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Abstract

Carbon is often used as a conductive additive in catalyst layers to increase con-

ductivity and catalytic activity. However, the effect of carbon addition to perov-

skites on the oxygen reduction (ORR) and oxygen evolution (OER) reactions is

convoluted. In this work, composites of perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-δ

(BSCF) and conductive additives, carbon and indium doped tin oxide are com-

pared. It is found that the conductive additives have differing effects on the

ORR and OER activities and cobalt redox behavior, with carbon having a

much more significant effect. In order to elucidate further these differences

between BSCF and BSCF/carbon, operando X-ray absorption spectroscopy

(XAS) is measured simultaneously with cyclic voltammetry into the ORR and

OER regions and the continuous changes in the Co oxidation state are

observed with high time resolution. We theorize that carbon is enhancing the

Co redox activity and as a result, the ORR and OER activities are likewise

improved.
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1 | INTRODUCTION

With the increased need for energy storage, low tempera-
ture alkaline fuel cells and electrolyzers are promising as
an energy conversion system. However, the oxygen
reduction reaction (ORR) and oxygen evolution reaction
(OER) still suffer from high overpotentials and slow
kinetics at the cathode and anode sides, respectively.
Unified regenerative fuel cells (URFC) are able to switch

between fuel cell and electrolyzer mode within the same
device, simplifying the amount of components required
and therefore the cost. URFCs have been shown to be
promising for space, aviation, transportation, and renew-
able energy applications, particularly when size and mass
requirements are restricting. These devices require stable
bifunctional oxygen electrodes able to perform both ORR
and OER over a large potential range. Perovskites are a
low-cost class of materials that have shown activity for
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both reactions. Nevertheless, they often suffer from low
conductivity. To solve this issue, carbon is often mixed
into the catalyst layer, forming a composite electrode
(perovskite/carbon), to improve electrical conductivity
pathways. The composites have been shown to have vary-
ing degrees of OER enhancement, while the improve-
ment to ORR is significantly enhanced.1–5 The effect of
carbon on the ORR activity seems to not be solely based
on increased conductivity; the carbon could also be act-
ing as a co-catalyst with the perovskite.6–11 Oxygen
reduction on perovskites is a mixture of 2 and 4-e� pro-
cesses, depending on the composition, via a hydrogen
peroxide intermediate.12 Carbon conducts oxygen reduc-
tion solely via a 2-e� pathway to hydrogen peroxide. This
hydrogen peroxide can then be further reacted by the
perovskite, giving an overall 4-e� process for perovskite/
carbon composites and a higher conversion efficiency.6–9

Beall et al.12 gives an in depth discussion of the current
synergistic theories.

Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)/carbon is a well-stud-
ied, promising bifunctional perovskite composite active
for both OER and ORR. BSCF without carbon is able to
outperform commercial IrO2 during alkaline membrane
water electrolysis testing.13 However, the ORR activity of
BSCF and many other perovskites without carbon is poor
and does not match the commercial Pt/C fuel cell perfor-
mance. Unfortunately, carbon has been shown to
degrade at oxidative conditions both during OER and
during fuel cell start up and shut down.14–17 Therefore, a
more stable conductive additive needs to be found to
replace carbon in the long term for commercialization. In
order to find a suitable alternative, it is necessary to
understand the exact role of carbon in order to replace it
while not losing catalytic activity. One method is to
investigate the changes to the catalyst that occur during
ORR and OER through operando X-ray absorption spec-
troscopy (XAS). It was found previously using operando
XAS that BSCF forms a Co/Fe oxyhydroxide layer during
OER, increasing the average Co oxidation state of the
material.13,18 However, until now, it is unclear how the
Co oxidation state of BSCF with and without carbon
changes during ORR. Additionally, the continuous
changes in Co oxidation state of BSCF have not been
investigated during both ORR and OER.

Herein, BSCF is used to investigate the effect of car-
bon on oxygen electrocatalysis. Two different conductive
additives, carbon and indium-doped tin oxide (ITO)
nanoparticles, are compared and it is found that carbon
leads to much higher catalytic activity as well as redox
activity. Then, operando XAS was measured simulta-
neously with cyclic voltammetry, elucidating continuous
changes in the Co oxidation state during the oxygen
reduction and evolution reactions. When carbon is added

to the catalyst layer, the average Co oxidation state of
BSCF is reduced significantly more during oxygen reduc-
tion and oxidized moderately more during oxygen evolu-
tion. The magnitude of change in oxidation state
correlates with catalytic activity and it is theorized why
this might be.

2 | RESULTS AND DISCUSSION

To synthesize Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), a scalable
flame spray method was used in order to produce nano-
particles.19,20 The synthesized powder has a surface area
of about 6.5 (± 0.5) m2/g, determined by BET, and it is
composed of a cubic perovskite structure as shown by the
XRD pattern and comparison with references (Figure S1)
with secondary phases, mostly ascribed to carbonates and
nitrates.19 BSCF was characterized as an oxygen reduc-
tion and oxygen evolution reaction catalyst with and
without the addition of conductive agents. Acetylene
black was chosen due to its common addition to ORR
catalyst layers and high conductivity. ITO nanoparticles
were chosen as an alternative conductive additive to car-
bon due to its high conductivity and stability and previ-
ous use in electrocatalysis.21 The conductivity of ITO is
slightly less than that of acetylene black. However, the
difference between them is insignificant when compared
with BSCF, which is many orders of magnitude more
resistive (Table S1).

The catalytic activities of BSCF with and without con-
ductive additives were measured using rotating disk elec-
trode (RDE) in oxygen saturated 0.1 M KOH. The ORR
and OER activities were measured separately and are
shown in Figure 1. The mass normalized Tafel plots are
shown in Figure S2. With the addition of carbon, the
measured ORR current is increased by more than a factor
of 4, while the OER current only by a factor of 1.6. With
addition of the conductive additive ITO, the ORR current
is increased by a factor of 2 and the OER activity is not
affected. When adding a large amount (>25%) of conduc-
tive agent of similar conductivity, it is expected to achieve
the same catalytic activity. However, they differ signifi-
cantly on how they affect the two reactions' activities.
Therefore, the added conductivity helps to boost oxygen
reduction but oxygen evolution is relatively unaffected.
Then, additionally, carbon is further positively affecting
the ORR and OER activities of BSCF.

When ITO or carbon is added to the catalyst layer,
the overall capacitive current increases, as apparent in
Figure 1B. Increased capacitive current is an effect of an
increased number of electrochemically accessible sites, in
this case carbon, ITO, or additional BSCF sites due to
increased electrical pathways. Furthermore, the redox
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activity is affected by the addition of carbon but not ITO.
The Co2+ $ Co3+ redox transition is present around
1.15V (Figure 1B). These redox peaks are much more
pronounced for the BSCF/carbon composite compared to
BSCF/ITO and BSCF as seen in the inset in Figure 1B.
With the addition of conductive agents of similar conduc-
tivity, it is expected to achieve the same redox activity.
However, when comparing these two different conduc-
tive additives, carbon provides a larger enhancement of
the redox peaks and therefore, the increased redox activ-
ity is not solely due to an increased number of electro-
chemically accessible Co sites. Instead, carbon is seen to
be improving the ability of Co to change oxidation state.
Overall, it is clear that carbon is enhancing the catalytic
activity and redox activity of the perovskite and the rea-
son can only partly be explained by the added
conductivity.

To investigate how BSCF changes as a bifunctional
catalyst during the oxygen reduction and evolution reac-
tions, an electrochemical protocol was performed where
the potential range is widened in a step-wise manner
(Figure 2D). Six cyclic voltammetry (CV) cycles were per-
formed in the ORR region (1.0–0.4 V vs. RHE) and with
each CV, the upper potential limit was increased up to
1.55 V where oxygen evolution occurs (Figure 2A–C,E–G).
With this procedure, the effect of increasingly oxida-
tive potentials on the ORR activity is investigated
(Figure 2A–C). For BSCF (Figure 2A), there is no change
in the ORR activity during cycles 1–3 (until 1.3 V). After
1.4 V, there is a slight decrease in the oxygen reduction
current. Then, after 1.55 V, where OER is actively occur-
ring, there is a significant shift in the ORR onset to
higher overpotentials. This is most likely due to the

formation of a self-assembled Co/Fe oxyhydroxide layer
on the surface of BSCF during OER, as described previ-
ously.13,18,22 This layer most likely blocks the underlying
perovskite surface, leading to lower ORR activity for
BSCF. The same trend is exactly mirrored for BSCF/ITO
(Figure 2B). For BSCF/carbon (Figure 2C), the trend is
also mirrored but there is a larger shift in the ORR onset
after reaching the upper potentials of 1.4 and 1.55 V. This
could possibly be in part due to carbon corrosion, which
can occur at high oxidative potentials.

In order to further understand the influence of carbon
on the ORR and OER activities and redox behavior, oper-
ando XAS was performed at the Co K-edge. The changes
in the oxidation state of Co during ORR and OER were
measured continuously, simultaneously with the applica-
tion of the electrochemical protocol, at a rate of one XAS
spectra every 5 mV. Cyclic voltammetry was performed
with the same protocol as previously, where the potential
window is opened into the OER region (Figure 3B). The
average Co oxidation states of the pristine materials, both
BSCF and BSCF/carbon, are approximately 2.1 suggest-
ing an oxygen defective initial structure, as shown in
Figure S3. By measuring XAS continuously during cyclic
voltammetry, the continuous Co oxidation state changes
are uncovered. Figure 3A clearly shows that these
changes depend directly on the applied potential.

There are significant differences in the extent of Co
oxidation and reduction that occur when comparing
BSCF with and without carbon. Within the first CV into
the ORR region (1.0–0.4 V), a clear reduction in the Co
oxidation state for BSCF/carbon is observed. Contrarily,
no reduction is observed for BSCF alone, instead oxida-
tion is observed. At ORR potentials, the DFT calculated
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FIGURE 1 Catalytic activity of BSCF determined using RDE in 0.1 M KOH with a rotation rate of 1600 rpm and a scan rate of 5 mV/s

with and without different conductive additives for (A) ORR and (B) OER, inset: The change in redox activity with the addition of carbon is

highlighted. The arrows highlight the Co(II/III) redox couple at 1.15 V. The ORR current is corrected for capacitance. The catalyst loading

(BSCF) was 0.06 mg and the conductive additive (carbon or ITO) was 0.017 mg.
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Pourbaix diagram of BSCF predicts the dissolution of Ba
and Sr and formation of Co3O4 containing Co2.67+, signif-
icantly more oxidized than Co in BSCF in this study.18

Therefore, the constant oxidation occurring within the
first ORR CV may be due to this electrochemical transfor-
mation. Interestingly, the catalyst that is the most
reduced during ORR (BSCF/carbon) has the highest ORR
activity. It has been shown previously that carbon has a
reducing effect on Co in perovskites during the electrode
preparation process with ex situ XAS measurements.1,23

However, in this case the reducing effect occurs during
the electrochemical protocol, indicating that ex situ
investigations on the role of carbon in perovskite/carbon
composites might not be sufficient to fully understand
the synergy between perovskite and carbon in the ORR
process.

With the second CV, the upper potential is increased
to 1.2 V, where the Co(II/III) transition is observed
(Figure 1B inset). Consequently, there is a sudden noted
jump in the Co oxidation state. This steep increase is
much more significant for BSCF/carbon than BSCF and
mirrors the differences in the redox peaks seen in
Figure 1B. Therefore, the results indicate that the addi-
tion of carbon is enhancing the redox capability of
Co. During the fourth CV, the onset of OER is reached
(around 1.4 V) and both materials suddenly oxidize
sharply. Finally, at 1.55 V, where OER is actively occur-
ring, the oxidation states of BSCF and BSCF/carbon
become increasingly similar. It is around these potentials
where the formation of a self-assembled Co/Fe oxyhydr-
oxide layer occurs on the surface of BSCF.13,18 With the
addition of carbon, the formation of this surface layer is
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FIGURE 2 ORR and OER activity as the potential window is opened into the oxygen evolution region over 6 CVs using RDE in 0.1 M

KOH with a rotation rate of 1600 rpm and a scan rate of 5 mV/s. The (A–C) reductive potentials (0.4–1.0 V) and (E–G) the oxidative
potentials (1.0–1.55 V) of the CVs for BSCF, BSCF/ITO, and BSCF/carbon, respectively. (D) The applied potential versus time during 6 cycles

of cyclic voltammetry. The catalyst loading (BSCF) was 0.06 mg and the conductive additive (carbon or ITO) was 0.017 mg.
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not hindered, as both experience similar sharp oxidation
of Co during OER. Instead, the addition of carbon leads
to a higher average Co oxidation state during OER and,
subsequently, correlates with a higher OER activity
(Figure 1B).

When looking at the trends as a whole in Figure 3A,
there are also several characteristic points worth noting.
As the potential is cycled between reducing and oxidiz-
ing conditions, the Co oxidation state is also reduced
and oxidized in a cyclic manner, indicating reversible
changes in Co during ORR and OER. For BSCF/carbon,
these reversible changes are more significant. Addition-
ally, for both samples there is also an underlying irre-
versible oxidation occurring with each cycle due to
increasing potential and the formation of the oxyhydr-
oxide layer on the surface of BSCF. With each increase
in the potential window, the reducing potentials are not
able to reverse this oxidation, irrespective of carbon
addition.

Due to the high time resolution of the XAS data, the
rate of change of Co oxidation state can be estimated at
different potentials. The linear fit slopes are shown in

Figure 3c and Table S2. During the anodic (A) and
cathodic (C) scans, there are four distinct regions with
different rates of change of Co oxidation state. The
changes in oxidation state under reducing potentials
(R) have the slowest kinetics while under oxidizing
potentials (O) they are faster. Interestingly, in contrast
to each other, the change in oxidation state is faster dur-
ing the cathodic scan of ORR while for OER, the change
in oxidation state during the anodic scan is quicker.
Overall, BSCF without carbon has much slower rates of
Co oxidation and reduction. The exemption being
region A-O, where the rate is faster but oxidation only
occurs at higher overpotentials. Therefore, the addition
of carbon leads to lower overpotentials for oxidation as
well as faster changes in Co oxidation state during ORR
and OER.

The catalyst redox capability of Co is shown to play a
critical role in promoting increased activity for oxygen
electrocatalysis. For both OER and ORR, the magnitude
of the change in Co oxidation state trends with the cata-
lytic activities of BSCF and BSCF/carbon. As shown pre-
viously, BSCF/carbon experiences an improved redox
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FIGURE 3 (A) Changes in Co oxidation state over time measured by operando XAS as the potential is cycled back and forth between

reducing and oxidizing potentials. (B) The applied potential over time during 6 continuous CVs. (C) The region between CVs 4 and 5, which

highlights the different linear fit slopes that occur in different potential ranges. The slopes of the labeled regions (cathodic [C], anodic [A],

oxidizing [O], and reducing [R]) can be found in Table S2. (D, E) XAS spectra of the most reduced and oxidized states that occur during

the 6 CVs.
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capability during ORR than BSCF, suggesting that a more
reduced surface is beneficial for ORR. According to the
widely accepted ORR mechanism made of four steps and
reported as follows, the metal active site changes oxida-
tion state between Bmþ and B m�1ð Þþ as the reaction pro-
ceeds.12,24–26

B m�1ð Þþ �OH�þO2þ e� !Bmþ�OO2�þOH� ð1Þ

Bmþ�OO2�þH2Oþ e� !B m�1ð Þþ �OOH�þOH� ð2Þ

B m�1ð Þþ �OOH�þ e� !Bmþ�O2�þOH� ð3Þ

Bmþ�O2�þH2Oþ e� !B m�1ð Þþ �OH�þOH� ð4Þ

Oxygen adsorption occurs on the reduced surface
(Equation 1) and is where the reaction of HO2

�

(Equation 3) occurs. These steps have been theorized as
the rate determining steps.24,27,28 When carbon is added
to the catalyst layer, there is a possible co-catalyst rela-
tionship between perovskite and carbon, where the
perovskite primarily takes the role of reacting HO2

�.6,7,12

Therefore, if a higher percentage of reduced sites are pre-
sent, the reaction rate is expected to be higher. Addition-
ally, it has been shown that Co in a more reduced state
leads to higher ORR activity, when oxygen vacancies are
introduced.29,30 This can be explained by the lifting of the
metal d-band center30 and strengthening of the calculated
adsorption energy of oxygen species31 with reduced Co
oxidation state.

During oxygen evolution, the increase of Co oxidation
state in BSCF is mostly driven by the formation of an
oxyhydroxide layer on the surface, where Co has an oxi-
dation state of about +3. This surface layer is presumably
formed on BSCF due to the occurrence of the lattice oxy-
gen evolution reaction (LOER).32 It is argued that during
LOER, the oxygen atoms in the lattice of the perovskite
(ABO3) participate in oxygen evolution, causing A-site
dissolution and B-site oxyhydroxide formation.33 It was
shown earlier that the addition of carbon to BSCF leads
to a higher Co oxidation state during OER. Therefore, it
is possible BSCF/carbon presents a more extended forma-
tion of the oxyhydroxide layer due to a higher rate of
LOER, which would describe its higher OER activity
compared to BSCF.

For both oxygen evolution and reduction, it is clear
carbon is greatly affecting the catalytic behavior and
Co valence state. One possible theory to explain the
role of carbon in the perovskite catalyst layer is that
carbon is acting as a redox mediator, facilitating elec-
tron transfer during the reduction and oxidation of Co
in the perovskite as well as increasing the reaction rate.

Various carbon materials have previously been shown
to act as redox mediators for applications such as dye
degradation and nitroaromatic reduction, speeding up
sluggish reaction rates and facilitating dye and
nitroaromatic reduction.34–36 Similarly, in BSCF/car-
bon composites, the increased redox behavior as well
as the faster kinetics of Co oxidation state change in
BSCF could be promoted by carbon. It is also possible
carbon could be acting as an electron sink for the
perovskite electrocatalyst. Although carbon plays an
active and convoluted role in ORR, perovskites and
perovskite/carbon composites are often not differenti-
ated between or separated in mechanistic studies.
Therefore, caution should be taken during mechanistic
studies that involve carbon within the catalyst layer, as
the valence state of the active cobalt site during ORR
and OER is not the same for perovskite and perovskite/
carbon composites.

3 | CONCLUSION

Carbon is often added to the catalyst layer of oxygen elec-
trodes to provide conductivity and enhance catalytic
activity. However, it is not stable during OER or fuel cell
start up and shut down conditions. Therefore, to further
commercialization, the role of carbon in the catalyst
layer needs to be clarified in order to replace it with
another conductive additive. This work investigates
Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), an active catalyst for both
oxygen reduction and evolution, to investigate the addi-
tion of carbon as a conductive additive to perovskite cata-
lyst layers. The addition of carbon leads to higher ORR
and OER activities compared to another conductive addi-
tive, ITO. The improved catalytic performance with the
addition of carbon over ITO demonstrates the synergis-
tic effect of carbon on oxygen electrocatalysis above
solely a conductivity enhancement. The addition of car-
bon was found to lead to enhanced Co(II/III) redox
capability. To further elucidate these results, operando
XAS was measured simultaneously with cyclic voltam-
metry, where the potential was cycled between reducing
and oxidizing regions. BSCF/carbon experienced far
larger changes in the Co oxidation state during the pro-
tocol, particularly during ORR. We hypothesize that car-
bon promotes the reduction of Co and as a result, the
reduced Co surface is more active for oxygen reduction.
Furthermore, carbon addition led to more oxidized Co
during OER, which may account for higher LOER rates.
By comparing the rate of change of Co oxidation state,
we can conclude that the kinetics of Co reduction and
oxidation are faster when carbon is added to the catalyst
layer.
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4 | EXPERIMENTAL SECTION

4.1 | Material synthesis

The perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-δ was synthesized
using the flame spray method described previously.19,20

The precursor solution consisted of stoichiometric
amounts of barium carbonate (≥99.0%, Sigma-Aldrich),
strontium nitrate (≥98%, Sigma-Aldrich), cobalt nitrate
hexahydrate (99.9%, Sigma-Aldrich), and iron nitrate
nonahydrate (≥98%, Sigma-Aldrich) dissolved in Milli-Q
water and acetic acid (≥99.0%, Roth) for a total metal
concentration of 0.1 M. The flow rate of the precursor
was 50 mL min�1, the combustion gas mixture of acety-
lene (99.6%, Carbagas) and oxygen (99.5%, Carbagas) was
13 L min�1 and 17 L min�1, and the dispersion gas (oxygen)
was 25 L min�1. Acetylene black (>99.9%, Alfa Aesar) and
ITO nanoparticles (25 nm; 99.5%, Fisher Scientific AG)
were bought commercially. The Co reference β-CoOOH
for XAS was made in house according to the following
reference37 and Co(OH)2 (≥99.9%, Thermo Scientific) was
bought commercially.

4.2 | Electrochemical measurements

All electrochemical measurements were performed
with a three-electrode set-up using the thin-film rotat-
ing disk electrode (RDE) methodology.38,39 The electro-
lyte was oxygen saturated 0.1 M KOH (99.99%, Sigma
Aldrich). The rotation rate was 1600 rpm and the scan
speed was 5 mV s�1. A Hg/HgO reference electrode
(RE 61AP, ALS) filled with 0.1 M KOH was used and
calibrated against a Pt mesh in hydrogen saturated
electrolyte to convert to RHE (0.925 V). All potentials
are given versus RHE. A flame annealed gold mesh
was the counter electrode. The catalyst ink (15 μL) was
dropcasted onto a polished glassy carbon electrode.
The ink consisted of BSCF (10 mg), conductive additive
(2.8 mg), Milli-Q water (1.5 mL), isopropanol (1 mL),
and Na+-exchanged Nafion (20 μL) (5 wt. %, Sigma
Aldrich) as a binding agent and was sonicated for
30 min. All potentials were corrected for ohmic drop
using impedance spectroscopy. Currents were normal-
ized by the surface area of the glassy carbon substrate.
The ORR activity of the glassy carbon electrode was
measured before every dropcast.

4.3 | Material characterization

Powder XRD measurements were made in Bragg–
Brentano mode (Smartlab, Rigaku) with Cu Kα radiation.

Conductivity was measured using ex situ 4-wire imped-
ance spectroscopy, where the powder samples were com-
pacted into a pellet under 0.6 MPa for 5 min. Then
impedance was measured with an amplitude of 500 mV
from 1 MHz to 10 mHz. To determine the specific surface
area, N2 adsorption isotherms (Autosorb-1, Quanta-
chrome Instruments) were calculated with Brunauer–
Emmett–Teller (BET) analysis. XAS measurements were
performed at the SuperXAS beamline at the Swiss Light
Source at PSI. The photon beam was produced by a 2.9T
superbend magnet, which was collimated with a Si
coated mirror at 2.8 mrad and then monochromatized
with a channel cut Si (111). Then it was subsequently
focused into a size of 0.2 � 1 mm2 with a double focus-
ing mirror coated with Rh. The ionization chambers
contained 1 bar of N2. The sample was located between
the first and second chambers while a Co metal refer-
ence foil (99.9%, GoodFellow) was placed between the
second and third chambers. All operando measurements
were conducted in quick fluorescence mode40 (using a
PIPS detector) while the ex situ Co reference pellets
measured in transmission. Data analysis, energy calibra-
tion, and normalization were performed with the Pro-
QEXAFS software.41 Oxidation state calculations are
explained in Note S1. The catalyst samples for operando
measurements were sprayed (ink consisted of Milli-Q
water, isopropanol, and Na+-exchanged Nafion) onto
gold sputtered carbon coated Kapton foil. A homemade
flow cell described previously,42 black pearl (2000 car-
bon black, Cabot Corporation) sprayed gold sputtered
carbon coated Kapton foil counter electrode, and a
Ag/AgCl reference electrode (3 M NaCl filled, Harvard
Apparatus) were used in a three electrode set-up. The
potential of the Ag/AgCl reference electrode was mea-
sured versus the Hg/HgO reference electrode described
above before every measurement to convert to RHE.
Oxygen saturated 0.1 M KOH electrolyte was pulled
through the flow cell at a rate of 0.4 mL min�1 using a
syringe pump.
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