associated with an energy- and stress-free state of the material, i.e. �̂� (𝐈) = 0 and
(𝐈) = 𝟎.

.2. Fibre-scale kinematics and constitutive theory

At the microscopic length scale, we assume that the material properties are determined through a constitutive function that
epresents the free energy density 𝜓(𝜔) of a fibre characterised through its deformation state 𝜔, which in turn may be characterised
hrough a set of state variables such as the fibre’s stretch, curvature etc. In general, this state may depend on the past history of
eformation, but here we will restrict to the elastic case and thus assume that 𝜔 is defined by the current state of fibre deformation.

We further remark that fibres are often represented as one-dimensional rather than bulky structures in modelling, and that 𝜓 has
the dimension of energy per length in this case.

2.3. Micro–macro transition based on micro-kinematic distributions

In Part I (Britt and Ehret, 2022) of this series of papers the fibre network energy density was identified to be proportional to the
expected value of the fibre energy

�̄� = E [𝜓] = ∫𝛺
𝜓(𝜔) d𝑃 (𝜔) , (5)

here 𝜓(𝜔) is the energy density associated with a state 𝜔 ∈ 𝛺 of deformed fibre element with elemental probability d𝑃 (𝜔).
In order to obtain the free energy density of the network material, we considered a representative volume element (RVE) of the

etwork with reference configuration 0, and corresponding reference volume |0| = 𝑉RVE. This RVE typically contains void regions
nd a certain amount of fibres, that can be quantified by its cumulative generalised 𝑑-dimensional (referential) volume |0|. If fibres
re considered one-dimensional structures, for example, |0| amounts to the total fibre length (𝐿tot). Since energy is only stored in
he fibres and not in the void regions of the RVE, the homogenised free energy density 𝛹 of the network material results from the
verage (5) formed over the fibres within the RVE, multiplied by the ‘fibre volume fraction’ 𝜈f = |0|∕|0|, i.e. the ratio between
ibre and RVE (referential) volume, so that

𝛹 = 𝜈f �̄� = 𝜈f E [𝜓] . (6)

e emphasise that 𝜈f is not a dimensionless quantity in general, but accounts for the different ‘dimensionality’ associated with the
ibres and RVE.

There is generally a difference between the (potentially curved) fibres and the straight links connecting their ends at which they
re connected (cf. Britt and Ehret, 2022). In central force networks, the fibre response is typically lumped into a relation between
ts end-to-end distance and the force acting along this line, and the terms ‘link’ and ‘fibre’ are used synonymously. As in Part I, we
3

ill restrict to central force networks, so that the free energy density 𝜓 of a fibre can be completely expressed in terms of the fibre
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stretch 𝜆 along the link between two cross-links of a fibre, i.e. the straight line joining the fibre ends, so that 𝜓 = 𝜓𝜆◦𝜆. Accordingly,
|0| represents the total link length in what follows, i.e. the sum of length of all end-to-end vectors between the cross-links. The
relevant kinematic state 𝜔 of a fibre (or link) element is thus entirely characterised through the stretch 𝜆 that is naturally defined
on (0,∞), i.e. the positive reals R>0. Correspondingly, by combination of Eqs. (5) and (6) we obtained a universal expression for
the free energy density of a central force network as (Britt and Ehret, 2022)

𝛹 = 𝜈f ∫R>0
𝜓𝜆(𝑧) d𝑃𝜆(𝑧) , (7)

where 𝑃𝜆((0, 𝑧]) = 𝑃 [{𝜔 ∶ 𝜆(𝜔) ≤ 𝑧}] (see e.g. Durrett, 2019) is the stretch distribution. If the corresponding probability density
unction (PDF) 𝑝𝜆(𝑧) = PDF𝜆(𝑧) exists, this is equivalent to (Britt and Ehret, 2022)

𝛹 = 𝜈f ∫R>0
𝜓𝜆(𝑧) PDF𝜆(𝑧) d𝑧 . (8)

Next, we resume a particular result for the important special case, where the fibre free energy density 𝜓𝜆 is given in terms of an
nalytic function, so that it can be expressed in terms of a Taylor series about an expansion point 𝜆0. Linearity of the expectation

operator then allows to rewrite �̄� in terms of the Taylor series coefficients of 𝜓𝜆 and the moments of the stretch distribution, and
one obtains (Britt and Ehret, 2022)

�̄� = E [𝜓] = E

[ ∞
∑

𝑘=0

1
𝑘!
𝜕𝑘𝜓𝜆
𝜕𝜆𝑘

|

|

|

|𝜆0
(𝜆 − 𝜆0)𝑘

]

=
∞
∑

𝑘=0

1
𝑘!
𝜕𝑘𝜓𝜆
𝜕𝜆𝑘

|

|

|

|𝜆0
𝜇𝜆0 ,𝑘 , (9)

here 𝜇𝜆0 ,𝑘 = E
[

(𝜆 − 𝜆0)𝑘
]

is the 𝑘th moment of the stretch 𝜆 with respect to 𝜆0. Eq. (9) entails two important consequences (Britt
and Ehret, 2022): At first it proves that for a fibre free energy function of polynomial degree 𝑛, only the first 𝑛 + 1 moments of the
distribution are required to fully recover the averaged energy. Second, the contribution of higher moments decreases with increasing
𝑘 if |𝜆 − 𝜆0| < 1, and thus underlines the role of the expansion point 𝜆0. In fact, upon a thoughtful choice of the latter, a truncated
form of the series (9) may be sufficient to obtain a good approximation of the averaged energy in a stretch range of interest.

2.4. Comparison with directional averaging

In Part I we opposed Eq. (7) to the ‘canonical’ averaging over the fibre orientation distribution with elemental probability d𝑃𝑵 (𝒛)
n the unit sphere 

𝛹 = 𝜈f �̄� = 𝜈f ∫
𝜓𝜆

(

𝜆𝑵 (𝒛)
)

d𝑃𝑵 (𝒛) , (10)

which is inherent to many common techniques in literature (see Britt and Ehret, 2022), and in which the fibre stretch 𝜆 is assumed
to be deterministically defined in terms of the mapping1 𝜆𝑵 ∶ 𝐅,𝑵 ↦ 𝜆 of the macroscopic deformation 𝐅 and the unit vector 𝑵
characterising the orientation of a fibre link in the reference configuration. We noted that Eq. (10) is clearly another embodiment
of Eq. (5), in which 𝑵 is the only quantity defining the kinematic state of a fibre element for a given 𝐅. However, it is a special case
dependent on the existence of the mapping 𝜆𝑵 . The most prominent example of such a mapping is the affine relation 𝜆𝑵 = ‖𝐅𝑵‖,
which is at the basis of e.g. the affine full-network model of rubber elasticity (Treloar et al., 1979; Wu and Van Der Giessen, 1993)
or the structural approach in soft tissue biomechanics (Lanir, 1979; Billiar and Sacks, 2000). Notably, the more general formulation
of the average (7) also holds in this case. It will be one of the goals of the present work to elaborate this representation and study
some properties of the corresponding ‘affine stretch distribution’ that results from the reformulation of the affine model. Before this
distribution is studied in Section 4, we first present in the next section alternative formulations of Eq. (7) in terms of the cumulative
distribution function (CDF), and in terms of the square stretch, which will both turn out to be advantageous in the analysis of the
affine model.

3. Alternative representations

3.1. Averaged free energy in terms of the CDF

The representation of the averaged free energy (7) for a specific distribution in terms of the PDF according to Eq. (8) represents
the most evident form to evaluate �̄� . However, (7) can be evaluated even if the PDF does not exist, or if its integration is cumbersome,
e.g. due to asymptotic behaviour. In general one can alternatively express �̄� (7) in terms of the cumulative distribution function
(CDF) of the stretch and one can proof the following statement:

Let CDF𝜆 represent the cumulative distribution function

CDF𝜆(𝑧) = 𝑃 (𝜆 ≤ 𝑧) = ∫(0,𝑧]
d𝑃𝜆(𝑧) , (11)

1 The dependence of 𝜆 on the macroscopic state of deformation 𝐅 is understood and will be omitted in writing for the sake of brevity.
4

𝑵
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Fig. 1. Illustration of a CDF with jump discontinuities as a sum of a continuous function 𝐺 and multiple step functions 𝑆𝑘.

hen the averaged free energy �̄� is obtained as

�̄� = 𝜓𝜆(𝑎) − ∫

𝑎

0
𝜓 ′
𝜆CDF𝜆 d𝑧 − ∫

∞

𝑎
𝜓 ′
𝜆(CDF𝜆 − 1) d𝑧 , (12)

where 𝑎 ∈ (0,∞) is an arbitrary stretch value.

roof. In the general case CDF𝜆 can have countably but infinitely many jump discontinuities at {𝑧𝑘} so that it can be represented as a
uperposition of a continuous function 𝐺 and a linear combination of step functions {𝑆𝑘} representing the jump at each discontinuity
as (Fig. 1)

CDF𝜆(𝑧) = 𝐺(𝑧) +
∑

𝑘
𝑆𝑘(𝑧), 𝑆𝑘 = 𝑠𝑘𝐻(𝑧 − 𝑧𝑘) , (13)

where 𝐻 is the Heaviside function. Correspondingly, d𝑃𝜆 can be decomposed as

d𝑃𝜆(𝑧) = 𝐺′(𝑧) d𝑧 +
∑

𝑘
𝑠𝑘 d𝜂𝑧𝑘 , (14)

with density 𝐺′ and Dirac distributions {𝜂𝑧𝑘} centred at 𝑧𝑘, so that Eq. (11) is satisfied. Consideration of (14) in (7) and (6) allows
rewriting the free energy density as

�̄� = ∫(0,∞)
𝜓𝜆 d𝑃𝜆 = ∫(0,∞)

𝜓𝜆

[

𝐺′ d𝑧 +
∑

𝑘
𝑠𝑘 d𝜂𝑧𝑘

]

. (15)

Splitting the integration boundaries of the continuous term into intervals (0, 𝑎] and (𝑎,∞), integrating by parts and rewriting the
step term yields

�̄� = 𝜓𝜆𝐺
|

|

|

|

𝑎

0
− ∫

𝑎

0
𝜓 ′
𝜆𝐺 d𝑧 + 𝜓𝜆

[

𝐺 − 1 +
∑

𝑘
𝑠𝑘

]

|

|

|

|

∞

𝑎
− ∫

∞

𝑎
𝜓 ′
𝜆

[

𝐺 − 1 +
∑

𝑘
𝑠𝑘

]

d𝑧 +
∑

𝑘
𝑠𝑘𝜓𝜆(𝑧𝑘) , (16)

where it was used that both 𝐺 and 𝐺−1+
∑

𝑘 𝑠𝑘 are antiderivatives of 𝐺′ such that the boundary terms evaluated at 0 and ∞ vanish.
Further using

𝑠𝑘𝜓𝜆(𝑧𝑘) = 𝑠𝑘𝜓𝜆(𝑎) + ∫

0

𝑎
𝜓 ′
𝜆𝑆𝑘 d𝑧 + ∫

∞

𝑎
𝜓 ′
𝜆(𝑠𝑘 − 𝑆𝑘) d𝑧 , (17)

the remaining parts can be written as

�̄� = 𝜓𝜆(𝑎) − ∫

𝑎

0
𝜓 ′
𝜆

(

𝐺 +
∑

𝑘
𝑆𝑘

)

d𝑧 − ∫

∞

𝑎
𝜓 ′
𝜆

(

𝐺 − 1 +
∑

𝑘
𝑆𝑘

)

d𝑧 = 𝜓𝜆(𝑎) − ∫

𝑎

0
𝜓 ′
𝜆CDF𝜆 d𝑧 − ∫

∞

𝑎
𝜓 ′
𝜆(CDF𝜆 − 1) d𝑧 , (18)

which is Eq. (12). □

3.2. Distribution of the square stretch

In Part I of the work (Britt and Ehret, 2022, Remark 7) we had anticipated that it may be advantageous to study the distribution
of other stretch or strain measures. In fact the strictly positive sign of the stretch renders the relation 𝛬 = 𝜆2 between the simple
5
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and squared stretch one-to-one, so that the probability of a stretch 𝜆 smaller or equal to 𝜆∗ must coincide with the probability of a
square stretch 𝛬 smaller or equal to 𝛬∗ = 𝜆∗2, i.e.

𝑃 [𝜆 ≤ 𝜆∗] = CDF𝜆(𝜆∗) = CDF𝛬
(

𝜆∗2
)

= 𝑃
[

𝛬 ≤ 𝜆∗2
]

, (19)

and, if the corresponding densities PDF𝜆 and PDF𝛬 exist,2 it follows that

PDF𝜆(𝜆∗) = 2𝜆∗ PDF𝛬
(

𝜆∗2
)

. (20)

Based on the same arguments, one may rewrite the fibre free energy density in terms of the squared stretch, i.e.

𝜓 = 𝜓𝛬(𝛬) = 𝜓𝜆(𝜆) . (21)

It will be seen in Section 4 that the reformulation of the theory in terms of the squared stretch 𝛬, i.e. considering the corresponding
distribution 𝑃𝛬, respectively CDF𝛬(𝛬), is particularly useful to study the affine model. We remark that the equations in Sections 2.3
and 3.1 maintain their validity if interpreted for the squared stretch. Hence, the averaged energy can be given – analogous to Eq. (12)
– in terms of the CDF of the squared stretch (19) as

�̄� = 𝜓𝛬(𝐴) − ∫

𝐴

0
𝜓 ′
𝛬(𝑧) CDF𝛬(𝑧) d𝑧 − ∫

∞

𝐴
𝜓 ′
𝛬(𝑧) (CDF𝛬(𝑧) − 1) d𝑧 , (22)

analogous to Eq. (8) in terms of the corresponding PDF (if it exists)

�̄� = ∫

∞

0
𝜓𝛬(𝑧) PDF𝛬(𝑧) d𝑧 , (23)

nd – provided the fibre free energy function 𝜓𝛬 is analytic – in terms of the moments

M𝛬0 ,𝑘 = E
[

(𝛬 − 𝛬0)𝑘
]

(24)

f the squared stretch, in analogy to Eq. (9), so that

�̄� = E [𝜓] = E

[ ∞
∑

𝑘=0

1
𝑘!
𝜕𝑘𝜓𝛬
𝜕𝛬𝑘

|

|

|

|𝛬0

(𝛬 − 𝛬0)𝑘
]

=
∞
∑

𝑘=0

1
𝑘!
𝜕𝑘𝜓𝛬
𝜕𝛬𝑘

|

|

|

|𝛬0

M𝛬0 ,𝑘 . (25)

Notably, the representations of the free energy Eqs. (12) and (22), Eqs. (8) and (23) as well as Eqs. (9) and (25) only differ with
regard to the variable (𝜆 or 𝛬), i.e. the interpretation of the stretch.

. The affine stretch distribution

Although the affine network model belongs without any doubt to the most widespread concepts for modelling materials with
etwork microstructures, the corresponding distribution of stretch implied by this very particular model has little been studied.
ndeed the corresponding PDF has been illustrated in histograms that were obtained from discrete network simulations (Chandran
nd Barocas, 2006; Zündel et al., 2017; Stracuzzi et al., 2022), as in Part I of this work, to exemplify the mismatch between affine
redictions and non-affine computational results. For special cases a mathematical representation of the PDF has been provided by
izzi et al. (2016) and Vasta et al. (2018), who showed how the PDF of a pseudo-invariant corresponding to the affine stretch square
an be obtained from the orientation distribution by a change of variables, and they computed the PDF for a selection of different
inematic states and a von Mises-type transversely isotropic fibre dispersion about a principal direction. As will be seen in this
ection, affine PDFs contain singularities, which pose a challenge for the numeric integration of the fibre energy (23). Contrariwise,
he corresponding CDFs are continuous and monotonically increasing functions with values between 0 and 1. These properties of
he affine CDF suggest the use of the alternative representation (12) to compute the averaged free energy and its derivatives in the
ffine model. To this end, we derive here the CDF of the affine stretch distribution for arbitrary load cases and fibre orientation
istributions in what follows.

.1. The affine stretch

The affine model determines the stretch 𝜆𝑵 and normalised direction vector 𝒏 of any fibre with referential orientation specified
by the unit vector 𝑵 through the linear mapping

𝜆𝑵𝒏 = 𝐅𝑵 (26)

in terms of the deformation gradient 𝐅. The corresponding distribution of stretch 𝑃𝜆, and thus the cumulative distribution function
DF𝜆 are therefore fully determined through the macroscopic state of deformation contained in 𝐅 and the initial orientation

2 It will be seen in Section 4 that this requirement is satisfied for the special case of affine deformations if the initial fibre orientation distribution is
6
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distribution of the fibres in the network. Specifically the probability of a stretch within the interval  ⊆ R>0 is identical to the
probability of initial orientation vectors which return such stretches {𝑵 , 𝜆𝑵 ∈ }, i.e.

𝑃𝜆() = 𝑃𝑵 ({𝑵 ∶ 𝜆𝑵 ∈ }) , (27)

or in integral notation

∫
d𝑃𝜆 = ∫{𝑵∶𝜆𝑵∈}

d𝑃𝑵 , (28)

for all intervals  ⊆ R>0.
We will continue the analysis of the affine model in terms of the distribution of the square stretch 𝛬 = 𝜆2, as introduced in

Section 3.2. To this end, we recall at first that the square stretch satisfies

𝛬 = 𝜆2𝑵 = 𝑵 ⋅ 𝐂𝑵 = 𝑵 ⋅

( 𝑑
∑

𝑖=1
𝛬𝑖𝑵 𝑖 ⊗𝑵 𝑖

)

𝑵 = 𝛬𝑖 (𝑵 ⋅𝑵 𝑖)2 , (29)

where {𝑵 𝑖} denote the eigenvectors of 𝐂 corresponding to the eigenvalues 𝛬𝑖. Introducing spherical coordinates 𝜙 ∈ (−𝜋, 𝜋] and
𝜃 ∈ [0, 𝜋] with respect to the material principal axes, the projections of the orientation vector 𝑵 onto the principal axes {𝑵 𝑖} can
be expressed as

𝑵 ⋅𝑵1 = cos(𝜙) , 𝑵 ⋅𝑵2 = sin(𝜙) (30)

in 2D (𝑑 = 2), illustrated in Fig. 2a, and

𝑵 ⋅𝑵1 = cos(𝜙) sin(𝜃) , 𝑵 ⋅𝑵2 = sin(𝜙) sin(𝜃) , 𝑵 ⋅𝑵3 = cos(𝜃) (31)

in 3D (𝑑 = 3), and one finds the well known expressions

𝛬 =

{

𝛬1 cos2(𝜙) + 𝛬2 sin
2(𝜙) for 𝑑 = 2,

𝛬1 cos2(𝜙) sin
2(𝜃) + 𝛬2 sin

2(𝜙) sin2(𝜃) + 𝛬3 cos2(𝜃) for 𝑑 = 3.
(32)

Albeit well known, it is emphasised that the minimum and maximum eigenvalue 𝛬𝑑 and 𝛬1, respectively, represent lower and upper
bounds of 𝛬 in the affine model, as implied by Eq. (32).

4.2. Orientation distribution

In line with the common approaches in literature (see e.g Lanir, 1979; Chagnon et al., 2015), it will be assumed that the initial
orientation distribution of the fibres in the reference configuration is given in terms of a continuous fibre orientation distribution.
This distribution can be expressed in terms of an orientation density function 𝜌(𝜑) in 2D and 𝜌(𝜑, 𝜗) in 3D respectively, such that in
2D

1
2𝜋 ∫

2𝜋

0
𝜌(𝜑) d𝜑 = 1 (33)

and in 3D

1
4𝜋 ∫

2𝜋

0 ∫

𝜋

0
𝜌(𝜑, 𝜗) sin(𝜗)d𝜗d𝜑 = 1. (34)

Here 𝜑 and 𝜗 are spherical angles corresponding to the axes of a Cartesian coordinate system aligned with the orthonormal basis
{𝒆𝑖}, 𝑖 = 1,… , 𝑑, so that (see Fig. 2a)

𝑵 ⋅ 𝒆1 = cos(𝜑), 𝑵 ⋅ 𝒆2 = sin(𝜑), (35)

in 2D, and

𝑵 ⋅ 𝒆1 = cos(𝜑) sin(𝜗), 𝑵 ⋅ 𝒆2 = sin(𝜑) sin(𝜗), 𝑵 ⋅ 𝒆3 = cos(𝜗) (36)

in 3D. It is emphasised that the angles (𝜑, 𝜗) do generally not coincide with (𝜙, 𝜃) introduced in Section 4.1 unless the principal axes
of strain {𝑵 𝑖} are aligned with the fixed base vectors {𝒆𝑖} that are used to represent the fibre distribution. Moreover, one cannot
distinguish between fibres along 𝑵 and −𝑵 which leads to corresponding symmetry conditions on 𝜌, and as a further consequence, it
suffices to analyse the distribution on the hemisphere (or semicircle in 2D). Finally, we note that isotropic networks are characterised
by a uniform fibre distribution, i.e. 𝜌 = 1. In this case, the orientation of {𝒆𝑖} becomes irrelevant and one may formally assume that
(𝜙, 𝜃) and (𝜑, 𝜗) coincide.

4.3. Stretch distribution in 2D

At first we consider the planar case described by Eqs. (30) and (32) .
7
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Fig. 2. (a) Illustration of the angles relating an arbitrary direction vector 𝑵 to a set of fixed base vectors {𝒆𝑖} and the principal axes {𝑵 𝑖} in 2D. (b) Relation
etween the angle 𝜙 and the affine square stretch 𝛬 in 2D according to Eq. (32)1. The angular domains |𝜙| ≥ 𝜙∗ (cyan) and |𝜙| < 𝜙∗ (magenta), which correspond

to square stretches 𝛬 ≤ 𝛬∗ and 𝛬 > 𝛬∗, respectively, are highlighted.

4.3.1. General (anisotropic) case
In view of the symmetry properties of the trigonometric functions and due to the squares in Eq. (32)1 one can restrict the analysis

to the range 𝜙 ∈ (−𝜋∕2, 𝜋∕2]. Assuming 𝛬1 ≠ 𝛬2 inversion of Eq. (32)1 on 𝜙 ∈ [0, 𝜋∕2] yields

�̂�(𝜆n) = arccos(𝜆n) , 𝜆n =

√

𝛬 − 𝛬2
𝛬1 − 𝛬2

, (37)

where for convenience the notion of a normalised ‘stretch’ 𝜆n ∈ [0, 1] has been introduced.
In order to determine the stretch distribution, we assume without loss of generality 𝛬1 ≥ 𝛬2 and note that the probability 𝑃 for

𝛬 < 𝛬2 is 0 and for 𝛬 ≤ 𝛬1 it is 1 since the square stretch is limited to [𝛬2, 𝛬1] in the affine case. For the normalised stretch 𝜆n this
mplies 𝑃 [𝜆n < 0] = 0 and 𝑃 [𝜆n ≤ 1] = 1. Moreover, for any 𝛬∗ in [𝛬2, 𝛬1) or corresponding 𝜆∗n in [0, 1) one has

𝑃
[

𝛬 ≤ 𝛬∗] = 𝑃
[

𝜆n ≤ 𝜆∗n
]

= 𝑃
[

|𝜙| ≥ 𝜙∗] , (38)

here 𝜙∗ = �̂�(𝜆∗n) as illustrated in Fig. 2b, and we note that both domains 𝜙 ∈ [𝜙∗, 𝜋∕2) and 𝜙 ∈ (−𝜋∕2,−𝜙∗] are included by the
bsolute value in Eq. (38). Consequently, because we have assumed a continuous fibre initial orientation distribution,3 one finds

CDF𝜆n (𝜆
∗
n) = CDF𝜙(−𝜙∗) + 1 − CDF𝜙(𝜙∗) , (39)

where the first term on the right hand side relates to the probability 𝑃 [𝜙 ≤ −𝜙∗] and the remaining terms to 𝑃 [𝜙 > 𝜙∗]. The CDF
f the stretch 𝜆, its square 𝛬 or any other bijective function 𝑓 (𝜆n) of 𝜆n follows as CDF𝜆n (𝑓

−1(𝑧)). For instance, Eq. (37)2 provides
or 𝜆 and 𝛬

CDF𝜆(𝑧) = CDF𝜆n

(
√

𝑧2 − 𝛬2
𝛬1 − 𝛬2

)

, CDF𝛬(𝑧) = CDF𝜆n

(
√

𝑧 − 𝛬2
𝛬1 − 𝛬2

)

, (40)

nd for the normalised square stretch 𝛬n = 𝜆2n one finds

CDF𝛬n
(𝑧) = CDF𝜆n

(
√

𝑧
)

. (41)

Finally, it needs to be taken into account that the angle 𝜙 = ∡(𝑵1,𝑵) measured against the principal axes of strain generally
differs from 𝜑 = ∡(𝒆1,𝑵) given relative to the axes of a fixed Cartesian coordinate system used to represent the non-uniform
distribution of fibres in a network. The CDFs of the two angles are simply related through the transformation rule

CDF𝜙(𝑧) = CDF𝜑(𝛽 + 𝑧) , (42)

where

𝛽 = ∡(𝒆1,𝑵1) =

{

arccos(𝑵1 ⋅𝒆1), if 𝑵1 ⋅𝒆2 ≥ 0,
arccos(−𝑵1 ⋅𝒆1) + 𝜋, otherwise.

(43)

Here, we understand every CDF to formally satisfy

CDF(𝑧 + 𝑘𝜋) = CDF(𝑧) + 𝑘 (44)

3 Notably, in case this distribution is not continuous each discontinuity can in principle be modelled discretely, i.e. by modelling a discrete fibre associated
8
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Fig. 3. Affine 2D stretch distribution represented in terms of square stretch (a), normalised square stretch (b), simple stretch (c) and normalised simple stretch
(d). All graphs correspond to the same deformation (𝜆2 = 0.9, 𝜆1 = 1.2).

for any integer 𝑘, thereby extending its image beyond the original interval [0, 1], such as e.g. in the definition

CDF𝜑(𝑧) =
1
2𝜋 ∫

𝑧

0
2𝜌(𝜑) d𝜑 , (45)

which highlights the relation to the essential 𝜋-periodicity in 𝜌. We further note that the PDF of the stretch distribution follows by
derivation of Eq. (40) since the CDF is absolutely continuous.

4.3.2. Uniform fibre distribution — isotropic case
In the special case of a uniform orientation distribution, i.e. PDF𝜙(𝑧) = 1∕𝜋 and CDF𝜙(𝑧) = 𝑧∕𝜋 + 1∕2, Eqs. (39) and (41) yield

CDF𝛬n
(𝑧) = CDF𝜆n

(
√

𝑧
)

= 1 − 2
𝜋
arccos

(
√

𝑧
)

= 2
𝜋
arcsin

(
√

𝑧
)

, (46)

for 𝑧 ∈ [0, 1], which is the arcsine distribution, and thus a special case of the beta-distribution on [0, 1] (Johnson et al., 1994), with
the corresponding density

PDF𝛬n
(𝑧) = 1

𝜋
√

(1 − 𝑧)𝑧
. (47)

The CDF and PDF of, e.g., the simple normalised stretch 𝜆n, or the non-normalised variables 𝛬 and 𝜆 can be obtained by a change
of variable and are reported in Table 1. They are illustrated in Fig. 3 for a particular state of deformation (𝜆2 = 0.9, 𝜆1 = 1.2).
The analysis of the plots reveals that the PDF and CDF of 𝜆n and 𝛬n (Fig. 3b, d) are universal, live on the support [0, 1] and are
independent of the specific values of {𝜆𝑖}. Moreover the shapes of CDF𝛬 and CDF𝛬n

as well as PDF𝛬 and PDF𝛬n
match and are

therefore universal, although notably the limit values for the squared stretch 𝛬 change with {𝜆𝑖}. In contrast to that, both the
functions and the shapes of CDF𝜆 and PDF𝜆 change with the state of deformation {𝜆𝑖}.

We recall that the results above were obtained for two distinct eigenvalues, while the case of equal eigenvalues 𝛬1 = 𝛬2 = 𝛬D
yields

CDF𝛬(𝑧) = 𝐻(𝑧 − 𝛬D) , (48)

corresponding to the trivial relation 𝑃 [𝛬 ≤ 𝛬 ] = 1, where 𝐻 is the Heaviside function.
9
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Table 1
Isotropic affine stretch distribution 2D: Representations in terms of CDF and PDF for the square stretch 𝛬, simple
stretch 𝜆 and corresponding normalised stretches 𝛬n and 𝜆n.
Stretch CDF PDF Support

𝛬 = 𝑵 ⋅ 𝐂𝑵 2∕𝜋 arcsin
(√

(𝑧 − 𝛬2)∕(𝛬1 − 𝛬2)
)

1∕
(

𝜋
√

(𝛬1 − 𝑧)(𝑧 − 𝛬2)
)

(𝛬2 , 𝛬1)

𝜆 =
√

𝛬 2∕𝜋 arcsin
(√

(𝑧2 − 𝜆22)∕(𝜆
2
1 − 𝜆

2
2)
)

2𝑧∕
(

𝜋
√

(𝜆21 − 𝑧
2)(𝑧2 − 𝜆22)

)

(𝜆2 , 𝜆1)

𝛬n = (𝛬 − 𝛬2)∕(𝛬1 − 𝛬2) 2∕𝜋 arcsin
(√

𝑧
)

1∕
(

𝜋
√

(1 − 𝑧)𝑧
)

(0, 1)

𝜆n =
√

𝛬n 2∕𝜋 arcsin(𝑧) 2∕
(

𝜋
√

1 − 𝑧2
)

(0, 1)

Remark 1 (Chebyshev–Gauss Quadrature). Interpretation of Eq. (8) in terms of the square stretch, and use of the isotropic density
(Table 1) lead to the averaged fibre energy

�̄� = ∫

𝛬1

𝛬2

𝜓𝛬(𝑧) PDF𝛬(𝑧) d𝑧 . (49)

Using the substitution 𝑦 =
√

(𝑧 − 𝛬2)∕(𝛬1 − 𝛬2) ∈ [0, 1] (cp. the definition of 𝜆n Eq. (37)) and the symmetry of the resulting integrand,
the integral can be solved by means of the Chebyshev–Gauss quadrature rule (first kind) (Abramowitz and Stegun, 1972), i.e.

�̄� = 1
𝜋 ∫

1

−1
𝜓𝛬

(

𝑦2(𝛬1 − 𝛬2) + 𝛬2
) d𝑦
√

1 − 𝑦2
≈ 1
𝑛

𝑛
∑

𝑖=1
𝜓𝛬

(

𝑦2𝑖 (𝛬1 − 𝛬2) + 𝛬2
)

, (50)

ith integration points

𝑦𝑖 = cos
(

2𝑖 − 1
2𝑛

𝜋
)

. (51)

It is now interesting to transform these points back to the equivalent circular domain through Eq. (37), which provides the angles
(2𝑖 − 1)𝜋∕(2𝑛), i.e. a set of integration points on the (semi-)circle specified by the radial vectors

𝒚𝑖 = cos
(

2𝑖 − 1
2𝑛

𝜋
)

𝑵1 + sin
(

2𝑖 − 1
2𝑛

𝜋
)

𝑵2. (52)

Hence Gauss–Chebyshev integration of the affine model in the square stretch space is equivalent to quadrature on the circle with
equidistant points arranged according to Eq. (52) (cp. Chawla and Kaul, 1973).

4.4. Square stretch distribution in 3D

To analyse the distribution of the square stretch in 3D affine networks, we first note that the affine square stretch (32)2 is a
bivariate function of the two spherical angles. Consequently, the relation cannot be inverted analogously to the 2D case. The problem
can formally be addressed by use of a variable transformations, so that an integral expression of the PDF can be obtained (cf. Gizzi
et al., 2016; Vasta et al., 2018). Similar as in the 2D case (cf. Fig. 3), the stretch PDF in 3D is characterised through asymptotic
behaviour, posing challenges in the integration of expression (23). Therefore, we here directly obtain the CDF, using an analogy
with the unit sphere to determine the probability 𝑃 [𝛬 ≤ 𝛬∗].

4.4.1. General (anisotropic) case
Let {𝛬1, 𝛬2, 𝛬3} denote the eigenvalues of 𝐂, i.e. the squared principal stretches, which – without loss of generality – we assume

to be in increasing or decreasing order so that 𝛬2 denotes the mid eigenvalue. Subject to affine deformations the fibre elements will
experience stretches 𝛬 bounded by 𝛬1 and 𝛬3, and as in the 2D case (Section 4.3) we seek for the probability 𝑃 [𝛬 ≤ 𝛬∗] that 𝛬 is
smaller than a given value 𝛬∗. To this end, we consider an analogy with the unit sphere illustrated in Fig. 4. Setting the left hand
side of Eq. (32)2 to a constant 𝛬∗, it becomes an implicit equation that defines curves on the unit sphere, which are characterised
by equal stretch 𝛬∗, for any load case specified through 𝛬1, 𝛬2, 𝛬3, as illustrated for a set of principal stretches (𝛬3 = 0.8, 𝛬2 = 1,
1 = 1.5) and different values of 𝛬∗ in Fig. 4.

We further note that 𝛬 ≤ 𝛬∗ corresponds to subdomains of the unit (hemi-)sphere (cp. Li et al., 2018a). For example, the
ase represented by 𝛬∗ = max{𝛬𝑖} relates to the entire surface of the (hemi-)sphere, as clearly the stretch in any direction is less
han or equal to the maximum principal stretch. In the opposite case, where 𝛬∗ = min{𝛬𝑖} < max{𝛬𝑖}, the region degenerates
o a point if 𝛬2 > min{𝛬𝑖} or a half-circle on the hemisphere if 𝛬2 = min{𝛬𝑖}. The corresponding probabilities 𝑃 [𝛬 ≤ 𝛬max] and
[𝛬 ≤ 𝛬min < 𝛬max], respectively, are4 1 and 0. For any other value of 𝛬∗, the probability 𝑃 [𝛬 ≤ 𝛬∗] depends on the area5 of the

urface specified through the set of spherical angles

{𝜙, 𝜃 ∶ 𝛬 ≤ 𝛬∗}, (53)

4 This result formally assumes a continuous fibre orientation distribution.
5 For non-uniform initial fibre orientation distributions this area needs to be weighted.
10
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Fig. 4. Curves of equal affine (square) stretch on a sphere. The specific state of deformation shown is characterised through the three squared principal stretches
𝛬3 = 0.8, 𝛬2 = 1 and 𝛬1 = 1.5. Regions corresponding to {𝛬 < 0.9} and {𝛬 > 0.9} are shaded in cyan and magenta, respectively.

which are defined through Eq. (32)2. For 𝛬∗ = 0.9 the corresponding region is exemplified in Fig. 4. In order to determine the
surface areas of these regions, and thus 𝑃 [𝛬 ≤ 𝛬∗], it is convenient to consider an Archimedean projection of the hemisphere
(−𝜋∕2, 𝜋∕2] × [0, 𝜋] onto an open half-cylinder, further unwrapped onto the rectangle (−𝜋∕2, 𝜋∕2] × [−1, 1] through the transformation
𝑢 = cos(𝜃) (cf. e.g. Hannay and Nye, 2004). The affine square stretch (32)2 thus takes the form

𝛬 = 𝛬1 cos2(𝜙)(1 − 𝑢2) + 𝛬2 sin
2(𝜙)(1 − 𝑢2) + 𝛬3𝑢

2 , (54)

where 𝜙 ∈ (−𝜋∕2, 𝜋∕2] and 𝜃 ∈ [0, 𝜋]. Setting the left hand side of Eq. (54) to a constant 𝛬∗, one finds the corresponding 𝛬∗-isolines
on the rectangle by solving the resulting implicit equation.

Let us at first assume 𝛬2 ≠ 𝛬3. In this case the upper half (𝑢 ∈ [0, 1]) of the symmetric 𝛬∗-isolines follows from Eq. (54) as (cf.
Fig. 5a)

�̂�(𝛬,𝜙) =

√

𝛬 − 𝛬2 + (𝛬2 − 𝛬1) cos2(𝜙)
𝛬3 − 𝛬2 + (𝛬2 − 𝛬1) cos2(𝜙)

, 𝛬2 ≠ 𝛬3 , (55)

which is a univariate function of the angle 𝜙 for any fixed value of 𝛬 = 𝛬∗.
The Archimedean projection is area preserving so that areas on the (hemi-)sphere 𝛬 ≤ 𝛬∗ can be directly evaluated on the

rectangle. In Fig. 5a the probability 𝑃 [𝛬 ≤ 𝛬1] corresponds to the entire rectangular domain, whereas 𝑃 [𝛬 ≤ 𝛬3] corresponds to
the upper and lower boundary. The probability for any other stretch 𝛬∗ ∈ (𝛬3, 𝛬1] corresponds to the area not ‘enclosed’ by the
corresponding isoline 𝛬 = 𝛬∗, and can be identified by integration.

Eventually, we need to take into account the fibre initial orientation density 𝜌(𝜑, 𝜗), which weights the areas corresponding to
𝛬 ≤ 𝛬∗ by the fraction of fibres experiencing those stretches. Expressing the probability in terms of the CDF, this finally yields

CDF𝛬(𝛬∗) = 𝑃 [𝛬 ≤ 𝛬∗] = 1 − 1
2𝜋 ∫

𝜙∗

−𝜙∗ ∫

𝑢∗(𝜙)

−𝑢∗(𝜙)
𝑞(𝑢, 𝜙) d𝑢 d𝜙 , 𝛬2 ≠ 𝛬3 , (56)

where 𝑢∗(𝜙) = �̂�(𝛬∗, 𝜙), 𝜙∗ is the root of 𝑢∗(𝜙) if it exists or 𝜋∕2 otherwise, and 𝑞(𝑢(𝜑, 𝜗), 𝜃(𝜑, 𝜗)) = 𝜌(𝜑, 𝜗) is the fibre initial orientation
density.

For reasons that will become clear soon, we repeat the steps that led to Eqs. (54)–(56) using another parametrisation of the
sphere in terms of the angles �̃� and 𝜃, so that �̃� = cos(𝜃) (cp. Fig. 2b), this time assuming 𝛬1 ≠ 𝛬2. In essence, the polar angle 𝜃
is now measured from the principal axis 𝑵1 (associated with the principal stretch 𝛬1), so that �̃� = 𝑵 ⋅𝑵𝟏, and �̃� is in the plane
spanned by 𝑵2 and 𝑵3. Analogous to Eq. (54) one can thus express the affine square stretch as

𝛬 = 𝛬1�̃�
2 + 𝛬2 sin

2(�̃�)(1 − �̃�2) + 𝛬3 cos2(�̃�)(1 − �̃�2) . (57)

One finds for �̃� ∈ [0, 1] the curves of equal stretch 𝛬 analogous to (55)

�̌�(𝛬,𝜙) =

√

𝛬 − 𝛬2 + (𝛬2 − 𝛬3) cos2(�̃�)
𝛬1 − 𝛬2 + (𝛬2 − 𝛬3) cos2(�̃�)

, 𝛬1 ≠ 𝛬2 . (58)

The corresponding isolines of constant 𝛬 are illustrated in Fig. 5b for the same state of deformation as in Fig. 5a, and by use of the
same colour scheme. Following the same reasoning as above in Eq. (56), the CDF can thus alternatively be expressed as

CDF𝛬(𝛬∗) = 𝑃 [𝛬 ≤ 𝛬∗] = 1 �̃�∗ �̃�∗(�̃�)
𝑞(�̃�, �̃�) d�̃� d�̃� , 𝛬1 ≠ 𝛬2 , (59)
11
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Fig. 5. Curves of equal affine (square) stretch: ±�̂� (a) and ±�̌� (b) in (𝜙, 𝑢) and (�̃�, �̃�) coordinates, respectively. The specific state of deformation shown is
characterised through the three squared principal stretches 𝛬3 = 0.8, 𝛬2 = 1 and 𝛬1 = 1.5.

where �̃�∗(�̃�) = �̌�(𝛬∗, �̃�), �̃�∗ is the root of �̃�∗(�̃�) if it exists or 𝜋∕2 otherwise, and 𝑞(�̃�(𝜑, 𝜗), 𝜃(𝜑, 𝜗)) = 𝜌(𝜑, 𝜗).
The case of two equal eigenvalues 𝛬2 = 𝛬1 and 𝛬2 = 𝛬3 are included in Eqs. (56) and (59), respectively. Finally, the definition of

the CDF is completed by the case of eigenvalues with triple coalescence, for which the CDF can be written in terms of the Heaviside
function 𝐻 .

To resume the representations of the CDF, without loss of generality let us assume 𝛬3 ≤ 𝛬2 ≤ 𝛬1 and 𝛬3 ≠ 𝛬1, which only excludes
the case, where all stretches are equal. Inspection of the two graphs in Fig. 2b indicates that in one of the two representations, the
curve belonging to a given 𝛬 spans the entire domain (−𝜋∕2, 𝜋∕2]. Hence, to avoid the determination of 𝜙∗ and �̃�∗ one can distinguish
etween the cases 𝛬3 < 𝛬∗ ≤ 𝛬2 and 𝛬2 ≤ 𝛬∗ < 𝛬1 to simplify the integration, and to use Eq. (56) in the first case, and Eq. (59) in

the latter with bounds (−𝜋∕2, 𝜋∕2] for the outer integration. With these considerations, the CDF is represented by

CDF𝛬(𝛬∗) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2𝜋

∫ 𝜋∕2−𝜋∕2 ∫
𝑢∗(𝜙)
−𝑢∗(𝜙) 𝑞(𝑢, 𝜙) d𝑢 d𝜙 if 𝛬3 < 𝛬∗ ≤ 𝛬2

1
2𝜋

∫ 𝜋∕2−𝜋∕2 ∫
�̃�∗(�̃�)
−�̃�∗(�̃�) 𝑞(�̃�, �̃�) d�̃� d�̃� if 𝛬2 ≤ 𝛬∗ < 𝛬1

𝐻(𝛬∗ − 𝛬T) if 𝛬1 = 𝛬2 = 𝛬3 = 𝛬T .

(60)

.4.2. Uniform fibre distribution — isotropic case
For a uniform orientation distribution 𝜙 and 𝑢 = cos(𝜃) as well as �̃� and �̃� = cos(𝜃) are uniformly distributed, i.e. 𝑞(𝑢, 𝜙) = 1 and

ikewise 𝑞(�̃�, �̃�) = 1. For three or two distinct eigenvalues, and 𝛬∗ ∈ (𝛬3, 𝛬1) this allows to write

CDF𝛬(𝛬∗) =

⎧

⎪

⎨

⎪

⎩

1 − 1
𝜋 ∫ 𝜋∕2−𝜋∕2 �̂�(𝛬

∗, 𝜙) d𝜙 if 𝛬3 < 𝛬∗ ≤ 𝛬2,

1
𝜋 ∫ 𝜋∕2−𝜋∕2 �̌�(𝛬

∗, �̃�) d�̃� if 𝛬2 ≤ 𝛬∗ < 𝛬1.
(61)

Introducing the parameter

𝛼 =
𝛬1 − 𝛬2
𝛬1 − 𝛬3

, (62)

the functions �̂� (55) and �̌� (58) can be expressed using the normalised stretch 𝛬n = (𝛬 − 𝛬3)∕(𝛬1 − 𝛬3). For example, �̂� reads

�̂�((𝛬1 − 𝛬3)𝛬n + 𝛬3, 𝜙) =

√

1 − 𝛼 − 𝛬n + 𝛼 cos2(𝜙)

1 − 𝛼 sin2(𝜙)
, (63)

which reveals that the shape of CDF𝛬 only depends on the parameter 𝛼, i.e. the relative position of 𝛬2 between 𝛬3 and 𝛬1. CDF𝛬
and the corresponding PDF𝛬, which follows by differentiation, are illustrated in Fig. 6. For three distinct eigenvalues Eq. (61) can
be expressed in terms of the complete elliptic integral 𝑓 (𝑥, 𝑦) of the third kind (cp. Eqs. (131) and (132))

CDF𝛬(𝛬∗) =

⎧

⎪

⎪

⎨

⎪

⎪

1 − 𝑓
(

𝛬2 − 𝛬∗

𝛬1 − 𝛬3
, 𝛼
)

if 𝛬3 < 𝛬∗ < 𝛬2,

𝑓
(

𝛬∗ − 𝛬2 , 1 − 𝛼
)

if 𝛬2 < 𝛬∗ < 𝛬1,

(64)
12
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t

Fig. 6. Representation of the square stretch distribution in an isotropic affine network in terms of the CDF (a) and PDF (b). All stretches are distributed between
the minimal (𝛬3) and maximal principal stretch (𝛬1). The PDF has a singularity at 𝛬 = 𝛬2 and the relative position of this pole between 𝛬3 and 𝛬1 is characterised
hrough the ratio 𝛼 = (𝛬1 −𝛬2)∕(𝛬1 −𝛬3), which is illustrated for the cases 𝛼 = 1, i.e. 𝛬2 = 𝛬3 (blue), 𝛼 = 0.6 (orange) and 𝛼 = 0, i.e. 𝛬2 = 𝛬1 (green) in the plots.

as will be discussed in Section 8.1. For two distinct eigenvalues Eq. (61) simplifies to

CDF𝛬(𝛬∗) =

√

𝛬∗ − 𝛬D
𝛬S − 𝛬D

, (65)

and finally, the triple coalescence of eigenvalues once again results in the Heaviside function (60)3.

5. Moments of the affine stretch distribution

In Part I of this work (Britt and Ehret, 2022), we showed that the statistical moments of the stretch distribution can be used to
efficiently compute the network free energy according to Eq. (9). As we will show in what follows, analogous considerations for
the affine distribution of the stretch square are strongly related to the concept of generalised structural tensors (Advani and Tucker,
1987; Kanatani, 1984) and their application (e.g. Freed et al., 2005; Gasser et al., 2006; Pandolfi and Vasta, 2012; Holzapfel et al.,
2015; Hashlamoun et al., 2016) and thus provide a new interpretation of these tensor-valued quantities and their scalar products
with strain measures. In fact, starting from Eq. (25) we can reconcile our theory with structural tensor approaches for materials
with non-uniformly distributed fibres proposed by Cortes and Elliott (2014) and Hashlamoun et al. (2016), and finally propose a
computationally beneficial reformulation of the method (Section 7.2). What is more, in the isotropic case the moments reduce to
a finite set of scalar isotropic tensor functions proposed by Itskov and co-workers (Itskov et al., 2010) for analytical integration of
the full-network model over the unit sphere (Section 7.1). The analysis thus not only identifies the close relation between the three
approaches, but also provides closed-form representations of the isotropic tensor functions in terms of dedicated invariants of 𝐂.

5.1. General (anisotropic) 2D and 3D case

The deterministic relation (29) between fibre orientation 𝑵 and the fibre square stretch in the affine case allows to equivalently
express the 𝑛th moment of the square stretch (24) 𝛬 with respect to 𝛬0 in terms of the square stretch or orientation distribution,
𝑃𝛬 or 𝑃𝑵 , respectively, so that

M𝛬0 ,𝑛 = E
[

(𝛬 − 𝛬0)𝑛
]

= ∫[𝛬𝑑 ,𝛬1]
(𝑧 − 𝛬0)𝑛 d𝑃𝛬(𝑧) = ∫

(𝛬𝑵 (𝒛) − 𝛬0)𝑛 d𝑃𝑵 (𝒛) . (66)

Using notation (A.8) and the tensor contractions (A.3) and (A.1) the right-hand side can be expressed in terms of the 2𝑛th order
tensor 𝑵⊗2𝑛, as

(𝛬 − 𝛬0)𝑛 = ((𝐂 − 𝛬0𝐈) ∶ 𝑵⊗𝑵)𝑛 = (𝐂 − 𝛬0𝐈)⊗𝑛
2𝑛⋅ 𝑵⊗2𝑛 =

⟨

(𝐂 − 𝛬0𝐈)⊗𝑛,𝑵⊗2𝑛⟩, (67)

where it was considered that 𝐈 ∶ 𝑵⊗𝑵 = 𝑵 ⋅𝑵 = 1. Making use of the linearity of the expectation operator, inserting (67) into (66)
one thus finds

M𝛬0 ,𝑛 = E
[⟨

(𝐂 − 𝛬0𝐈)⊗𝑛,𝑵⊗2𝑛⟩] =
⟨

(𝐂 − 𝛬0𝐈)⊗𝑛,H𝑛
⟩

, (68)

where the generalised structural tensors (Kanatani, 1984; Ken-Ichi, 1984)

H𝑛 = E
[

𝑵⊗2𝑛] = 𝒛⊗2𝑛 d𝑃𝑵 (𝒛) (69)
13
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have been introduced. As important examples, the choice 𝛬0 = 0 in Eqs. (66) or (68) yields the raw moments {M0,𝑛}, and
𝛬0 = �̄� = E [𝛬], i.e. the average square stretch resulting as

�̄� = 𝐂 ∶ H1 , �̄� = 𝐂 ∶ 1
𝑑
𝐈 = 1

𝑑
𝐼1 =

1
𝑑

𝑑
∑

𝑘=1
𝛬𝑘 , (70)

in the general and isotropic cases, respectively, leads to the central moments {M�̄�,𝑛}.

Remark 2 (Efficient Calculation of Moments). The computation of the moments in terms of the generalised structural tensors
according to Eq. (68) is numerically advantageous compared to the direct evaluation of Eq. (66) by quadrature. This is because
the generalised structural tensors only need to be evaluated once for a certain fibre distribution 𝑃𝑵 , and thus Eq. (68) requires less
computational operations than Eq. (66). Moreover, for special cases such as isotropic6 and transversely isotropic fibre distributions
there exist efficient techniques to compute the generalised structural tensors themselves (cf. Section 5.4 and Hashlamoun and
Federico (2017), respectively). Albeit not identified as moments of the stretch distribution, equivalent expressions to Eq. (68) have
been presented earlier in Cortes and Elliott (2014, Eq. 27) and Hashlamoun et al. (2016, Eq. 31) with fixed expansion point 𝛬0 = �̄�
and 𝛬0 = 𝐼1∕33 , respectively (see Section 7.2). With adjustments in notation those expressions can be formulated as

E
[

(𝛬 − 𝛬0)𝑛
]

=
𝑛
∑

𝑘=0

(

𝑛
𝑘

)

E
[

𝛬𝑘
]

(−𝛬0)𝑛−𝑘 =
𝑛
∑

𝑘=0

(

𝑛
𝑘

)

⟨

𝐂⊗𝑘,H𝑘
⟩

(−𝛬0)𝑛−𝑘 , (71)

where by linearity of the integral the expectation operator was included in the binomial expansion sum, and the last equality follows
from (67). The computational advantage of the new formulation (68) becomes apparent when comparing the single scalar product
therein with the sum of scalar products in (71).

5.2. Derivatives of the moments

For the calculation of stress and stiffness, according to Eq. (4), the first and second derivatives of 𝛹 with respect to 𝐂 are required.
When using the moment representation of the free energy density (25), this requires the corresponding derivatives of the moments.

With the properties defined in Appendix A, the differentiation of Eq. (68) with respect to 𝐂 leads to
𝜕M𝛬0 ,𝑛

𝜕𝐂
= E

[

(𝛬 − 𝛬0)𝑛
]

,𝐂 = E
[

𝑛(𝛬 − 𝛬0)𝑛−1
(

𝑵⊗𝑵 − 𝛬0,𝐂
)]

𝑛E
[

(

(𝐂 − 𝛬0𝐈) ∶ 𝑵⊗𝑵
)𝑛−1 (𝑵⊗𝑵 − 𝛬0,𝐂

)

]

= 𝑛(𝐂 − 𝛬0𝐈)⊗𝑛−1
2(𝑛−1)
⋅ H𝑛 − 𝑛M𝛬0 ,𝑛−1 𝛬0,𝐂 ,

(72)

valid for 𝑛 ≥ 1. For the second derivative, the analysis yields

𝜕2M𝛬0 ,𝑛

𝜕𝐂𝜕𝐂
= E

[

𝑛(𝛬 − 𝛬0)𝑛−1
(

𝑵⊗𝑵 − 𝛬0,𝐂
)]

,𝐂 = E
[

𝑛(𝑛 − 1)(𝛬 − 𝛬0)𝑛−2
(

𝑵⊗𝑵 − 𝛬0,𝐂
)⊗2

]

− 𝑛M𝛬0 ,𝑛−1 𝛬0,𝐂𝐂

= 𝑛(𝑛 − 1) E
[

(

(𝐂 − 𝛬0𝐈) ∶ 𝑵⊗𝑵
)𝑛−2(𝑵⊗4 −𝑵 ⊗𝑵 ⊗𝛬0,𝐂 − 𝛬0,𝐂 ⊗𝑵 ⊗𝑵 + 𝛬0,𝐂 ⊗𝛬0,𝐂)

]

−𝑛M𝛬0 ,𝑛−1 𝛬0,𝐂𝐂

= 𝑛(𝑛 − 1)
[

(𝐂 − 𝛬0𝐈)⊗𝑛−2
2(𝑛−2)
⋅ H𝑛 − (𝐂 − 𝛬0𝐈)⊗𝑛−2

2(𝑛−2)
⋅ H𝑛−1 ⊗𝛬0,𝐂 − 𝛬0,𝐂 ⊗ (𝐂 − 𝛬0𝐈)⊗𝑛−2

2(𝑛−2)
⋅ H𝑛−1

+M𝛬0 ,𝑛−2 𝛬0,𝐂 ⊗𝛬0,𝐂

]

−𝑛M𝛬0 ,𝑛−1 𝛬0,𝐂𝐂

(73)

for 𝑛 ≥ 2. The case 𝑛 = 0 is trivial and for 𝑛 = 1 one obtains
𝜕M𝛬0 ,1

𝜕𝐂
= H1 − 𝛬0,𝐂 ,

𝜕2M𝛬0 ,1

𝜕𝐂𝜕𝐂
= −𝛬0,𝐂𝐂 . (74)

We emphasise that the Eqs. (72)–(74) are valid both in the anisotropic and isotropic case.
For the specific choice of 𝛬0 = �̄� (70) one has

�̄� = 𝐂 ∶ H1,
𝜕�̄�
𝜕𝐂

= H1,
𝜕2�̄�
𝜕𝐂𝜕𝐂

= O, (75)

where O is the fourth-order zero tensor, and in the 𝑑-dimensional isotropic case H1 = 𝐈∕𝑑.

5.3. Cartesian components of H𝑛

In this section we make use of the known representation of the 𝑛th even order generalised structural tensors H𝑛 (69) in terms
of Cartesian components with respect to bases formed by an arbitrary set of orthonormal unit vectors {𝒆𝑖}. As a direct consequence
of the definition (69) the Cartesian components H𝑛|𝑖𝑗…𝑚𝑛 of H𝑛 satisfy

H𝑛|𝑖𝑗…𝑚𝑛 = E
[

𝑁𝑖𝑁𝑗 …𝑁𝑚𝑁𝑛
]

, (76)

6 In the isotropic case the moments can be computed as polynomials of invariants of 𝐂 as elaborated in Section 5.4.
14



Journal of the Mechanics and Physics of Solids 175 (2023) 105291B.R. Britt and A.E. Ehret

c
K
a
F

t

f
r

where 𝑁𝑖 = 𝑵 ⋅ 𝒆𝑖 denote the Cartesian components of 𝑵 with respect to {𝒆𝑖}. Due to the high degree of symmetry of H𝑛, its
omponents are defined by the number of occurrences of the indices from 1 to 𝑑, e.g. 1 and 2 in the 2D case (Ken-Ichi, 1984;
anatani, 1984; Hashlamoun and Federico, 2017). We here focus on the 3D case (𝑑 = 3), and note that the 2D case can be treated
nalogously (Appendix B). Using the spherical angles 𝜑 and 𝜗 defined in Eq. (36), the components of H𝑛 read (cp. Hashlamoun and
ederico, 2017)

H𝑛|𝑝,𝑞,𝑟 = E
[

(𝑵 ⋅ 𝒆1)𝑝(𝑵 ⋅ 𝒆2)𝑞(𝑵 ⋅ 𝒆3)𝑟
]

= E
[

cos𝑝(𝜑) sin𝑝+𝑞(𝜗) sin𝑞(𝜑) cos𝑟(𝜗)
]

, (77)

denoting the value of each component of H𝑛 that has 𝑝, 𝑞, 𝑟 times the indices 1, 2, 3, respectively. We note that for a given orientation
distribution density 𝜌(𝜑, 𝜗) (cp. Eq. (34)), this can be evaluated as (Hashlamoun and Federico, 2017)

H𝑛|𝑝,𝑞,𝑟 =
1
4𝜋 ∫

2𝜋

0 ∫

𝜋

0
𝜌(𝜑, 𝜗) cos𝑝(𝜑) sin𝑝+𝑞(𝜗) sin𝑞(𝜑) cos𝑟(𝜗) sin 𝜗 d𝜗d𝜑 . (78)

Another important characteristic of the generalised structural tensors is the recursiveness between tensors of subsequent order.
Indeed, from a generalised structural tensor of order 𝑛 + 𝑘 all generalised structural tensors of lower order can be obtained by
suitable contractions, viz.

H𝑛 = H𝑛+𝑘
2𝑘⋅ 𝐈⊗𝑘 , (79)

which is a direct consequence of the contraction rule (A.4), when applied to the 𝑘-fold dyad of the second-order identity tensor
𝐈⊗𝑘 = 𝐈⊗⋯⊗ 𝐈. Specifically, for 𝑘 = 1 one obtains (Kanatani, 1984)

H𝑛 = E
[

𝑵⊗2𝑛] = E
[

𝑵⊗2𝑛(𝑵 ⋅𝑵)
]

= H𝑛+1 ∶ 𝐈 , (80)

which in Cartesian coordinates reads H𝑛|𝑖𝑗…𝑘𝑙 = H𝑛+1|𝑖𝑗…𝑘𝑙𝑚𝑛𝛿𝑚𝑛, where 𝛿𝑚𝑛 denotes the Kronecker delta. In terms of the notation
introduced in Eq. (77) this property reads

H𝑛|𝑝,𝑞,𝑟 = H𝑛+1|𝑝+2,𝑞,𝑟 +H𝑛+1|𝑝,𝑞+2,𝑟 +H𝑛+1|𝑝,𝑞,𝑟+2 . (81)

For later use (Appendix D) we note that by means of the spectral representation of 𝐂 (Eq. (1)) the expectation in Eq. (66) can
be expressed as

M𝛬0 ,𝑛 = E
[

(𝛬1(𝑵1 ⋅𝑵)2 + 𝛬2(𝑵2 ⋅𝑵)2 + 𝛬3(𝑵3 ⋅𝑵)2 − 𝛬0)𝑛
]

. (82)

Since the eigenvectors 𝑵 𝑖 represent a set of orthonormal vectors, they can be used to form another orthonormal basis for the tensors
H𝑛. Let the corresponding components be denoted by H̃𝑛|𝑖𝑗…𝑚𝑛, and define in analogy to Eq. (77)

H̃𝑛|𝑝,𝑞,𝑟 = E
[

(𝑵 ⋅𝑵1)𝑝(𝑵 ⋅𝑵2)𝑞(𝑵 ⋅𝑵3)𝑟
]

. (83)

Then, by use of trinomial expansion Eq. (82) can be rewritten as

M𝛬0 ,𝑛 =
∑

𝑝+𝑞+𝑟=𝑛

(

𝑛
𝑝, 𝑞, 𝑟

)

(𝛬1 − 𝛬0)𝑝(𝛬2 − 𝛬0)𝑞(𝛬3 − 𝛬0)𝑟 H̃𝑛|2𝑝,2𝑞,2𝑟 , (84)

where we note that in the isotropic case the components with respect to any orthonormal bases coincide, i.e. H̃𝑛|𝑖𝑗…𝑘𝑙 = H𝑛|𝑖𝑗…𝑘𝑙.
While Eqs. (68) and (84) hold in the general anisotropic case, we will specify the moments for the important special case of uniform
fibre distributions, i.e. isotropic materials in the following section.

5.4. Moments and their derivatives for uniform fibre distributions

For the sake of brevity we here consider the 3D case. An independent discussion of the 2D case is given in Appendix C. For a
uniform referential fibre orientation distribution the value of H𝑛|𝑝,𝑞,𝑟 is unaffected by any change in the order of 𝑝, 𝑞, 𝑟 and zero if
the set {𝑝, 𝑞, 𝑟} contains an odd number due the symmetry properties of the trigonometric functions (cp. Hashlamoun and Federico
(2017) and Section 5.3). Hence, using binomial expansion together with the identities

1
2𝜋 ∫

2𝜋

0
cos2𝑘(𝑥)d𝑥 =

𝑘
∏

𝑖=1

2𝑖 − 1
2𝑖

, 1
2 ∫

𝜋

0
sin2𝑘+1(𝑥)d𝑥 =

𝑘
∏

𝑖=1

2𝑖
2𝑖 + 1

, (85)

hat can be found by induction and integration by parts (cf. Eq. (C.3)), the non-zero components can be given as

H𝑛|2𝑝,2𝑞,2𝑟 =

( 𝑟
∑

𝑚=0

(

𝑟
𝑚

)

(−1)𝑚
𝑝+𝑞+𝑚
∏

𝑛=1

2𝑛
2𝑛 + 1

)( 𝑞
∑

𝑠=0

(

𝑞
𝑠

)

(−1)𝑠
𝑝+𝑠
∏

𝑡=1

2𝑡 − 1
2𝑡

)

. (86)

Table 2 exemplifies these components for the isotropic structural tensors up to order 2𝑛 = 10, i.e. H5. The moments and their
irst and second derivatives with respect to 𝐂 follow immediately by insertion of the components (86) into (68), (72) and (73),
espectively.
15
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Table 2
Isotropic structural tensors H𝑛 of even order 2𝑛. The non-zero components are given depending
on the number of distinct indices 𝑖, 𝑗, 𝑘 (from a permutation of (1, 2, 3)) represented by 2𝑝, 2𝑞, 2𝑟
respectively, e.g. (H3)112222 = H3|4,2,0, where without loss of generality we arrange for 𝑝 ≥ 𝑞 ≥ 𝑟.

𝑛 𝑝, 𝑞, 𝑟 H𝑛|2𝑝,2𝑞,2𝑟

0 0 0 0 1

1 1 0 0 1/3

2 2 0 0 1/5
2 1 1 0 1/15

3 3 0 0 1/7
3 2 1 0 1/35
3 1 1 1 1/105

4 4 0 0 1/9
4 3 1 0 1/63
4 2 2 0 1/105
4 2 1 1 1/315

5 5 0 0 1/11
5 4 1 0 1/99
5 3 2 0 1/231
5 3 1 1 1/693
5 2 2 1 1/1155

Alternatively, in Appendix D we provide a closed form solution for the (central) moments M�̄�,𝑛 (Eq. (84)) identifying them as
polynomials 𝑅𝑛(𝐴,𝐵), so that

M�̄�,𝑛 = 𝑅𝑛(𝐴,𝐵), (87)

of the two dedicated invariants of 𝐂 and 𝐂 − �̄�𝐈

𝐴 = 3
2

3
∑

𝑖=1
(𝛬𝑖 − �̄�)2 =

3
2
tr(𝐂 − �̄�𝐈)2, 𝐵 = 27

2

3
∏

𝑖=1
(𝛬𝑖 − �̄�) =

27
2
det(𝐂 − �̄�𝐈) , (88)

that are identical but numerically advantageous to the expressions (cf. Itskov et al., 2010)

𝐴 = 𝐼21 − 3𝐼2, 𝐵 = 𝐼31 − 9
2
𝐼1𝐼2 +

27
2
𝐼3, (89)

in terms of principal invariants of 𝐂 (see example in Appendix E). For 𝑛 from 0 to 10 the moments M�̄�,𝑛 are collected in Table 3.
For the calculation of stress and stiffness, we specify the derivatives of the invariants (89) as

𝐴,𝐂 = 3 (𝐂 − �̄�𝐈) , 𝐴,𝐂𝐂 = 3 𝐈⊠ 𝐈 − 𝐈⊗ 𝐈 (90)

and

𝐵,𝐂 = 27
2
𝐚𝐝𝐣(𝐂 − �̄�𝐈) + 3

2
𝐴 𝐈 = 27

2
(𝐂 − �̄�𝐈)2 − 3𝐴𝐈 , 𝐵,𝐂𝐂 = 27

2
((𝐂 − �̄�𝐈)⊠ 𝐈 + 𝐈⊠ (𝐂 − �̄�𝐈)) − 3(𝐴,𝐂 ⊗ 𝐈 + 𝐈⊗𝐴,𝐂) , (91)

here 𝐚𝐝𝐣𝐀 is the adjugate of a tensor 𝐀 defined such that7 𝐚𝐝𝐣𝐀𝐀 = det𝐀 𝐈. The derivatives of the moments M�̄�,𝑛 = 𝑅𝑛(𝐴,𝐵) with
espect to 𝐂 hence follow by virtue of the chain rule as

𝜕M�̄�,𝑛

𝜕𝐂
=
𝜕𝑅𝑛
𝜕𝐴

𝐴,𝐂 +
𝜕𝑅𝑛
𝜕𝐵

𝐵,𝐂 =
∑

𝑋∈{𝐴,𝐵}

𝜕𝑅𝑛
𝜕𝑋

𝑋,𝐂 , (92)

and

𝜕2M�̄�,𝑛

𝜕𝐂𝜕𝐂
=

∑

𝑋∈{𝐴,𝐵}
𝑌∈{𝐴,𝐵}

𝜕2𝑅𝑛
𝜕𝑌 𝜕𝑋

𝑋,𝐂 ⊗ 𝑌,𝐂 +
∑

𝑋∈{𝐴,𝐵}

𝜕𝑅𝑛
𝜕𝑋

𝑋,𝐂𝐂 . (93)

Noteworthy, a finite number of terms 𝑅𝑛(𝐴,𝐵) were obtained in an approach for analytic integration of the full-network
odel (Itskov et al., 2010), but without any reference to statistical moments. In Section 7.1 we readdress this point and reconcile

he isotropic special case of our approach with the method in Itskov et al. (2010).

7 We note that the identity 𝐚𝐝𝐣𝐀 = det𝐀𝐀−1 only holds for invertible tensors 𝐀, which is generally not the case here.
16
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Table 3
Moments of the affine stretch distribution M�̄�,𝑛 up to 𝑛 = 10 in terms of the invariants 𝐴,𝐵
Eq. (89), (cf. Itskov et al., 2010).
𝑛 M�̄�,𝑛

0 1
1 0
2 4𝐴∕45
3 16𝐵∕945
4 16𝐴2∕945
5 128𝐴𝐵∕18711
6 320𝐴3∕81081 + 512𝐵2∕729729
7 256𝐴2𝐵∕104247
8 256𝐴

(

63𝐴3 + 32𝐵2) ∕15949791
9 4096𝐵

(

189𝐴3 + 8𝐵2) ∕909138087
10 1024𝐴2 (81𝐴3 + 80𝐵2) ∕303046029

Fig. 7. Different methods to integrate the affine full network model.

6. Integration of the affine full network model

The results reported thus far have implications for the evaluation of the type of constitutive models that have become known
as affine full network models in rubber elasticity, and structural approaches or angular integration models in biomechanics, for all
of which the expectation E [𝜓] of the fibre free energy 𝜓 of the form (10) is the essential ingredient. Using the term ‘full network
model’ as a representative for all types of related models, the reformulation of the expectation in terms of the stretch PDF, CDF or
corresponding moments demonstrates that there exist different methods to evaluate the full network model, as illustrated in Fig. 7.
In particular, the analysis in the previous sections show that spherical integration, even if it represents the canonical strategy, is not
the only way of addressing the problem.

Given the stretch PDF treated in Section 4 the PDF based integration of the free energy 𝜓 (23) can be adopted to obtain 𝛹 .
This concept had been pointed out for the special case of a von-Mises type transversely isotropic fibre distribution by Gizzi et al.
(2016). The corresponding stretch PDF was obtained by a change of variables from spherical angles to affine square stretch, and
was illustrated for isochoric states of deformation in Gizzi et al. (2016) and Vasta et al. (2018).

Although the switch of the integration domain to the positive reals between the minimum and maximum principal stretch seems
to ease the treatment of piece-wise defined fibre free energies, and in particular ‘tension-only’ fibres (cf. Gizzi et al., 2016), the
singularities displayed by the affine stretch PDF (Fig. 6b) pose numerical challenges associated with the evaluation of the integral
(23) in the affine case. Therefore, in Section 8 we suggest to use the CDF based integration (22) instead, which allows to deal
with piecewise-defined fibre strain energies in a similarly straightforward manner, but overcomes the problems associated with the
singularities in the PDF, as the CDF is bounded between 0 and 1.

Finally, the moment-based approximation (25) turns out to, in fact, include higher-order generalised structural tensor approaches
(see e.g. Pandolfi and Vasta, 2012; Cortes and Elliott, 2014; Gizzi et al., 2014; Hashlamoun et al., 2016; Gizzi et al., 2018),
and at least formally, also the well-established second-order generalised structure tensor approach (e.g. Freed et al., 2005; Gasser
et al., 2006; Holzapfel et al., 2015). This will be elaborated in Section 7.2, where the moment-based representation is applied to
17
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transversely isotropic fibre orientation distributions. Before, in Section 7.1, however, we will show that for uniform fibre orientation
distributions, the method complies with the approach in Itskov et al. (2010). What is more, however, we provide closed form
representations for the essential functional basis of this approach.

7. Moment-based approximation of the affine full-network model

By means of the moment-based representation (25) the free energy 𝛹 of a network of fibres with analytic fibre free energy 𝜓𝛬
can be approximated as

𝛹 ≈ 𝜈f
𝑛
∑

𝑘=0

1
𝑘!
𝜕𝑘𝜓𝛬
𝜕𝛬𝑘

|

|

|

|𝛬=𝛬0

M𝛬0 ,𝑘, (94)

where 𝜈f is the fibre volume fraction according to Eq. (6). For a polynomial fibre energy 𝜓𝛬 of degree 𝑚 ≤ 𝑛 the result becomes
exact. In view of Eq. (4) the stress and tangent tensors follow by use of the chain rule of differentiation as

𝐒 = 2 𝜈f

( 𝑛
∑

𝑘=0

1
𝑘!
𝜕𝑘+1𝜓𝛬
𝜕𝛬𝑘+1

|

|

|

|𝛬=𝛬0

M𝛬0 ,𝑘
𝜕𝛬0
𝜕𝐂

+ 1
𝑘!
𝜕𝑘𝜓𝛬
𝜕𝛬𝑘

|

|

|

|𝛬=𝛬0

𝜕M𝛬0 ,𝑘

𝜕𝐂

)

(95)

and

C = 4𝜈f

[ 𝑛
∑

𝑘=0
= 1
𝑘!
𝜕𝑘+2𝜓𝛬
𝜕𝛬𝑘+2

|

|

|

|𝛬=𝛬0

M𝛬0 ,𝑘
𝜕𝛬0
𝜕𝐂

⊗
𝜕𝛬0
𝜕𝐂

+ 1
𝑘!
𝜕𝑘+1𝜓𝛬
𝜕𝛬𝑘+1

|

|

|

|𝛬=𝛬0

(

𝜕𝛬0
𝜕𝐂

⊗
𝜕M𝛬0 ,𝑘

𝜕𝐂
+
𝜕M𝛬0 ,𝑘

𝜕𝐂
⊗
𝜕𝛬0
𝜕𝐂

+M𝛬0 ,𝑘
𝜕2𝛬0
𝜕𝐂𝜕𝐂

)

+ 1
𝑘!
𝜕𝑘𝜓𝛬
𝜕𝛬𝑘

|

|

|

|𝛬=𝛬0

𝜕2M𝛬0 ,𝑘

𝜕𝐂𝜕𝐂

]

.

(96)

While for uniform fibre distributions, Eqs. (94)–(96) provide an implementation of the isotropic full network model, non-uniform
distributions provide anisotropic full-network models, often employed in the ‘structural approach’ to model soft biological tissues.

7.1. Isotropic full network model

7.1.1. Reconciliation with the analytical method by Itskov et al.
We compare the free energy (94) with a result by Itskov et al. (2010, Eq. 12) who, following ideas by Puso (2003), represented

the free energy of an elastic network with fibres whose strain energy density 𝑤(𝛬) is analytic in the vicinity of 𝛬0 as

𝛹 =
∞
∑

𝑘=0

1
𝑘!
𝜕𝑘𝑤
𝜕𝛬𝑘

|

|

|

|𝛬=𝛬0

𝑊𝑘(𝛬0) , 𝑊𝑘(𝛬0) =
1
4𝜋 ∫

2𝜋

0 ∫

𝜋

0
(𝛬 − 𝛬0)𝑘 sin 𝜃d𝜃 d𝜙 . (97)

nserting our notation 𝑤 = 𝜈f 𝜓𝛬 and identifying the integrals 𝑊𝑘 = M𝛬0 ,𝑘 as stretch distribution moments (24) for an isotropic fibre
istribution, a truncation of Eq. (97) is identical to our Eq. (94).

.1.2. Expansion point
Both the fibre strain energy and the state of deformation may favour a special expansion point, e.g. in order to increase the

onvergence radius of the series approximations (cp. Itskov et al., 2010).
Towards finding a ‘generally suitable’ expansion point, we first note that the quality of approximation of the truncated Taylor

eries of 𝜓𝛬 generally decreases with increasing distance from the expansion point. Second, we note that approximation errors at
igher energies have a larger impact on the computed average, i.e. the value of the integral. Finally, we bear in mind that the fibre
nergy 𝜓𝛬 is a monotonically increasing function of the stretch square for 𝛬 > 1, and typically asymmetric so that more energy
s stored in tension than in compression, at least for slender fibres. Bringing these aspects together one would – loosely speaking
expect a suitable expansion point to lie (i) somewhere in the range of possible stretches, and tending towards higher stretches

ssociated with higher energies. Moreover, letting these energetic considerations aside, (ii) the stretch at which the series is expanded
s expected to be ‘representative’ for the ensemble of fibres. Without additional information, the expectation of the square stretch
̄ itself therefore seems a suitable candidate.

Without prior knowledge about fibre behaviour and state of deformation, we hence suggest to expand the series about the
verage square stretch, so that 𝛬0 = E [𝛬] = �̄�, which at least meets the second criterion (ii). For a uniform fibre distribution one
as according to Eq. (75)

�̄� = 1
3
𝐂 ∶ 𝐈, 𝜕�̄�

𝜕𝐂
= 1

3
𝐈, 𝜕2�̄�

𝜕𝐂𝜕𝐂
= O, (98)

where O is the fourth-order zero tensor, so that the expressions (95) and (96) for stress and tangent tensor simplify significantly.
Moreover, as discussed in Section 5.4 the corresponding central moments M�̄�,𝑘 of the isotropic network can be given as polynomials
(87) (Table 3 and Appendix D) of two dedicated invariants (88), so that stress and tangent can be expressed in terms of the derivatives

2

18

𝜕M�̄�,𝑘∕𝜕𝐂 and 𝜕 M�̄�,𝑘∕(𝜕𝐂𝜕𝐂), given in Eqs. (92) and (93) respectively.
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Notwithstanding, the expansion point may be shifted and non-central moments be used. This procedure, based on binomial
xpansion, leads to

M𝛬0 ,𝑘 = E
[

(𝛬 − 𝛬0)𝑘
]

= E
[

(𝛬 − �̄� + (�̄� − 𝛬0))𝑘
]

= E

[ 𝑘
∑

𝑖=0

(

𝑘
𝑖

)

(𝛬 − �̄�)𝑖(�̄� − 𝛬0)𝑘−𝑖
]

=
𝑘
∑

𝑖=0

(

𝑘
𝑖

)

M�̄�,𝑖(�̄� − 𝛬0)𝑘−𝑖 , (99)

s discussed in detail by Itskov et al. (2010).

.1.3. Advantages of the new formulation
The moment-based integration of the full network model is in full line with the analytical integration proposed in Itskov et al.

2010) and thereby provides an alternative interpretation of this method in terms of the statistics of stretch. Given this equivalence,
e omit numerical examples for this method, and refer to the applications in e.g. Itskov et al. (2010) and Itskov and Knyazeva

2016) for an illustration of the performance.
However, the different viewpoint and a detailed mathematical analysis allowed us to reformulate this method. At the one hand,

new, closed form solution for the isotropic moments 𝑊𝑘(�̄�) = M𝛬0 ,𝑘 for arbitrary 𝑘 was obtained (Appendix D). This clearly brings
dvantages over the strategy proposed in Itskov et al. (2010) and Itskov (2016) that employs mathematical software to evaluate
he integrals 𝑊𝑘(�̄�) for individual 𝑘 and to reformulate the results in terms of the invariants 𝐴 and 𝐵. On the other hand, the new
ormulation of the invariants 𝐴 and 𝐵 in terms of invariants of 𝐂− �̄�𝐈 (88) instead of functions of the principal invariants of 𝐂 (89)
omes with computational advantages, since it reduces the propagation of round-off errors, in particular for nearly pure dilatations,
.e. similar eigenvalues of 𝐂. In Appendix E, we illustrate this circumstance in a numerical example.

.2. Moment-based integration of the structural approach

The identification of the essential functions 𝑊𝑘 in Eq. (97) with the moments M𝛬0 ,𝑘 allows the natural extension of the analytical
ntegration method reported in Itskov et al. (2010) to the anisotropic case. In fact, the moment-based representation (94) turns
ut to be the general anisotropic analogue of Eq. (97) if the moments are given by Eq. (68) (or Eq. (84)) for non-uniform
eferential orientation distributions of the fibres. The network free energy, stress and tangent tensors can be computed according to
qs. (94)–(96), by use of the anisotropic moments (68) and their derivatives Eqs. (72)–(74).

.2.1. Approaches for tissues with statistically oriented fibres by Hashlamoun et al.
The moment-based approximation (94) can be brought in agreement with concepts to evaluate the response of tissues reinforced

y statistically oriented fibres by Cortes and Elliott (2014) and Hashlamoun et al. (2016). Our analysis therefore reveals a close
elation between these approaches and the seemingly distinct method by Itskov et al. (2010).

Hashlamoun et al. (2016, Eq. 7) study free energies for materials reinforced by fibres with orientation distribution 𝑃𝑵 (associated
ith a density 𝜌) of the general form (in our notation)

 (𝐂,𝐀) = 𝛷0̂0(𝐂) +𝛷1 ∫
̂1(𝐂,𝐀) d𝑃𝑵 , (100)

here 𝐀 = 𝑵⊗𝑵 , 0 and 1 represent the elastic energy contributions of the isotropic matrix and the fibres taking the volume
ractions 𝛷0 and 𝛷1, respectively. One can relate the fibre part with our averaged network energy 𝛹 , so that8

𝜈f 𝜓𝛬(𝐂∶𝐀) = 𝛷1̂1(𝐂,𝐀) . (101)

e note that in Cortes and Elliott (2014, Eqs. 3,10), the volume fraction was lumped into the expression for the energy.
As will be shown next, the moment-based approximation (94), can be aligned with the GHOST method (Cortes and Elliott, 2014),

NEX and STEX methods (Hashlamoun et al., 2016) thus identifying the latter as stretch-statistical methods.
We emphasise that despite this quasi-equivalence, the here proposed method (68) to compute the moments and their derivatives

Eqs. (68) and (72)–(74)) comes with computational and numerical advantages (cf. Remark 2).

.2.2. Comparison with INEX method
At first we align our theory with the INvariant EXpansion (INEX) method proposed in Hashlamoun et al. (2016). This method

tilises a representation of the fibre energy in terms of the volume change 𝐽 =
√

det𝐂 and the isochoric stretch 𝐼4 = 𝐽−2∕3𝛬, which
provides the equivalence

𝛷1̌1(𝐽 , 𝐼4) = 𝜈f 𝜓𝛬(𝐽 2∕3𝐼4) . (102)

In Hashlamoun et al. (2016, Eq. 31) the network energy 𝛹 is then expressed in terms of the truncated series

𝛹 = 𝛷1

𝑛
∑

𝑗=0

1
𝑗!
𝜕𝑗 ̌1

𝜕𝐼 𝑗4
(𝐽 , 1)

𝑗
∑

𝑘=0

(

𝑗
𝑘

)

(−1)𝑘
(

𝐽−2∕3)𝑗−𝑘 ⟨𝐂⊗𝑗−𝑘,H𝑗−𝑘
⟩

. (103)

8 Note that 𝜈f and 𝛷1 are not necessarily identical as 𝜈f may account for different volumetric concepts, e.g. 1-dimensional fibres in a 3-dimensional network,
19

here 𝜈f would quantify to total length of fibre material per volume of the network, see Eq. (6).
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Eq. (71) helps to identify the inner sum (slightly rewritten) as

𝐽−2𝑗∕3
𝑗
∑

𝑘=0

(

𝑗
𝑘

)

(

−𝐽 2∕3)𝑘 ⟨𝐂⊗𝑗−𝑘,H𝑗−𝑘
⟩

= 𝐽−2𝑗∕3M𝐽2∕3 ,𝑗 , (104)

and from (102) it follows that

𝛷1
𝜕𝑗 ̌1

𝜕𝐼 𝑗4
(𝐽 , 1) = 𝜈f

𝜕𝑗𝜓𝛬
𝜕𝛬𝑗

|

|

|

|𝛬=𝐽2∕3
𝐽 2𝑗∕3 . (105)

Inserting Eqs. (104) and (105) back into the approach (103) yields

𝛹 = 𝜈f
𝑛
∑

𝑘=0

1
𝑘!
𝜕𝑘𝜓𝛬
𝜕𝛬𝑘

|

|

|

|𝛬=𝐽2∕3
M𝐽2∕3 ,𝑘, (106)

and thus recovers the moment based approximation (94) with expansion point 𝛬0 = 𝐽 2∕3.

7.2.3. Comparison with STEX method
We next reconcile the Structure Tensor EXpansion (STEX) method with the moment-based approximation (94). The fibre energy

̂1 of the STEX method is parametrised in terms of the tensors 𝐂 and 𝐀, and can therefore be related to the representation 𝜓 used
herein as stated in Eq. (101). The STEX free energy is given by the truncated series (Hashlamoun et al., 2016, Eq. 36)

𝛹 = 𝛷1

𝑛
∑

𝑗=0

1
𝑗!

⟨

𝜕(𝑗)̂1

𝜕𝐀(𝑗)
(𝐂,𝐀0),

𝑗
∑

𝑘=0

(

𝑗
𝑘

)

(−1)𝑘msym
(

H𝑗−𝑘 ⊗ 𝐀⊗𝑘0

)

⟩

, (107)

i.e. the series is expanded about the structural tensor 𝐀0 associated with the ‘dominant’ fibre direction of the distribution, and
Eq. (101) implies

𝛷1
𝜕(𝑗)̂1

𝜕𝐀(𝑗)
(𝐂,𝐀0) = 𝜈f

𝜕𝑗𝜓𝛬
𝜕𝛬𝑗

|

|

|

|𝛬=𝐂∶𝐀0

𝐂⊗𝑗 . (108)

pon resolving
⟨

𝐂⊗𝑗 ,msym
(

H𝑗−𝑘 ⊗ 𝐀⊗𝑘0

)⟩

=
⟨

𝐂⊗𝑗−𝑘,H𝑗−𝑘
⟩

(𝐂 ∶ 𝐀0)𝑘 (109)

q. (71) reveals the moments about 𝛬0 = 𝐂 ∶ 𝐀0

𝑗
∑

𝑘=0

(

𝑗
𝑘

)

(−1)𝑘
⟨

𝐂⊗𝑗 ,msym
(

H𝑗−𝑘 ⊗ 𝐀⊗𝑘0

)⟩

= M𝐂∶𝐀0 ,𝑗 (110)

o that (107) takes the form

𝛹 = 𝜈f
𝑛
∑

𝑘=0

1
𝑗!
𝜕𝑘𝜓𝛬
𝜕𝛬𝑘

|

|

|

|𝛬=𝐂∶𝐀0

M𝐂∶𝐀0 ,𝑘 . (111)

he STEX method (107) hence recovers the moment based approximation (94) with expansion point 𝛬0 = 𝐂 ∶ 𝐀0.

.2.4. Comparison with GHOST method
Cortes and Elliott (2014) investigated strain energy functions with additive isotropic 𝛹iso and anisotropic 𝛹ani contributions,

hich they associated with the matrix and fibres, respectively. Using a generalised structure tensor approach for the fibre part 𝛹ani,
hich for the sake of comparison we set to 𝛹 , they proposed the approximation (Cortes and Elliott, 2014, Eq. 27)

𝛹 =
∞
∑

𝑗=0

1
𝑗!
𝜕𝑗𝑓
𝜕𝛬𝑗

|

|

|

|𝛬=�̄�

𝑗
∑

𝑘=0
(−1)𝑘

(

𝑗
𝑘

)

(�̄�)𝑘
⟨

𝐂⊗𝑗−𝑘,H𝑗−𝑘
⟩

, (112)

which was adapted here in terms of notation. Setting 𝑓 = 𝜈f𝜓𝛬, by virtue of Eq. (71), this coincides with Eq. (94) in case 𝛬0 = �̄�,
viz.

𝛹 = 𝜈f
𝑛
∑

𝑘=0

1
𝑘!
𝜕𝑘𝜓𝛬
𝜕𝛬𝑘

|

|

|

|𝛬=�̄�
M�̄�,𝑘 . (113)

owever, importantly, Cortes and Elliott (2014) noted the problems associated with neglecting compressed fibres with this method
nd therefore omitted the fibre switch at 𝛬 = 1 in the series (112) (cp. their Eq. 20). For a comparison with the STEX and INEX
ethod in Section 7.2.7, we include this switch, and refer to the corresponding method with expansion point 𝛬0 = �̄� as MEAN
20

ethod.
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7.2.5. Zero-order term and second-order approximations
It should be noted that the well-established approaches by Freed et al. (2005) and Gasser et al. (2006) and the elaboration

y Pandolfi and Vasta (2012), Vasta et al. (2014) and Gizzi et al. (2014) can also be brought in line with the general approach (94).
he formal difference that impedes the direct equivalence is that in these works the fibre free energy was formulated in terms of
he isochoric stretch, more precisely as functions 𝜈f𝜓 = 𝜓aniso(𝐼4). Provided that either the fibre energy was dependent on 𝐼4 = 𝛬

instead, the deformation is isochoric or the material incompressible, the zero-order term of the series

𝜈f𝜓𝛬(�̄�) = 𝜈f𝜓𝛬(𝐂 ∶ H1) (114)

agrees with the contributions of fibres in the popular approaches (Gasser et al., 2006; Freed et al., 2005) for fibre reinforced tissues,
where 𝛬 = �̄� was chosen as an expansion point. The corresponding second-order approximation

𝛹 ≈ 𝜈f

(

𝜓𝛬(�̄�) +
1
2
𝜕2𝜓𝛬
𝜕𝛬2

|

|

|

|𝛬=�̄�
M�̄�,2

)

= 𝜈f

[

𝜓𝛬(𝐂 ∶ H1) +
1
2
𝜕2𝜓𝛬
𝜕𝛬2

|

|

|

|𝛬=�̄�

(

⟨

𝐂⊗𝐂,H2
⟩

−
⟨

𝐂,H1
⟩2

)

]

(115)

captures the model in Pandolfi and Vasta (2012, Eq. 18), also found in Vasta et al. (2014) and Gizzi et al. (2014), and we emphasise
that these authors recognised the meaning of the second term as a statistical variance.

Although the generalised structural tensor approaches (Freed et al., 2005; Gasser et al., 2006) may therefore formally be
interpretable as zero-order representations of Eq. (94), the low degree of the series approximation typically endows these models
with different characteristics than the affine structural model, unless the fibre energy is proportional to the stretch square (cf.
Federico and Herzog, 2008). In the general case, these models may therefore be considered an own class, with typically different
parameter sets needed to describe experimental data (see e.g. the discussion in Holzapfel and Ogden, 2017). As noted in Part I
of this work (Britt and Ehret, 2022, Eq. 35), these models may likewise be interpreted as anisotropic average-stretch models, in
which the relation between fibre stretch and fibre energy is generally non-affine. This view might provide an additional explanation
for the differing values of the parameters since affine or non-affine modelling assumptions on fibre-kinematics generally lead to
large differences in the fitted material constants while capturing the same tissue-scale experimental data at potentially comparable
quality (Stracuzzi et al., 2022).

7.2.6. Expansion point
The identification of the GHOST, INEX and STEX methods as moment approaches with different expansion points raises the

question about a suitable choice of the latter. As already explained in Section 7.1.2, we suggest to generally use 𝛬0 = E [𝛬] = �̄� as
in the GHOST method in the absence of additional information on fibre behaviour and state of deformation that would favour a
special choice. The expansion point for a generally anisotropic distribution is thus given by

�̄� = E [𝛬] = E
[

𝐂 ∶ 𝑵⊗𝑵
]

= 𝐂 ∶ H1 , (116)

and the corresponding moments become the central moments M�̄�,𝑛 of the distribution.
The expansion point 𝛬0 = 𝐽 2∕3 = 𝐼1∕33 of the INEX method generally contradicts our arguments in Section 7.1.2, in particular the

energetic argument (i) (Section 7.1.2) as the volume change 𝐽 does generally not reflect the energetic state of the ensemble of fibres.
This issue is particularly evident in application to biological tissues. On the one hand, the corresponding fibres are often considered
to work under tension only, on the other hand many of these network materials typically feature a particular kinematic behaviour
that leads to volume loss (𝐽 < 1) not only under compressive but also tensile load states (Ehret et al., 2017). In combination this
leads to expansion points 𝛬0 = 𝐽 2∕3 < 1, where the fibre energy is negligible and potentially set to zero by definition. Contrary, the
expectation �̄� at least reflects the energy state of those fibres that experience the ‘average’ stretch.

For isotropic fibre distributions, the inequality of arithmetic and geometric means

�̄� = 𝐼1∕𝑑 ≥ 𝐼1∕𝑑𝑑 (117)

furthermore implies that 𝛬0 = 𝐽 2∕3 = 𝐼1∕33 represents fibres at smaller stretch than �̄�. Since for tensile fibre stretches (𝛬 > 1), smaller
stretch typically implies smaller energy, the energetic consideration (i) on again suggests that 𝛬0 = �̄� should generally be preferred.

The choice of expansion point is discussed in a numerical example in the next section.

7.2.7. A numeric example
The moment-based approach to approximate the full-network model with non-uniform fibre distribution is exemplified for the

important special case of fibres symmetrically distributed about a preferred direction 𝑵0. We adopt the typically employed fibre
orientation density function 𝜌(𝜑, 𝜗) = �̌�(𝑵(𝜑, 𝜗)) (cf. e.g. Gasser et al., 2006, Eq. 4.3)

𝜌(𝜑, 𝜗) = 𝐾 exp(𝑏(cos(2∡(𝑵(𝜑, 𝜗),𝑵0)) + 1)) = 𝐾 exp
(

2𝑏(𝑵(𝜑, 𝜗) ⋅𝑵0)2
)

(118)

of the von Mises distribution (Fig. 8a), where 𝑏 is a concentration parameter, here selected as 𝑏 = 1, 𝐾 = 2
√

2𝑏∕𝜋 ∕erf i(
√

2𝑏) is a
ormalisation constant in terms of the imaginary error function erf i(𝑧) to ensure condition (34), and the parametrisation of 𝑵 in
pherical coordinates follows (36). The preferred fibre direction was set to 𝑵0 = (𝒆1 + 𝒆2)∕

√

2. The fibre strain-energy density is
assumed to take the likewise common, exponential form (cf. Holzapfel, 2000)

𝜓𝛬(𝛬) =

{

0 if 𝛬 < 1,
𝑐 (

exp
((

𝑘 (𝛬 − 1)2
))

− 1
)

otherwise,
(119)
21
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𝛬

Fig. 8. Fibre free energy (a) and orientation distribution density (b) used in the numerical example. The deformation history is defined by the course of the
three squared principal stretches (not ordered) {𝛬1 = 𝜆2 , 𝛬2 = 1, 𝛬3} (c). Solid lines in (c) show the trajectories of potential expansion points 𝛬0 = �̄� (MEAN),

0 = 𝐽 2∕3 (INEX) and 𝛬0 = 𝐂∶𝐀0 (STEX) of the moment approach (94).

Fig. 9. Effect of expansion points for the moment approach (94) in the example in Fig. 8 for tensile (a) and compressive (b) range of 𝜆 =
√

𝛬1. Results are
shown for series expanded up to 𝑛 = 5, with expansion points 𝛬0 = �̄� (MEAN), 𝛬0 = 𝐽 2∕3 (INEX) and 𝛬0 = 𝐂 ∶ 𝐀0 (STEX). The trajectories of the respective
expansion points are illustrated in Fig. 8c.

with parameters 𝑐 with the dimension of a force9 and 𝑘2, which was chosen as 𝑘2 = 1 for illustration (Fig. 8b). The piecewise
definition with zero contribution from fibres under compression (𝛬 < 1) is known to complicate the evaluation of both the structural

9 We note that this dimension is due to defining 𝜓 as energy per fibre length (see Section 2.3).
22
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and generalised structural tensor approach, and has caused extended discussions in the recent past (Li et al., 2018a; Holzapfel and
Ogden, 2017; Pandolfi and Vasta, 2012).

To establish a numerical ground truth for comparison the classical spherical quadrature (10) was implemented based on a
= 5810 node Lebedev integration scheme (Burkardt, 2010) integrating exactly polynomials of up to order 131 in {𝑥, 𝑦, 𝑧}, i.e.

in 𝛬 = 𝑥2 + 𝑦2 + 𝑧2 up to order ⌊131∕2⌋ = 65

�̄� ≈
𝑁
∑

𝑖=1
𝜓𝛬(𝐂 ∶ 𝑴 𝑖⊗𝑴 𝑖)𝑤𝑖, (120)

where {𝑴 𝑖} specify the positions of the integration points and {𝑤𝑖} are the corresponding weights.
To highlight interesting differences caused by the choice of expansion point, we consider a plane strain stretch history given by

the three principal stretches {𝜆𝑘} = {𝜆, 1, 𝜆−1.2} along the directions {𝑵𝑘} = {𝑵1,𝑵2,𝑵3}, which in our example coincide with the
fixed basis {𝒆1, 𝒆2, 𝒆3}, and 𝜆 was varied between 0.65 and 1.7 in 99 equidistant steps (100 points) (Fig. 8c).

We compared the 5th order moment-based method with expansion point 𝛬0 = �̄� (MEAN(5)) against those with expansion points
𝛬0 = 𝐽 2∕3 (INEX(5)) and 𝛬0 = 𝑵0 ⋅𝐂𝑵0 = 𝐂∶𝐀0 (STEX(5)), and the 5810-point Lebedev scheme (sphere). The history of the different
expansion points is illustrated in Fig. 8c, and the results in terms of the averaged energy �̄� are shown in Fig. 9.

The figure reveals a general drawback of moment-based methods associated with a Taylor expansion of the fibre energy if the
latter features discontinuous derivatives, observable here as a jump in Fig. 9a for the case MEAN(5) at 𝜆 ≈ 0.87. The occurrence of
such discontinuities was already pointed out in Melnik et al. (2015), Latorre and Montáns (2016) and Horgan and Murphy (2020)
for special cases of order 𝑛 = 0 models. In the present case, energy and stress are zero and continuous at the fibre switch (𝛬 = 1)
while the second derivative (stiffness) as well as higher ones are not. Moments of order 𝑘 ≥ 2 therefore generally contribute to
the approximated 𝛹 when approaching the switch point from the right hand side (𝛬0 → 1+) whereas all derivatives are zero by
definition for 𝛬0 < 1 and hence 𝛬0 → 1−. Generally, let 𝜓𝛬 be 𝑚 times continuously differentiable, i.e. have zero derivatives at the
switch point, according to Eqs. (94) and (95) one has

𝛬0 → 1+ ∶ 𝛹 (𝐂) = 𝜈f
𝑛
∑

𝑘=𝑚+1

1
𝑘!
𝜕𝑘𝜓𝛬
𝜕𝛬𝑘

|

|

|

|𝛬=1
M1,𝑘 , 𝛬0 → 1− ∶ 𝛹 (𝐂) = 0, (121)

s well as

𝛬0 → 1+ ∶ 𝜕𝛹
𝜕𝐂

(𝐂) = 𝜈f
𝑛
∑

𝑘=𝑚

1
𝑘!

(

𝜕𝑘+1𝜓𝛬
𝜕𝛬𝑘

|

|

|

|𝛬=1
M1,𝑘

𝜕𝛬0
𝜕𝐂

+
𝜕𝑘𝜓𝛬
𝜕𝛬𝑘

|

|

|

|𝛬=1

𝜕M𝛬0 ,𝑘

𝜕𝐂

)

, 𝛬0 → 1− ∶ 𝜕𝛹
𝜕𝐂

(𝐂) = 𝟎, (122)

hat cause the jump discontinuities in energy and stress respectively, and in our numerical example 𝑚 = 1 and 𝑛 = 5. These unphysical
nergy and stress discontinuities can only be avoided if 𝑛 < 𝑚, which either limits the quality of approximation or the choice of
he functional form of 𝜓𝛬. While the same problem can occur for the STEX and INEX methods, their plots in Fig. 9 reveal a second
ssue: When applied to a material that undergoes volumetric compression, all fibres in the STEX method are switched off if 𝐽 < 1
y definition. Hence, the averaged free energy is zero in this case, independent of the actual stretch in the fibres (Fig. 9b, dashed
ine). On the other hand, for the STEX method, it suffices that the dominant fibre direction comes under compression to neglect
he contribution of all fibres, and set the corresponding average zero (Fig. 9a, dotted line). Moreover, this method shows relatively
arly divergence also in Fig. 9b (dotted line), an observation that was already discussed by Hashlamoun et al. (2016).

. CDF-based integration of the affine full network model

In this section we exemplify the use of the CDF representation of the stretch distribution to integrate the affine full network
odel. The network free energy in this case results from Eq. (22)

𝛹 = 𝜈f �̄� = 𝜈f

[

𝜓𝛬(𝐴)− ∫

𝐴

0
𝜓 ′
𝛬(𝑧) CDF𝛬(𝑧) d𝑧− ∫

∞

𝐴
𝜓 ′
𝛬(𝑧) (CDF𝛬(𝑧) − 1) d𝑧

]

(123)

pon insertion of the affine CDF, which in the general anisotropic case is given by Eq. (60). Although by this means the integration
f the anisotropic affine full network model is therefore possible, we here restrict to the isotropic case in both 2D and 3D, in
hich the CDF can be given in closed form by means of essential functions. We put special emphasis on fibre laws characterised
y a tension–compression switch, as this typically complicates the common spherical integration due to a deformation-dependent
ntegration domain on the sphere (see e.g. Holzapfel and Ogden, 2015; Gizzi et al., 2016; Li et al., 2018b).

To simplify the analysis, we will assume the case of mutually distinct eigenvalues of 𝐂, and note that this case can always
e enforced numerically by adding a small perturbations to the eigenvalues if needed, and that the effect on the result should be
cceptable in a stable problem. The eigenvalues are denoted by 𝛬2 < 𝛬1 in 2D and 𝛬3 < 𝛬2 < 𝛬1 in 3D. As a consequence of mutual
istinctness, the eigenvalues {𝛬𝑖} and eigenprojections {𝐏𝑖}, for which 𝐂 = 𝛬𝑖𝐏𝑖, are differentiable, and case distinctions can be
mitted in this case, i.e.

𝜕𝛬𝑖
𝜕𝐂

= 𝐏𝑖 ,
𝜕𝐏𝑖
𝜕𝐂

=
𝑑
∑

𝑗=1

𝐏𝑖 ⊠ 𝐏𝑗 + 𝐏𝑗 ⊠ 𝐏𝑖
𝛬𝑖 − 𝛬𝑗

. (124)
23

𝑗≠𝑖
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By this means, the stress and tangent tensor in the isotropic case are found by use of the chain rule of differentiation as

𝐒 = 2 𝜕�̌�
𝜕𝛬𝑖

𝐏𝑖 , C = 4 𝜕2�̌�
𝜕𝛬𝑗𝜕𝛬𝑖

𝐏𝑖 ⊗ 𝐏𝑗 + 4 𝜕�̌�
𝜕𝛬𝑖

𝜕𝐏𝑖
𝜕𝐂

, (125)

respectively, where �̌� ({𝛬𝑖}) = �̂� (𝛬𝑖𝐏𝑖). A general derivation of Eq. (124) for non-symmetric tensors can be found in Itskov (2019,
Sec. 7).10 Moreover, for 𝑑 = 3, a specific derivation leading to an analogue version of Eq. (124)2 is given in Miehe (1998, Eq. 17).

Finally, we will make use of the essential property of the affine assumption that no fibre can experience a stretch outside the
interval spanned by the smallest and largest principal stretch, i.e. [𝛬𝑑 , 𝛬1], which predetermines CDF𝛬 to be zero for arguments
strictly smaller than 𝛬𝑑 and one for arguments strictly larger 𝛬1. As a consequence the lower and upper integration bounds of
Eq. (123) change from zero and infinity to 𝛬𝑑 and 𝛬1, respectively. In the main body of this paper we concentrate on the 3D case,
the 2D case is treated in Appendix G.

8.1. Isotropic 3D case

In view of the special integration bounds of the affine case, it is appropriate to express Eq. (22) as

�̄� = 𝜓𝛬(𝛬2) − ∫

𝛬2

𝛬3

𝜓 ′
𝛬CDF𝛬 d𝑧 − ∫

𝛬1

𝛬2

𝜓 ′
𝛬(CDF𝛬 − 1) d𝑧 , (126)

where the affine stretch distribution (Eqs. (56), (59)) is to be inserted for CDF𝛬. Continuing with the isotropic case (61) of the latter
one obtains

�̄� = 𝜓𝛬(𝛬1) + 𝜓𝛬(𝛬3) − 𝜓𝛬(𝛬2) + ∫

𝛬2

𝛬3

𝜓 ′
𝛬(𝑧)

1
𝜋 ∫

𝜋∕2

−𝜋∕2
�̂�(𝑧, 𝑦) d𝑦 d𝑧 − ∫

𝛬1

𝛬2

𝜓 ′
𝛬(𝑧)

1
𝜋 ∫

𝜋∕2

−𝜋∕2
�̌�(𝑧, 𝑦) d𝑦 d𝑧 , (127)

here �̂� and �̌� are given in Eqs. (55) and (58), respectively. Introducing the parameter 𝛼 = (𝛬1 − 𝛬2)∕(𝛬1 − 𝛬3) ∈ (0, 1) and using
he substitutions

𝑧𝑠 ∶ (0, 1) → (𝛬3, 𝛬2), 𝑧𝑠(𝑠) = (𝛬3 − 𝛬2)𝑠 + 𝛬2, 𝑧𝑡 ∶ (0, 1) → (𝛬2, 𝛬1), 𝑧𝑡(𝑡) = (𝛬1 − 𝛬2)𝑡 + 𝛬2, (128)

q. (127) can be rescaled as

�̄� = 𝜓𝛬(𝛬1) + 𝜓𝛬(𝛬3) − 𝜓𝛬(𝛬2) + (𝛬2 − 𝛬3)∫

𝑆

0
𝜓 ′
𝛬(𝑧𝑠(𝑠)) 𝑓 ((1 − 𝛼)𝑠, 𝛼) d𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
1⃝

− (𝛬1 − 𝛬2)∫

1

𝑇
𝜓 ′
𝛬(𝑧𝑡(𝑡)) 𝑓 (𝛼𝑡, 1 − 𝛼) d𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
2⃝

, (129)

here 𝑆 = 1 and 𝑇 = 0 to consider energetic contributions of all fibres or

𝑆(𝛬2, 𝛬3) = min
(

max
(

1 − 𝛬2
𝛬3 − 𝛬2

, 0
)

, 1
)

, 𝑇 (𝛬1, 𝛬2) = min
(

max
(

1 − 𝛬2
𝛬1 − 𝛬2

, 0
)

, 1
)

(130)

to implement a tension–compression switch that excludes fibres under compression. In both cases, the function 𝑓 is defined as

𝑓 ∶ (0, 1) × (0, 1) → R, 𝑥, 𝑦 ↦ 1
𝜋 ∫

𝜋∕2

−𝜋∕2

√

𝑥 + 𝑦 cos2(𝜙)
1 − 𝑦 sin2(𝜙)

d𝜙 . (131)

he latter can be expressed in terms of elementary functions as (see Appendix H)

𝑓 ∶ (0, 1) × (0, 1) → R , 𝑥, 𝑦 ↦
2(𝑥 + 𝑦)
𝜋
√

𝑥
𝛱
(

−
𝑦
𝑥
|

|

|

|

𝑦(𝑥 + 𝑦 − 1)
𝑥

)

, (132)

where 𝛱 is the complete elliptic integral of the third kind (see e.g. Abramowitz and Stegun, 1972), i.e.

𝛱(𝑛|𝑚) = ∫

𝜋∕2

0

d𝜃

(1 − 𝑛 sin2(𝜃))
√

1 − 𝑚 sin2(𝜃)
. (133)

or the calculation of stress and stiffness we further note the first and second derivatives

�̄�,𝛬1
=𝜓 ′

𝛬(𝛬1) − 2⃝ + (𝛬2 − 𝛬3) 3⃝𝛼,𝛬1
− (𝛬1 − 𝛬2)

[

4⃝ + 5⃝𝛼,𝛬1

]

,

�̄�,𝛬2
= − 𝜓 ′

𝛬(𝛬2) + 1⃝ + 2⃝ + (𝛬2 − 𝛬3)
[

6⃝ + 3⃝𝛼,𝛬2

]

− (𝛬1 − 𝛬2)
[

7⃝ + 5⃝𝛼,𝛬2

]

,

�̄�,𝛬3
=𝜓 ′

𝛬(𝛬3) − 1⃝ + (𝛬2 − 𝛬3)
[

8⃝ + 3⃝𝛼,𝛬3

]

− (𝛬1 − 𝛬2) 5⃝𝛼,𝛬3
,

(134)

10 Please note the different use of the symbol ‘‘⊗’’ in this reference.
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d
1
t

and

�̄�,𝛬1𝛬1
=𝜓 ′′

𝛬 (𝛬1) − 2
(

4⃝ + 5⃝𝛼,𝛬1

)

+ (𝛬2 − 𝛬3)
[

9⃝𝛼2,𝛬1
+ 3⃝𝛼,𝛬1𝛬1

]

− (𝛬1 − 𝛬2)
[

10⃝ + 2 11⃝𝛼,𝛬1
+ 12⃝𝛼2,𝛬1

+ 5⃝𝛼,𝛬1𝛬1
− 𝜓 ′′

𝛬 (1)𝑇𝑓 (𝛼𝑇 , 1 − 𝛼)𝑇,𝛬1

]

,

�̄�,𝛬1𝛬2
= 3⃝𝛼,𝛬1

− 7⃝ − 5⃝𝛼,𝛬2
+ 4⃝ + 5⃝𝛼,𝛬1

+ (𝛬2 − 𝛬3)
[

13⃝𝛼,𝛬1
+ 9⃝𝛼,𝛬2

𝛼,𝛬1
+ 3⃝𝛼,𝛬1𝛬2

]

− (𝛬1 − 𝛬2)
[

14⃝ + 11⃝𝛼,𝛬2
+ 15⃝𝛼,𝛬1

+ 12⃝𝛼,𝛬2
𝛼,𝛬1

+ 5⃝𝛼,𝛬1𝛬2
− 𝜓 ′′

𝛬 (1)𝑇𝑓 (𝛼𝑇 , 1 − 𝛼)𝑇,𝛬2

]

,

�̄�,𝛬1𝛬3
= − 5⃝𝛼,𝛬3

− 3⃝𝛼,𝛬1
+ (𝛬2 − 𝛬3)

[

16⃝𝛼,𝛬1
+ 9⃝𝛼,𝛬3

𝛼,𝛬1
+ 3⃝𝛼,𝛬1𝛬3

]

− (𝛬1 − 𝛬2)
[

11⃝𝛼,𝛬3
+ 12⃝𝛼,𝛬3

𝛼,𝛬1
+ 5⃝𝛼,𝛬1𝛬3

]

,

�̄�,𝛬2𝛬2
= − 𝜓 ′′

𝛬 (𝛬2) + 2
(

6⃝ + 3⃝𝛼𝛬2

)

+ 2
(

7⃝ + 5⃝𝛼,𝛬2

)

+ (𝛬2 − 𝛬3)
[

17⃝ + 2 13⃝𝛼,𝛬2
+ 9⃝𝛼2,𝛬2

+ 𝜓 ′′
𝛬 (1)(1 − 𝑆)𝑓 ((1 − 𝛼)𝑆, 𝛼)𝑆,𝛬2

]

− (𝛬1 − 𝛬2)
[

19⃝ + 2 15⃝𝛼,𝛬2
+ 12⃝𝛼2,𝛬2

− 𝜓 ′′
𝛬 (1)(1 − 𝑇 )𝑓 (𝛼𝑇 , 1 − 𝛼)𝑇,𝛬2

]

,

�̄�,𝛬2𝛬3
= 8⃝ + 3⃝𝛼,𝛬3

+ 5⃝𝛼,𝛬3
− 6⃝ − 3⃝𝛼,𝛬2

+ (𝛬2 − 𝛬3)
[

18⃝ + 13⃝𝛼,𝛬3
+ 16⃝𝛼,𝛬2

+ 9⃝𝛼,𝛬3
𝛼,𝛬2

+ 3⃝𝛼,𝛬2𝛬3
+ 𝜓 ′′

𝛬 (1)(1 − 𝑆)𝑓 ((1 − 𝛼)𝑆, 𝛼)𝑆,𝛬3

]

− (𝛬1 − 𝛬2)
[

15⃝𝛼,𝛬3
+ 12⃝𝛼,𝛬3

𝛼,𝛬2
+ 5⃝𝛼,𝛬2𝛬3

]

,

�̄�,𝛬3𝛬3
=𝜓 ′′

𝛬 (𝛬3) − 2
(

8⃝ + 3⃝𝛼,𝛬3

)

+ (𝛬2 − 𝛬3)
[

20⃝ + 2 16⃝𝛼,𝛬3
+ 9⃝𝛼2,𝛬3

+ 3⃝𝛼,𝛬3𝛬3
+ 𝜓 ′′

𝛬 (1)𝑆𝑓 ((1 − 𝛼)𝑆, 𝛼)𝑆,𝛬3

]

− (𝛬1 − 𝛬2)
[

12⃝𝛼2,𝛬3
+ 5⃝𝛼,𝛬3𝛬3

]

,

(135)

espectively. The required integrals { 𝑖⃝}𝑖=3...,20 are specified in Appendix F.
The bottleneck of the presented approach for integration of the fibre constitutive law lies in the evaluation of the elliptic function

131), equivalently Eq. (132), and its derivatives.

.2. A numerical example

The CDF-based integration approach is illustrated in application to an isotropic network, i.e. 𝜌(𝜑, 𝜗) = 1, with the previously
efined exponential-type fibre energy (119). The specific load case was defined by a pure stretch history {𝜆𝑘} = {1.1, 𝜆, 0.8} with
00 equidistant points 𝜆 ∈ [0.95, 1.05] so that the amount of fibres under tension varies during the experiment. For comparison again
he 5810-point Lebedev scheme (120) was used, which implies

𝜕�̄�
𝜕𝐂

≈
5810
∑

𝑖=1
𝜓 ′
𝛬(𝐂 ∶ 𝑴 𝑖⊗𝑴 𝑖)𝑴 𝑖⊗𝑴 𝑖𝑤𝑖 (136)

and

𝜕2�̄�
𝜕𝐂𝜕𝐂

≈
5810
∑

𝑖=1
𝜓 ′′
𝛬 (𝐂 ∶ 𝑴 𝑖⊗𝑴 𝑖)𝑴 𝑖⊗𝑴 𝑖⊗𝑴 𝑖⊗𝑴 𝑖𝑤𝑖 (137)

for the derivatives.
For the evaluation of the integrals { 𝑖⃝}𝑖=1,…,20 in the CDF-based integration approach a 𝑁 = 10 point Gauss–Legendre integration

was used, such that, e.g.,

1⃝ = ∫

𝑆

0
𝜓 ′
𝛬(𝑧𝑠(𝑠)) 𝑓 ((1 − 𝛼)𝑠, 𝛼) d𝑠 ≈

10
∑

𝑖=1
𝜓 ′
𝛬(𝑧𝑠(𝑠𝑖)) 𝑓 ((1 − 𝛼)𝑠𝑖, 𝛼)𝑤𝑖 (138)

where {𝑠𝑖} are the Gauss–Legendre integration points adjusted to the interval [0, 𝑆] and {𝑤𝑖} the corresponding weights.
As by virtue of Eq. (125) the derivatives of the energy �̄� with respect to 𝐂 follow from the derivatives of �̄� with respect to the

eigenvalues {𝛬𝑖}, for the sake of a compact comparison only the latter derivatives are calculated, and it was used that it must also
hold that

𝜕�̄�
𝜕𝐂

∶ 𝐏𝑖 =
𝜕�̄�
𝜕𝛬𝑖

(139)

for all 𝑖 = 1, 2, 3 and
⟨

𝜕2�̄�
𝜕𝐂𝜕𝐂

,𝐏𝑖 ⊗ 𝐏𝑗
⟩

=
𝜕2�̄�

𝜕𝛬𝑖𝜕𝛬𝑗
(140)

due to the orthogonality of the eigenprojections {𝐏𝑖}.
Fig. 10 reports the results in terms of strain-energy and stress (both normalised by 𝜈f 𝑐) and shows excellent agreement between

the 10-point CDF-based integration (to be applied twice for the energy and additional 6 times for the stress) and the 5810-point
25
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𝛹
n

Fig. 10. Comparison between CDF-based integration in 3D with 10 integration points (per integral 1–8) and spherical Lebedev integration with 5810 integration
points: Averaged fibre energy (a) and first derivatives (b-d) based on Eqs. (134) vs. (136), (139).

spherical quadrature. The advantage in accuracy becomes apparent when comparing the second derivatives (135) against those
obtained by spherical integration (Eqs. (137), (140)), which define the tangent tensor (125)2. The smooth curves in Fig. 11 document
the insensitivity of the CDF-based approach against fibres switching on and off, compared to the spherical integration, which still
displays the switch-associated discontinuities despite the already extremely high-order integration scheme.

8.3. Numeric evaluation of stress and tangent tensors

Even if only 10 Gauss points are required, the 6 additional integrals in (134) and 12 additional ones in (135) together with those
in the energy add up to 20. Although the implementation of these integrals is merely cumbersome, and does generally not pose a
technical obstacle, we provide in the following schemes to determine stress and tangent based on numerical differentiation as often
used in the framework of computational inelasticity (e.g. Miehe, 1996; Pérez-Foguet et al., 2000). While in general this will not have
less computational cost than evaluating the 20 auxiliary integrals { 𝑖⃝}𝑖=1,…,20, it might be advantageous in view of optimisation
echniques that use automatic differentiation schemes, and therefore do not require the implementation of the derivatives.

In the isotropic case 𝛹 is a function of the eigenvalues of 𝐂. Hence the numeric differentiation can be limited to the change of
with respect to the (distinct) eigenvalues, whereas in turn their change with respect to 𝐂 is considered in analytic terms, i.e. the

umeric forward difference quotient estimates (cp. e.g. Pérez-Foguet et al., 2000)

𝜕�̌�
𝜕𝛬𝑖

≈
�̌� ({𝛬𝑘 + 𝛿𝑖𝑘𝜖}) − �̌� ({𝛬𝑘})

𝜖
(141)

and

𝜕2�̌� ≈
�̌� ({𝛬𝑘 + (𝛿𝑖𝑘 + 𝛿𝑗𝑘)𝜖}) − �̌� ({𝛬𝑘 + 𝛿𝑗𝑘𝜖}) − �̌� ({𝛬𝑘 + 𝛿𝑖𝑘𝜖}) + �̌� ({𝛬𝑘}) (142)
26
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6

a

Fig. 11. Comparison between CDF-based integration in 3D with 10 integration points (per integral 3–12) and spherical Lebedev integration with 5810 integration
points: Second derivatives (a–f) based on Eqs. (135) vs. (137), (140).

can be inserted into Eq. (125). The set notation {...} used here includes all elements of the indices 𝑘 = 1,… , 𝑑, and the Kronecker
delta symbol 𝛿𝑖𝑘 = 1 if 𝑖 = 𝑘 or 0 otherwise. We note that this technique strictly requires the eigenvalues to be distinct, as it relies
on the validity of Eq. (124). However, adapting the argumentation in Miehe (1998) this can always be ensured by adding small
variations to the eigenvalues when necessary. Given a stable problem this is justifiable because, by definition, it may only cause a
small variation of the result. It can be concluded by counting that the required total number of function evaluations for �̂� in the
expressions (141) and (142) is 6 in the 2D and 10 in the 3D setting.

More generally, in the isotropic or anisotropic case, one can approximate the directional derivative (cf. e.g. Itskov, 2019, Sec.
) using small 𝜖 as

𝜕�̂�
𝜕𝐂

∶ 𝐓 = d
d𝜖
�̂� (𝐂 + 𝜖𝐓)

|

|

|

|𝜖=0
≈
�̂� (𝐂 + 𝜖𝐓) − �̂� (𝐂)

𝜖
(143)

nd, applying this twice, for small 𝜖1 and 𝜖2
⟨

𝜕2�̂�
𝜕𝐂𝜕𝐂

,𝐓⊗ 𝐔
⟩

= d2
d𝜖 d𝜖

�̂� (𝐂 + 𝜖1𝐓 + 𝜖2𝐔)
|

|

|

|

𝜖1=0
≈
�̂� (𝐂 + 𝜖1𝐓 + 𝜖2𝐔) − �̂� (𝐂 + 𝜖1𝐓) − �̂� (𝐂 + 𝜖2𝐔) + �̂� (𝐂)

𝜖 𝜖
, (144)
27
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valid for all suitable symmetric second-order tensors 𝐓 and 𝐔. For example, choosing 𝐓 and 𝐔 as (𝒆𝑖⊗ 𝒆𝑗 + 𝒆𝑗 ⊗ 𝒆𝑖)∕2 for 𝑖 ∈ {1, 2, 𝑑}
nd 𝑗 ∈ {1, 2, 𝑑}, it can be concluded by counting that all unique components of 𝜕�̂�∕𝜕𝐂 and 𝜕2�̂�∕𝜕𝐂𝜕𝐂 according to Eqs. (143) and
144) can be computed with a total number of 10 and 28 function evaluations for �̂� in the 2D and 3D case, respectively.

. Summary and conclusions

In the present contribution the framework to model the mechanical behaviour of materials with network microstructures based on
he distribution of stretch as proposed in Part I of this series of papers was further elaborated. At first, (i) an alternative representation
n terms of the cumulative distribution function of stretch was developed. This representation brings both conceptional and
omputational advantages, since it is not dependent on the existence of a probability density function, and it is generally free of
ssential discontinuities and even bounded between zero and one, in clear contrast to the latter. Next, the approach was applied to
odel materials with affinely deforming fibres. This procedure led to (ii) a rigorous investigation of the ‘affine stretch distribution’

n terms of its cumulative distribution function and density. Finally, the special case of affine networks allowed considering (iii)
on-uniform initial fibre orientation distributions within the new framework.

These steps provided new perspectives on classical approaches to deal with network and fibre materials such as the affine
ull-network model of rubber elasticity and the structural approach in biomechanics, including the following aspects:

• The assumption of affine fibre kinematics implies that the stretches within the network obey a particular probability
distribution, here referred to as affine distribution, which depends on the network’s macroscopic state of deformation.

• Using this distribution as a starting point, the stretch-statistical approach for modelling materials with network microstructure
proposed in Part I generally serves to compute the response of materials with affine fibre kinematics.

• The directional averaging over the unit sphere inherent to the full network and structural approaches can be circumvented by
three alternative averaging operations based on the stretch distribution, its probability density or its moments.

• While the use of the affine probability density function was omitted due to its essential singularities, the cumulative distribution
function proved to be well suited to accurately integrate the isotropic full network model even for highly non-linear ‘tension-
only’ constitutive behaviour of the fibres. Nonetheless, its potential advantage over classical spherical integration in terms of
computational cost still needs to be evaluated, and may strongly depend on both the efficiency of the implementation and the
specific problem to be solved.

• The presented general moment-based, i.e. higher order structural tensor formulation of the problem includes several ap-
proaches proposed in literature as special cases, which can partly be reconciled with each other, or at least be shown to belong
to a family of models which actually makes use of the statistical moments of the affine distribution. Several improvements
were proposed in terms of either more compact representations or computationally more efficient forms.

• The expansion points about which the moments are formulated have a strong impact on the performance of these higher
order structural tensor models. In general, when ‘tension-only’ fibre laws are considered, the considered moment-based
approximations can suffer from discontinuities even in the averaged energy if moments higher than order 0 are used.

In conclusion, this work enhances the theoretical understanding of full network and structural approaches as well-established
nd widespread averaging strategies in constitutive modelling of fibrous materials and tissues. We anticipate that the alternative
erception of these concepts as averages over a known distribution of fibre stretch instead of a known distribution of fibre orientation
ay open up further alternative routes to efficiently implement these and related approaches in the future.
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Appendix A. Definitions

Let the scalar product ‘⟨ , ⟩’ between two tensors of arbitrary order 𝑛 ≥ 1 be the inner product defined by

⟨𝒂1 ⊗…⊗ 𝒂𝑛, 𝒃1 ⊗…⊗ 𝒃𝑛⟩ =
𝑑
∏

𝑖=1
𝒂𝑖 ⋅ 𝒃𝑖 (A.1)

and, by understanding tensors of order zero as real numbers, we extend this definition by including the common product between
real numbers, so that ⟨𝑎, 𝑏⟩ = 𝑎𝑏 for 𝑛 = 0. For tensors given as e.g. A = 𝐴𝑖…𝑗𝒈𝑖 ⊗…⊗ 𝒈𝑗 and B = 𝐵𝑠…𝑡𝒈𝑠 ⊗…⊗ 𝒈𝑡, with respect to
bases formed by the dual sets of base vectors {𝒈𝑖}, {𝒈𝑗} so that 𝒈𝑖 ⋅ 𝒈𝑗 = 𝛿𝑗𝑖 (Kronecker delta), this definition thus provides

⟨A,B⟩ = 𝐴𝑖…𝑗𝐵𝑠…𝑡 𝛿
𝑠
𝑖 … 𝛿𝑡𝑗 = 𝐴𝑖…𝑗𝐵𝑖…𝑗 , (A.2)

and we note that the distinction between super- and subscript indices is not necessary when working with orthonormal bases.
In addition to the ‘complete’ contraction (A.1), we introduce a 𝑘-contraction ‘𝑘⋅’ between two tensors of order 𝑛 ≥ 𝑘 and 𝑚 ≥ 𝑘,

respectively, as the multi-linear operation defined by (cf. Rubin, 2021)

𝒂1 ⊗…⊗ 𝒂𝑛
𝑘⋅ 𝒃1 ⊗…⊗ 𝒃𝑚 =

𝑘
∏

𝑖=1

(

𝒂𝑛−𝑘+𝑖 ⋅ 𝒃𝑖
)

𝒂1 ⊗…⊗ 𝒂𝑛−𝑘 ⊗ 𝒃𝑘+1 ⊗…⊗ 𝒃𝑚 . (A.3)

Understanding A and B as tensors of order 𝑛 ≥ 𝑘 and 𝑚 ≥ 𝑘 respectively, analogously to Eq. (A.2) this definition yields

A 𝑘⋅ B = 𝐴𝑖…𝑗𝑠…𝑡𝐵𝑠…𝑡𝑢…𝑣 𝒈𝑖 ⊗…⊗ 𝒈𝑗
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑛−𝑘

⊗ 𝒈𝑢 ⊗…⊗ 𝒈𝑣
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑚−𝑘

, (A.4)

and the special case 𝑘 = 2 is the double contraction, viz.

A ∶ B = A 2⋅ B . (A.5)

We define the tensor product ‘⊠ ’ between two second order tensors such that

𝐀⊠ 𝐁 ∶ 𝐗 = 𝐀𝐗 + 𝐗T

2
𝐁 (A.6)

for all second order tensors 𝐀, 𝐁 and 𝐗, which implies e.g. for 𝐀 = 𝐴𝑖𝑗𝒈𝑖 ⊗ 𝒈𝑗 and 𝐁 = 𝐵𝑖𝑗𝒈𝑖 ⊗ 𝒈𝑗

𝐀⊠ 𝐁 = 𝐴𝑖𝑠𝐵𝑡𝑗 + 𝐴𝑖𝑡𝐵𝑠𝑗
2

𝒈𝑖 ⊗ 𝒈𝑗 ⊗ 𝒈𝑠 ⊗ 𝒈𝑡 . (A.7)

The 𝑛th tensor power of a tensor A of arbitrary order is defined as (cp. Hashlamoun et al., 2016)

A⊗𝑛 = A⊗…⊗ A
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑛 times

, (A.8)

which is understood to include A⊗0 = 1 ∈ R by convention.
For two tensors A and B of orders 𝑛 and 𝑚, where we understand the former to be a function of the latter, i.e. A = F(B), the

erivative of A with respect to B is defined such that

𝜕A
𝜕B

𝑚⋅ T = d
d𝜖

F(B + 𝜖T)
|

|

|

|𝜖=0
(A.9)

for all tensors T of order 𝑚 compatible with B. Expressed with the component representations A = 𝐴𝑖…𝑗𝒆𝑖 ⊗ … ⊗ 𝒆𝑗 and
= 𝐵𝑠…𝑡𝒆𝑠⊗…⊗𝒆𝑡, where {𝒆𝑖} forms a fixed orthonormal basis, this yields (without special considerations of potential symmetries)

𝜕A
𝜕B

=
𝜕𝐴𝑖…𝑗

𝜕𝐵𝑠…𝑡
𝒆𝑖 ⊗…⊗ 𝒆𝑗 ⊗ 𝒆𝑠 ⊗…⊗ 𝒆𝑡 . (A.10)

ppendix B. Generalised structural tensors in the 2D case

The definition of the 𝑛th even order structural tensor (76) is valid in the 𝑑-dimensional case. In analogy to the 3D expression
77) one finds for 2D

H𝑛|𝑝,𝑞 = E
[

(𝑵 ⋅ 𝒆1)𝑝(𝑵 ⋅ 𝒆2)𝑞
]

= E
[

cos𝑝(𝜑) sin𝑞(𝜑)
]

. (B.1)

The properties (79) and (80) hold for any dimension 𝑑. While Eq. (80) thus translates into Eq. (81) in the 3D case, its 2D equivalent
reads

H = H +H . (B.2)
29

𝑛|𝑝,𝑞 𝑛+1|𝑝+2,𝑞 𝑛+1|𝑝,𝑞+2
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Appendix C. Moments in the isotropic 2D case

If the referential fibre orientation is uniform, the components of the generalised structural tensors (B.1) drastically simplify, and
he moments can be evaluated according to (68). However, in the isotropic case, one may also directly evaluate the defining Eq. (66)
y an analytic integration over the unit circle. The representations of the square stretch Eq. (32)1 and its mean Eq. (70) thus allow

to write the 𝑛th moment of the affine stretch distribution (24) as

M�̄�,𝑛 =
1
2𝜋 ∫

2𝜋

0

(

𝛬1 cos2(𝜙) + 𝛬2 sin
2(𝜙) −

𝛬1 + 𝛬2
2

)𝑛
d𝜙 , (C.1)

hich can be further simplified to

M�̄�,𝑛 =
(

𝛬1 − 𝛬2
2

)𝑛 1
2𝜋 ∫

2𝜋

0
cos𝑛(2𝜙) d𝜙 (C.2)

by use of the relations between trigonometric functions and their powers. The first two central moments (𝑛 = 0, 𝑛 = 1) are
predetermined by definition. For 𝑛 ≥ 2, by partial integration and the identity sin2(𝑧) = 1 − cos2(𝑧) one finds the recursive formula

∫ cos𝑛(𝑧) d𝑧 = 𝑛 − 1
𝑛 ∫ cos𝑛−2(𝑧) d𝑧 + 1

𝑛
cos𝑛−1(𝑧) sin(𝑧) , (C.3)

hich implies identity (85)1 and thus allows to rewrite Eq. (C.2) as

M�̄�,𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝛬1 − 𝛬2
2

)𝑛
𝑛
2

∏

𝑘=1

2𝑘 − 1
2𝑘

for 𝑛 is even,

0 for 𝑛 is odd,

(C.4)

here in case 𝑛 = 0 we use the empty product convention returning M�̄�,0 = 1.
Finally, we address the derivatives of the moments with respect to 𝐂, required for the definition of stress and tangent stiffness.

To this end, let

𝐷 ∶=
(

𝛬1 − 𝛬2
2

)2
=
𝐼21 − 4𝐼2

4
= −det(𝐂 − �̄�𝐈) , (C.5)

or which one obtains
𝜕𝐷
𝜕𝐂

= 𝐂 − �̄�𝐈 , 𝜕2𝐷
𝜕𝐂𝜕𝐂

= 𝐈⊠ 𝐈 − 1
2
𝐈⊗ 𝐈 , (C.6)

here 𝐈⊠ 𝐈 = 𝜕𝐂∕𝜕𝐂 in agreement with the definition (A.6). The derivatives of the non-zero moments in (C.4), i.e. even 𝑛, thus
follow by the chain rule of differentiation, viz.

𝜕M�̄�,𝑛

𝜕𝐂
=
𝜕M�̄�,𝑛

𝜕𝐷
𝜕𝐷
𝜕𝐂

,
𝜕2M�̄�,𝑛

𝜕𝐂𝜕𝐂
=
𝜕2M�̄�,𝑛

𝜕𝐷2
𝜕𝐷
𝜕𝐂

⊗ 𝜕𝐷
𝜕𝐂

+
𝜕M�̄�,𝑛

𝜕𝐷
𝜕2𝐷
𝜕𝐂𝜕𝐂

. (C.7)

ppendix D. Invariant formulation of the moments of the affine isotropic stretch distribution

This appendix provides the moments M�̄�,𝑛 of the affine isotropic square stretch distribution of any order 𝑛 in closed form in
erms of the invariants (88). The 𝑛th moment about �̄� = E [𝛬] reads (Eq. (84))

M�̄�,𝑛 =
∑

𝑝+𝑞+𝑟=𝑛

(

𝑛
𝑝, 𝑞, 𝑟

)

(𝛬1 − �̄�)𝑝(𝛬2 − �̄�)𝑞(𝛬3 − �̄�)𝑟H𝑛|2𝑝,2𝑞,2𝑟 , (D.1)

where in the isotropic case the expression for H𝑛|2𝑝,2𝑞,2𝑟 are given by Eq. (86). Making use of symmetries this can be written as

M�̄�,𝑛 =
∑

𝑝+𝑞+𝑟=𝑛
𝑝≤𝑞≤𝑟

𝑤(𝑝, 𝑞, 𝑟)
(

𝑛
𝑝, 𝑞, 𝑟

)

1
6

∑

(𝑖,𝑗,𝑘)∈S
𝑎𝑖𝑏𝑗𝑐𝑘H𝑛|2𝑝,2𝑞,2𝑟 , (D.2)

here S is the set containing all 6 permutations of (𝑝, 𝑞, 𝑟), and we abbreviated

𝑎 = (𝛬1 − �̄�) , 𝑏 = (𝛬2 − �̄�) , 𝑐 = (𝛬3 − �̄�) . (D.3)

he term 𝑤(𝑝, 𝑞, 𝑟) evaluates to 1,3 or 6 for 3,2 or 1 unique elements in (𝑝, 𝑞, 𝑟), respectively, and results by considering the symmetries
n the 𝑛th layer of Pascals’ pyramid. As the inner sum in Eq. (D.2) is a symmetric polynomial in the eigenvalues of 𝐂 it is an invariant
f 𝐂. One can write

∑

𝑎𝑖𝑏𝑗𝑐𝑘 = (𝑎𝑏𝑐)𝑝
∑

𝑎𝑖−𝑝𝑏𝑗−𝑝𝑐𝑘−𝑝 , (D.4)
30

(𝑖,𝑗,𝑘)∈S (𝑖,𝑗,𝑘)∈S
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where each element of the sum on the right hand side contains at least one exponent that is 0. For the special cases 𝑝 = 𝑞 or 𝑞 = 𝑟
one has

∑

(𝑖,𝑗,𝑘)∈S
𝑎𝑖𝑏𝑗𝑐𝑘 = 2(𝑎𝑏𝑐)𝑝

{

𝑃𝑟−𝑞 , 𝑝 = 𝑞
𝑄𝑞−𝑝, 𝑞 = 𝑟 ,

(D.5)

with the two power sums

𝑃𝑚 = 𝑎𝑚 + 𝑏𝑚 + 𝑐𝑚 , 𝑄𝑚 = (𝑎𝑏)𝑚 + (𝑏𝑐)𝑚 + (𝑐𝑎)𝑚 . (D.6)

For the remaining cases Eq. (D.4) can be further decomposed as
∑

(𝑖,𝑗,𝑘)∈S
𝑎𝑖𝑏𝑗𝑐𝑘 = (𝑎𝑏𝑐)𝑝

(

𝑄𝑞−𝑝𝑃𝑟−𝑞 −
(

(𝑎𝑏)𝑞−𝑝𝑐𝑟−𝑞 + (𝑏𝑐)𝑞−𝑝𝑎𝑟−𝑞 + (𝑐𝑎)𝑞−𝑝𝑏𝑟−𝑞
)

)

= (𝑎𝑏𝑐)𝑝
(

𝑄𝑞−𝑝𝑃𝑟−𝑞 −

{

(𝑎𝑏𝑐)𝑞−𝑝𝑃𝑟−2𝑞+𝑝 , 𝑟 − 𝑞 ≥ 𝑞 − 𝑝 ,
(𝑎𝑏𝑐)𝑟−𝑞𝑄2𝑞−𝑝−𝑟 , 𝑟 − 𝑞 ≤ 𝑞 − 𝑝

)

.
(D.7)

One can now show that Eqs. (D.5) and (D.7) are polynomials of the invariants 𝐴 and 𝐵 (88). In fact, one obtains from Eqs. (88)
and (D.3) that

(𝑎𝑏𝑐)𝑚 =

( 3
∏

𝑖=1
(𝛬𝑖 − �̄�)

)𝑚

=
(

2
27
𝐵
)𝑚

. (D.8)

he power sums 𝑃0 = 3 and 𝑄0 = 3 are directly obtained from (D.6), and the remaining 𝑃𝑚 and 𝑄𝑚 can be resolved using Newton’s
identities as follows: For 𝑃𝑚

𝑃1 = 𝐸1 ,

𝑃2 = 𝐸1𝑃1 − 2𝐸2 ,

𝑃3 = 𝐸1𝑃2 − 𝐸2𝑃1 + 3𝐸3 ,

𝑃4 = 𝐸1𝑃3 − 𝐸2𝑃2 + 𝐸3𝑃1 ,

𝑃5 = 𝐸1𝑃4 − 𝐸2𝑃3 + 𝐸3𝑃2 ,

⋮

(D.9)

and similarly for 𝑄𝑚
𝑄1 = 𝐹1 ,

𝑄2 = 𝐹1𝑄1 − 2𝐹2 ,

⋮

(D.10)

where

𝐸1 = 𝑎 + 𝑏 + 𝑐 =
3
∑

𝑖=1
(𝛬𝑖 − �̄�) = 0 , 𝐸2 = 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 =

3
∑

𝑖,𝑗=1
𝑗>𝑖

(𝛬𝑖 − �̄�)(𝛬𝑗 − �̄�) = −𝐴
3
, 𝐸3 = 𝑎𝑏𝑐 = 2

27
𝐵 , (D.11)

and

𝐹1 = 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = −𝐴
3
, 𝐹2 = 𝑎𝑏𝑏𝑐 + 𝑏𝑐𝑐𝑎 + 𝑐𝑎𝑎𝑏 = 0 , 𝐹3 = 𝑎𝑏𝑏𝑐𝑐𝑎 =

(

2
27
𝐵
)2

. (D.12)

Appendix E. Round-off errors in the computation of 𝑨 and 𝑩

The propagation of round-off errors in the computation of the invariants 𝐴 and 𝐵 is studied if they are calculated either from
their relationship with the principal invariants (89) or as invariants of the tensor 𝐂− �̄�𝐈 (Eq. (88)), respectively. We exemplify this
y the states of deformation reflected by

𝐂 = 𝐈 + 𝑎(0.1 𝒆1⊗𝒆1 + 0.2 𝒆2⊗𝒆2 + 0.4 𝒆3⊗𝒆3) , (E.1)

here 𝑎 is varied from 0 to 1 in 99 equidistant steps. To illustrate the effect we implemented both formulations using float32 (single
recision) and float64 (double precision) format. The difference between the two formulations using float64 was in the order of
0−14. However, evaluating the errors

𝜀(88) = 𝑋(88)
𝖿 𝗅𝗈𝖺𝗍𝟥𝟤

−𝑋(88)
𝖿 𝗅𝗈𝖺𝗍𝟨𝟦

, 𝜀(89) = 𝑋(89)
𝖿 𝗅𝗈𝖺𝗍𝟥𝟤

−𝑋(88)
𝖿 𝗅𝗈𝖺𝗍𝟨𝟦

, (E.2)

for 𝑋 = 𝐴,𝐵, which are plotted as orange and blue lines in Fig. E.12, reveals the loss of accuracy when changing from float64 to
float32. The results indicate that the accumulated error is markedly smaller when using the new formulation (88).
31
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Fig. E.12. Error when using float32 compared to float64 in the computation of the invariants 𝐴 and 𝐵 from either Eq. (89) (blue) or Eq. (88) (orange).

ppendix F. Integrals for analytical 3D integration

The integrals { 𝑖⃝}𝑖=3,…,20 are specified as

3⃝ = ∫

𝑆

0
𝜓 ′
𝛬(𝑧𝑠) 𝑓 ((1 − 𝛼)𝑠, 𝛼),𝛼 d𝑠, 4⃝ = ∫

1

𝑇
𝜓 ′′
𝛬 (𝑧𝑡) 𝑡𝑓 (𝛼𝑡, 1 − 𝛼) d𝑡,

5⃝ = ∫

1

𝑇
𝜓 ′
𝛬(𝑧𝑡) 𝑓 (𝛼𝑡, 1 − 𝛼),𝛼 d𝑡, 6⃝ = ∫

𝑆

0
𝜓 ′′
𝛬 (𝑧𝑠) (1 − 𝑠)𝑓 ((1 − 𝛼)𝑠, 𝛼) d𝑠,

7⃝ = ∫

1

𝑇
𝜓 ′′
𝛬 (𝑧𝑡) (1 − 𝑡)𝑓 (𝛼𝑡, 1 − 𝛼) d𝑡, 8⃝ = ∫

𝑆

0
𝜓 ′′
𝛬 (𝑧𝑠) 𝑠𝑓 ((1 − 𝛼)𝑠, 𝛼) d𝑠,

(F.1)

nd

9⃝ = ∫

𝑆

0
𝜓 ′
𝛬(𝑧𝑠) 𝑓 ((1 − 𝛼)𝑠, 𝛼),𝛼𝛼 d𝑠, 10⃝ = ∫

1

𝑇
𝜓 ′′′
𝛬 (𝑧𝑡) 𝑡2𝑓 (𝛼𝑡, 1 − 𝛼) d𝑡,

11⃝ = ∫

1

𝑇
𝜓 ′′
𝛬 (𝑧𝑡) 𝑡𝑓 (𝛼𝑡, 1 − 𝛼),𝛼 d𝑡, 12⃝ = ∫

1

𝑇
𝜓 ′
𝛬(𝑧𝑡) 𝑓 (𝛼𝑡, 1 − 𝛼),𝛼𝛼 d𝑡,

13⃝ = ∫

𝑆

0
𝜓 ′′
𝛬 (𝑧𝑠) (1 − 𝑠)𝑓 ((1 − 𝛼)𝑠, 𝛼),𝛼 d𝑠, 14⃝ = ∫

1

𝑇
𝜓 ′′′
𝛬 (𝑧𝑡) (1 − 𝑡)𝑡𝑓 (𝛼𝑡, 1 − 𝛼) d𝑡,

15⃝ = ∫

1

𝑇
𝜓 ′′
𝛬 (𝑧𝑡) (1 − 𝑡)𝑓 (𝛼𝑡, 1 − 𝛼),𝛼 d𝑡, 16⃝ = ∫

𝑆

0
𝜓 ′′
𝛬 (𝑧𝑠) 𝑠𝑓 ((1 − 𝛼)𝑠, 𝛼),𝛼 d𝑠,

17⃝ = ∫

𝑆

0
𝜓 ′′′
𝛬 (𝑧𝑠) (1 − 𝑠)2𝑓 ((1 − 𝛼)𝑠, 𝛼) d𝑠, 18⃝ = ∫

𝑆

0
𝜓 ′′′
𝛬 (𝑧𝑠) 𝑠(1 − 𝑠)𝑓 ((1 − 𝛼)𝑠, 𝛼) d𝑠,

19⃝ = ∫

1

𝑇
𝜓 ′′′
𝛬 (𝑧𝑡) (1 − 𝑡)2𝑓 (𝛼𝑡, 1 − 𝛼) d𝑡, 20⃝ = ∫

𝑆

0
𝜓 ′′′
𝛬 (𝑧𝑠) 𝑠2𝑓 ((1 − 𝛼)𝑠, 𝛼) d𝑠.

(F.2)

ppendix G. CDF-based integration of the isotropic 2D full-network

For the 2D case, the averaged energy of the affine full-network model (22) specifies to

�̄� = −∫

𝛬1

𝛬2

𝜓 ′
𝛬(CDF𝛬 − 1) d𝑧 + 𝜓𝛬(𝛬2) . (G.1)

y use of the substitution in Remark 1 this becomes

�̄� = −(𝛬1 − 𝛬2)∫

1

0
𝜓 ′
𝛬(𝑧𝑦(𝑦))

(

CDF𝜆n (𝑦) − 1
)

2𝑦 d𝑦 + 𝜓𝛬(𝛬2) , (G.2)

here we have defined the function 𝑧𝑦(𝑦) such that

2

32

𝑧𝑦 ∶ [0, 1] → [𝛬2, 𝛬1] , 𝑧𝑦(𝑦) = (𝛬1 − 𝛬2)𝑦 + 𝛬2 , (G.3)



Journal of the Mechanics and Physics of Solids 175 (2023) 105291B.R. Britt and A.E. Ehret

i

{

w

F

H

and the isotropic CDF𝜆n is given in Table 1.
An important special case concerns a piece-wise defined 𝜓𝛬 that is zero for square stretches 𝛬 < 1. In this case the lower

ntegration bound in Eqs. (G.1) and (G.2) can be adjusted accordingly from 𝛬2 to 1.
The normalised stretch 𝜆n and hence the isotropic CDF𝜆n (Table 1) is independent of the specific values of the principal stretches

𝛬𝑖} and therefore 𝐂, so that it is convenient to replace (CDF𝜆n (𝑦) − 1)2𝑦 =∶ 𝑓2(𝑦), and we deduce

�̄� = 𝜓𝛬(𝛬2) − (𝛬1 − 𝛬2)∫

1

𝑌
𝜓 ′
𝛬(𝑧𝑦(𝑦))𝑓2(𝑦) d𝑦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
1⃝

, (G.4)

here 𝑌 = 0 to consider all fibre contributions and to exclude fibres under compression

𝑌 (𝛬1, 𝛬2) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝛬2 > 1,
√

1 − 𝛬2
𝛬1 − 𝛬2

if 𝛬2 ≤ 1 < 𝛬1,

1 otherwise.

(G.5)

To calculate stress, the derivatives

�̄�,𝛬1
= − 1⃝ − (𝛬1 − 𝛬2) 2⃝, �̄�,𝛬2

= 𝜓 ′
𝛬(𝛬2) + 1⃝ − (𝛬1 − 𝛬2) 3⃝ (G.6)

will be needed, where it was used that the Leibniz-rule term for 𝑎 vanishes as 𝜓𝛬(𝑧𝑦(𝑌 )) = 0. The second derivatives, required for
calculation of the tangent tensor, read

�̄�,𝛬1𝛬1
= −2 2⃝ − (𝛬1 − 𝛬2)

[

4⃝ − 𝜓 ′′
𝛬 (1)𝑌

2𝑓2(𝑌 )𝑌,𝛬1

]

,

�̄�,𝛬1𝛬2
= − 3⃝ + 2⃝ − (𝛬1 − 𝛬2)

[

5⃝ − 𝜓 ′′
𝛬 (1)𝑌

2𝑓2(𝑌 )𝑌,𝛬2

]

,

�̄�,𝛬2𝛬2
= 𝜓 ′′

𝛬 (𝛬2) + 2 3⃝ − (𝛬1 − 𝛬2)
[

6⃝ − 𝜓 ′′
𝛬 (1)

(

1 − 𝑌 2) 𝑓2(𝑌 )𝑌,𝛬2

]

.

(G.7)

The integrals { 𝑖⃝}𝑖=2,…,6 that define Eqs. (G.6) and (G.7) are given by

2⃝ = ∫

1

𝑌
𝜓 ′′
𝛬 (𝑧𝑦) 𝑦

2𝑓2(𝑦) d𝑦, 3⃝ = ∫

1

𝑌
𝜓 ′′
𝛬 (𝑧𝑦)

(

1 − 𝑦2
)

𝑓2(𝑦) d𝑦,

4⃝ = ∫

1

𝑌
𝜓 ′′′
𝛬 (𝑧𝑦) 𝑦4𝑓2(𝑦) d𝑦, 5⃝ = ∫

1

𝑌
𝜓 ′′′
𝛬 (𝑧𝑦) 𝑦2

(

1 − 𝑦2
)

𝑓2(𝑦) d𝑦,

6⃝ = ∫

1

𝑌
𝜓 ′′′
𝛬 (𝑧𝑦)

(

1 − 𝑦2
)2 𝑓2(𝑦) d𝑦.

(G.8)

The numerical example shown in Figs. G.13 is analogous to the 3D example in Section 8.2, but uses 20 Gauss–Legendre integration
points per required integral { 𝑖⃝}𝑖=1,…,6 and, for comparison, a spherical integration with 𝑁 = 500 integration points

𝑴 𝑖 = cos
(

(2𝑖 + 1)𝜋
2𝑁

)

𝒆1 + sin
(

(2𝑖 + 1)𝜋
2𝑁

)

𝒆2 , 𝑖 = 1, 2,… , 𝑁 (G.9)

and equal weights 1∕𝑁 .

Appendix H. Proof concerning elliptic integral Eq. (132)

We prove the equality (132) using three basic observations: First, by means of the incomplete elliptic integral the complete
elliptic integral may be expressed as

𝛱(𝑛|𝑚) = 𝛱
(

𝑛; 𝜋
2
|

|

|

𝑚
)

−𝛱(𝑛; 0|𝑚) = 𝛱

(

𝑛; arccos

(
√

𝑎 𝑡2

𝑎 + 𝑏(1 − 𝑡2)

)

|

|

|

|

|

𝑚

)

|

|

|

|

|

1

0

= ∫

1

0

d
d𝑡
𝛱

(

𝑛; arccos

(
√

𝑎 𝑡2

𝑎 + 𝑏(1 − 𝑡2)

)

|

|

|

|

|

𝑚

)

|

|

|

|

|𝑡=𝜏
d𝜏 .

(H.1)

Second, for the special choice of 𝑛 = −𝑏∕𝑎 and 𝑚 = 𝑏(𝑎 + 𝑏 − 1)∕𝑎 one has

d
d𝑡
𝛱

(

− 𝑏
𝑎
; arccos

(
√

𝑎 𝑡2

𝑎 + 𝑏(1 − 𝑡2)

)

|

|

|

|

|

𝑏(𝑎 + 𝑏 − 1)
𝑎

)

=

√

𝑎
𝑎 − 𝑏

√

𝑎 + 𝑏(1 − 𝑡2)
1 − 𝑏𝑡2

1
√

1 − 𝑡2
. (H.2)

inally, substitution of 𝑡 = sin(𝜙) and exploiting symmetry of the integrand yields

∫

1

0

√

𝑎 + 𝑏(1 − 𝜏2)
1 − 𝑏𝜏2

1
√

1 − 𝜏2
d𝜏 = 1

2 ∫

𝜋∕2

−𝜋∕2

√

𝑎 + 𝑏 cos2(𝜙)
1 − 𝑏 sin2(𝜙)

d𝜙 . (H.3)

ence by virtue of Eq. (H.3) insertion of Eq. (H.2) into Eq. (H.1) proves Eq. (132).
33
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Fig. G.13. Comparison between CDF-based integration in 2D with 20 integration points (per integral 1–6) and spherical (circular) integration with 500 points:
Averaged fibre energy (a), first (b, c) and second derivatives (d–f) based on Eqs. (G.4)–(G.8) vs. Eqs. (136), (137), (139), (140) specified for 2D.
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