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Long-range order Bragg scattering and its effect on the dynamic response
of a Penrose-like phononic crystal plate
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In this article, we present scattering and localization phenomena in a thin elastic plate comprising an aperiodic
arrangement of scatterers. By analyzing the form factor of the scattering cluster, we sample the reciprocal
space which shows strong scattering points in reciprocal space associated with nontrivial dynamic response.
Specifically, we identify attenuating frequency regimes and bands where strong localization is predicted and
experimentally observed. We show that both localization and attenuation are Bragg scattering phenomena,
induced by the long-range aperiodic patterns. Illustrative comparisons are drawn with a periodic counterpart
having the same density of scatterers. The novel findings are corroborated by analytical estimates, numerical
finite-element predictions, and vibrometric experiments. The results are relevant for the research community
interested in extending phononic crystal phenomena to lower frequencies.
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I. INTRODUCTION

Quasicrystals are ordered tessellations of space without
translational symmetry. The first natural quasicrystal featuring
icosahedral point-group symmetry—inconsistent with lattice
translations—was reported in the early 1080s by Shechtman
et al. [1]. At the same time, solid-state physics have inspired
theoretical and experimental studies into metamaterials, man-
made structures whose exceptional dispersive properties have
found applications into many branches of classical physics,
such as photonics, acoustics, continuum mechanics, and ther-
modynamics, providing solutions to plenty of engineering
problems. At the basis of metamaterials’ pervasive success,
there is the so-called Bloch-Floquet theorem which guaran-
tees that the fundamental solutions of periodically modulated
structures can be traced back to the solution of relatively cheap
eigenvalue problems. Microstructured periodic thin plates
(also referred to as platonic crystals [2]) are an active research
area due to the importance of slender bodies to noise emission.
Several microstructures have been investigated: among those
analytically treatable, we mention perforated thin plates [3–5],
arrays of pinned pointwise constraints [6], arrays of unsprung
[7], and sprung point masses [8,9] with and without defects.

Locally resonant metamaterials are particularly suitable
for structural dynamics applications due to the fact that their
constituents are active in the deep subwavelength regime. The
resonating scatterers are placed less than half a wavelength
apart, resulting in a high imaginary part of the wave number
and, thus, rapidly decaying elastic waves. However, such sub-
wavelength behavior is accompanied by narrow-band effects.
On the other hand, the frequency bands for dispersive effects
in phononic crystals are inherently linked to the size of the unit
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cell (UC), whereas being wider compared to locally resonant
counterparts.

Limited attention has been given so far to aperiodic
phononic quasicrystals. One-dimensional examples have been
reported with a focus on longitudinal elastic wave dynamics
in Fibonacci-like rods [10]; flexural wave dynamics in beams
with their thickness modulated according to incommensurable
periodicities [11]; topological band gaps in beams with aperi-
odically modulated local resonances [12]. In two dimensions,
Beli et al. [13] introduced by-design decoration of plates
featuring pointwise Bragg peaks with eightfold, tenfold, and
14-fold rotational symmetry. The authors also report highly
isotropic wave propagation within the aperiodic composites.
The results are extended in Ref. [14] to account for wave
beaming.

In the present article, we give attention to the effect of long-
range order in a P3 Penrose quasicrystal [15] on the dynamic
response of finite clusters of resonators (either embedded into
an infinite plate or hosted by a finite plate). Such a qua-
sicrystal can be constructed by a so-called deflation/inflation
tiling, illustrated in Fig. 1. We give a concise introduction,
and we refer to Ref. [16] for a more detailed discussion.
Each rhombus [panel (a)] can be divided into two isosceles
triangles. Each pair of triangles [A, A′ and B, B′, see Fig. 1(b)]
differ by the way equal sides are decorated (either a circle
or a square appear on the right-hand side of the top vertex).
Rhombi are obtained by joining the pair elements along the
“starred” side. Adjacent rhombuses are added by joining tri-
angles along equal sides, i.e., sharing the same length and
symbol, a process referred to as inflation . Each triangle is
decomposed according to the rules outlined in Fig. 1(c) where
we show only the first level of decomposition. An arbitrary
level of decomposition can be obtained by applying the rules
to the inner triangles, giving rise to a so-called deflation rule.
In this paper, we decompose the BB′ rhombus [Fig. 1(a)]. The
nth level of decomposition induces the rhombuses’ length side
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FIG. 1. Panel (a) shows the thick and thin rhombuses, each of which comprise the triangle pair A, A′ and B, B′ [see panel (b)]. Owing to
the decoration of their sides, the triangles within each pair transform into one another via reflection about their height [see panel (b)]. Panel
(c) shows the first decomposition rule for each of the four triangles in panel (b). Iterating the decomposition on the initial sets of triangles leads
to the P3 Penrose tessellation.

�n = [2 sin(ϑ0)]−n�0 with ϑ0 = 54◦. A Matlab implementa-
tion [17] of the tessellation has been used to generate the
aperiodic distribution of scatterers.

We note that aperiodic tilings of the plane can also be
introduced via cut-and-project [18], i.e., by projecting part of
the four-dimensional periodic tiling onto a two-dimensional
subspace. Since the number of possible symmetries in-
creases with dimensions, the projected aperiodic counterparts
inherit possible underling fivehold, eighthold, tenhold, or 12-
fold symmetry. Formal results exist showing the pointwise
nature of the n-fold diffraction pattern of several cut-and-
project lattices. Although establishing such formal results for
inflation/deflation structures is notoriously more complicated
(see Ref. [16] for a recent discussion), assuming that the
scattering potential is a Dirac comb leads to a closed-form
expression for the structure factor and allows the identifica-
tion of Bragg peaks [see Sec. (II C)]. The main focus of the
present article is to single out the effect of Bragg scattering
of flexural waves in a thin plate due to the presence of a
P3 Penrose cluster of mass scatterers. After fixing the de-
composition level, we associate an elastic stud to the center
of mass of each resulting triangle (of type A, A′, B or B′).
Endowing rigid scatterers with rotational degrees of freedom
and the corresponding inertia, allows a realistic representation

of the experimental setup, adding complexity to the case of
point-mass scatterers as described in Sec. III. In this arti-
cle, we focus on the distribution of scatterers represented in
Fig. 2.

The number of scatterers at the ith decomposition levels
can be evaluated by accounting for the total number of A and
A′ triangles (NA), and the total number of B and B′ triangles
(NB). Specifically, from Fig. 1(c), the following recursive re-
lations for the total number of triangles can be inferred

N (i)
A = N (i−1)

A + N (i−1)
B ,

N (i)
B = N (i−1)

A + 2N (i−1)
B , i = 1, . . . , n, (1)

which allows to calculate NA = N (n)
A and NB = N (n)

B , and,
therefore, Ns = NA + NB, given a seed number of initial tri-
angles N (1)

B and N (1)
A .

The article is organized as follows. In Sec. II, we present
the Penrose-like distribution of scatterers as well as the gov-
erning equations, useful to describe the phononic crystal under
consideration. In Sec. III, we present and discuss the re-
sults concerning both a finite cluster of nonresonant scatterers
hosted by an infinite plate and a finite plate hosting the same
arrangement of scatterers. Finally, in Sec. IV, we summarize
the results and give our main conclusions.
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(a) (b) (c)

(d) (e) (f)

FIG. 2. (a) Distribution of Penrose-like scatterers obtained by decomposing n = 6 times a thick rhombus with side length L0 = 0.617 m.
(b) Fourier transform of the structure factor [Eq. (5)] corresponding to the distribution of scatterers in panel (a). (c) A set of local maxima in
panel (b) corresponding to Bragg peaks in reciprocal space of the P3 lattice. The maxima are obtained by selecting wave vectors (black dots)
for which the structure factor exceeds the threshold α = 0.01. (d) Equivalent honeycomb cluster of scatterers. Panels (e) and (f) have been
obtained similar to panel (b) and (c) for the arrangement in panel (d). In panel (f), the red dotted hexagon represents the boundaries of the
first Brillouin zone (BZ) of the triangular lattice, whereas the red arrows mark the primitive vectors in reciprocal space. The high-symmetry
points �, M, and K , as well as the nearest-to-� neighbor nodal points are marked by red circles. The areas enclosed by the dashed rectangles
in panels (a) and (d) represent probing regions of the structured plates.

II. STRUCTURES AND ASSOCIATED
GOVERNING EQUATIONS

A. Flexural waves in thin elastic plates

Time-harmonic flexural waves in a thin plate comprising
a cluster of resonators are governed by the partial differential
equation [7–9],

Lψ (r) = f (β )
Ns∑
j=1

δ(r − r j )ψ (r), (2)

where ψ (r) is the time-harmonic flexural field at the spatial
coordinate r on the plane, and r j , j = {1, . . . , Ns}, is the
coordinate’s vector of the jth-scatterer with Ns being the
number of scatterers. In Eq. (2), we introduce the operator
L = 	2 − β4 with 	2 as the biharmonic operator and

β(ω) =
(

ρshω2

D

)1/4

, (3)

as the wave number, where ω is the angular frequency, ρs

is the mass density and D = Esh3/[12(1 − ν2
s )] is the flexu-

ral rigidity with h, Es, and νs being the thickness, Young’s
modulus, and Poisson’s ratio, respectively. The subscript “s”
denotes steel, namely, ρs = 7850 kg/m3, Es = 200 GPa, and
νs = 0.3.

The Green’s function associated with the operator L [i.e.,
the solution of Lg0(r, r′) = δ(r − r′)] is [19]

g0(r, r′; β ) = i

8β2

(
H (1)

0 (β|r − r′|) + 2i

π
K0(β|r − r′|)

)
,

(4)

where H (1)
0 (β|r|) and K0(β|r|) are the Hankel function of

the first kind and the modified Bessel function of the second
kind, respectively. The solution of the scattering problem to
an incident field can be obtained by using the Korringa-Kohn-
Rostoker [20,21] (KKR) also known as the multiple-scattering
method [22], which builds upon the knowledge of the Green’s
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function of the homogeneous operator and the scattering po-
tential f (β ) in the right-hand side of Eq. (2). Details of the
derivation are provided in Appendix A. We observe that f (β )
can be any function of frequency resulting from the physics
of the considered scatterers. However, it should be pointed
out that the model in Eq. (2) is accurate only for scatterers
exerting purely normal forces with respect to the plate and
vanishing moments. In general, the finite extent of passive
scatterers, their nonzero rotational inertia and their possible
asymmetry about the neutral plane of the plate, provide a
coupling route between the rotation and in-plane fields of
the plate. This calls for the need to consider a system of
plane-stress in-plane PDEs coupled with the flexural field by
the boundary conditions between the plate and the scatterers.
The study of a more general class of problems dealing with
plate-affixed Euler-Bernuolli beams [23] has revealed that the
solution based on the Green’s function is of the singularly
perturbed type. We expect to encounter a similar kind of
singular behavior for the special case of scatterers (rigid studs)
investigated in the present paper (see Sec. III), this solution
route being, therefore, beyond scope. We refer to Ref. [24]
for a detailed treatment of the solution regularization for the
plate’s plane-stress/flexural field problem within plates, cou-
pled by Euler-Bernuolli beams’ junctions.

B. Distribution of scatterers

By using the recurrence relation (1) with seeds N (0)
A = 0

and N (0)
B = 2, it is possible to verify that the total number

of scatterers associated with the decomposition level n = 6 is
Ns = 754 [25]. The resulting spatial distribution of scatterers
in the truncated P3 Penrose lattice is represented in Fig. 1(a)
by the blue dots.

The average scatterers’ density Ns/S with S being the sur-
face of the plate can be used to define a periodic counterpart
of the proposed aperiodic plate. For illustrative purposes, we
opt for a honeycomb lattice because of the two scatterers per
UC pattern reminiscent of our P3 Penrose arrangement. In
addition, the underlying triangular lattice features isotropic
low-frequency dispersion compared to other Bravais lattices
in two dimensions [26]. The resulting graphenelike structure
has been analyzed by Torrent et al. [9] with a focus on the
emergence of Dirac-like dispersion and associated dynamic
response of waveguides.

In order to provide a meaningful comparison, especially
in view of the finite plate response, we aim at preserving
the total mass of the studded plate as well as the average
density of scatterers. Approximately, the same number of scat-
terers is given by the choice N1, N2 ≈ Ns/2, where N1, N2 ∈
N represent the number of unit cells along the directions
identified by the primitive vectors of the triangular lattice.
Therefore, we guarantee the same total mass by requiring
that the triangular lattice primitive vectors have magnitude
�̄ = [2S/(

√
3N1N2)]1/2. Focusing on the specific case repre-

sented in Fig. 2, N1 = 18 and N2 = 21 represent a suitable
choice, corresponding to primitive lattice vectors’ magnitude
�̄ = 0.033 m. By choosing the primitive vectors to be t j =
�̄/2[(−1) j−1,

√
3]T with j = 1, 2, the reciprocal lattice vec-

tors are G j = 2π/(�̄
√

3)[
√

3(−1) j−1, 1]T .

C. Structure factor and diffraction patterns

In reciprocal space, the structure factor is defined as the
modulus squared of the Fourier transform of the scattering
potential [see the right-hand side of Eq. (2)], normalized by
the amplitude f (β ), i.e.,

F (k) =
∣∣∣∣∣∣

1

Ns

Ns∑
j=1

exp(ik · r j )

∣∣∣∣∣∣
2

, (5)

where the index j = 1, . . . , Ns runs over the Penrose distri-
bution of scatterers at the coordinates r j on the plane, and
k = (kx, ky)T , is the wave vector. The quantity is custom-
arily used in condensed-matter physics to analyze particle
or wave diffraction experiments as it is proportional to the
scattering cross section. As the name suggests, the structure
factor contains important crystallographic information on the
atomic distribution. It quantifies the diffraction intensity in
reciprocal space, thus, allowing an approximate identification
of the Bragg peaks, induced by a finite but large distribution
of scatterers. Bragg peaks are special wave vectors at which
strong dispersive behavior, such as the opening of band gaps,
is expected. The evaluation of structure factors is customarily
used in the research community interested in aperiodic media
[27].

Figure 2(b) shows the Fourier transform of the structure
factor for the Penrose cluster, evaluated using Eq. (5) with
scatterer’s coordinates as per Fig. 2(a). The figure shows
bright pointwise spots, approximately identifying the Bragg
peaks associated with our Penrose lattice. This is made more
evident by showing only those wave numbers at which the
structure factor exceeds a given threshold [Fig. 2(a)]. It is
visually evident that the first two rings show a tenfold sym-
metric pattern. A similar analysis conducted on the periodic
counterpart in Fig. 2(d) reveals the Bragg peaks for the tri-
angular lattice with the classic sixfold symmetric pattern [see
Figs. 2(e) and 2(f)], in good agreement with the corresponding
primitive vectors (cf. Sec. II B).

D. Heuristic low-frequency dispersive properties

At low frequency, the effect of the scatterers can be ac-
counted for by introducing an effective material density,

ρ = ρs + mNs

Sh
, (6)

where m is the mass of each scatterer and S is the surface of
the enclosing plate. The low-frequency dispersion for flexural
waves in the long-wavelength regime can be easily obtained
by evaluating the dispersion relation in Eq. (3), using Eq. (6)
as mass density, i.e.,

ω∗ ≈
√

D

ρh
|κ|2, (7)

where the density ρ has been introduced in Eq. (6), and
κ = (κx, κy)T being the Bloch wave vector. A heuristic ar-
gument that justifies Eq. (7) is provided as follows. As the
frequency of the impinging wave decreases, the corresponding
wavelength comprises more and more point masses. Since the
plate is not stiffened by the presence of the point scatterers,
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FIG. 3. (a): Two honeycomb unit-cells (UC1 and UC2). UC1 consists of two drilled holes with mass m homogeneously distributed along
their edge, whereas in UC2 the holes host two rigid studs of mass m (see the inset). The radius of the holes is r = 1.5 mm, and the mass of
the scatterers is m = 3.2 g. Panels (b) and (c) show the dispersion diagrams of UC1 and UC2, respectively, projected over the irreducible BZ
(IBZ) in Fig. 4(a). The color represents the degree of polarization of the corresponding mode p = ∫

UC |uz|/|u|d3r with blue and red referring
to purely in-plane and purely flexural polarization, respectively. The gray dashed lines in panel (b) represent the dispersion of a homogeneous
plate with density as in Eq. (6), folded in the first IBZ of the triangular lattice. Panel (d) shows (on the left) a magnification of panel (c) where
the arrows mark coordinates of two selected Bloch-Floquet eigenmodes, M1 and M2 (two rightmost figures). The color legend maps the
modulus of the displacement (magnified by a factor 105 to appreciate the deformation).

the only property affected by the presence of the scatterers
is an overall increase in the density as stated in Eq. (6). As
shown in Sec. III A, Eq. (7) is equivalent to the low-frequency
dispersive behavior of the periodic counterparts. We refer to
Ref. [7] for more formal asymptotic arguments leading to the
expression (6).

III. RESULTS AND DISCUSSION

A. Effect of the scatterers finite size on the dispersion
of periodic counterparts

In order to single out the scatterers’ finite-size effects, we
opt to analyze the dispersive properties of the honeycomb
UC with different modeling assumptions, as detailed in Ap-
pendix B. The focus is on the dispersive properties of two unit
cells for a honeycomb lattice UC1 and UC2 in Fig. 3(a).

In UC1, we consider an edge distribution of mass (3.25 g
in total) along the circumference of each hole with radius
1.5 mm. In UC2, the scatterers are modeled explicitly and
pierce the plate through the same holes as in UC1. The
studs are made out of brass (density ρb = 10 610 kg/m3,
Young’s modulus Eb = 97 GPa, and Poisson’s ratio νb =
0.3). The precise geometry can be accessed on the web-
site of the manufacturer [28]. In Table I, we report the
key physical parameters of the studs, relevant to their rigid
formulation, namely, the mass (m), the moments of inertia
around the x−, y− (Ix and Iy, respectively), and the ver-
tical offset of the center of mass from the midsurface of
the plate (hz). This latter parameter models the fact that the
stud is not symmetric about the midplane of the plate. The
UC length �̄ has been derived from the considerations in
Sec. II C.
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TABLE I. Physical parameters of the rigid studs and of the homogeneous plate.

Stud Plate

m (g) Ix (kg m2) Iy (kg m2) hz (mm) Es (GPa) νs [−] ρ (kg/m3) h (mm)
3.25 1.50 × 10−7 1.50 × 10−7 −1.07 200 0.3 7850 1.01

The dispersion diagrams considered in this section have
been calculated using the indirect Bloch-Floquet method
(readily available in COMSOL MULTIPHYSICS ) and a three-
dimensional (3D) elasticity formulation without rigid-body
assumptions for the studs (see Appendix B for further details).
Results are presented along the border of the irreducible Bril-
louin zone [�MK� in Fig. 2(f)]. Figure 3(b) shows that, in the
long-wavelength regime (i.e., below 1000 Hz) the dispersion
diagram is well captured by that of a homogeneous plate
with density as in Eq. (6), which have been folded onto the
boundaries of the IBZ (see the gray dashed lines) for ease
of comparison. Unsurprisingly, as the frequency increases,
marked departures from the homogeneous dispersive behavior
[see Eq. (7)] arise in both Figs. 3(b) and 3(c). Nevertheless, the
gray dashed curve in Fig. 3(b) shows that Eq. (7) is still useful
in predicting the approximate band-gap frequency.

Accounting for the finite extent of the studs and their
asymmetry with respect to the plate neutral plane leads to
fundamentally different features. First, the dispersion of UC1
does not feature any coupling between in-plane and flexural
waves. The absence of coupling emerges from the purely
flexural and purely in-plane polarization, i.e., by the blue
and red color, respectively, in Fig. 3(b). On the other hand,
the dispersive properties of the UC2 feature hybridization of
in-plane and flexural dispersion branches around 4000 Hz, a
phenomenon stemming from two causes: (i) the activation of
the rotational inertia and (ii) the asymmetry of the studs with
respect to the midplane. We illustrate such hybridization in
Figs. 3(d) and 3(e) where we reproduce selected eigenmodes
close to the high-symmetry points K and �, respectively
[cf. Fig. 3(c) for the corresponding Bloch wave vector].

UC1 features a single Bragg-scattering band gap at ≈
8000 Hz as highlighted by the yellow-shaded rectangle in
Fig. 3(b). By contrast, Fig. 3(c) shows more pronounced
filtering properties for flexural waves (see the width of the
yellow-shaded rectangles). The higher band gap in frequency
is clearly controlled by the mass of the scatterers, whereas the
lower one is controlled by the rotational inertia coupling with
the plate rotation field [i.e., with the derivatives of the flexural
field ψ (r)].

B. Bragg scattering by phononic clusters within an infinite
thin plate

In this section, we study the dynamic response of the clus-
ters of scatterers represented in Figs. 2(a) and 2(d). By solving
Eq. (2) with the method outlined in Appendix A, it is possible
to probe a finite cluster of point masses in a infinite thin plate,
illuminated with an external incident field. We deliberately
focus on a cluster made of point masses without resonant
effects for which [7–9]

fi(β ) = m

ρh
β4, ∀ i = {1, . . . , Ns}, (8)

in Eq. (2) with m being the mass of the scatterers. For sim-
plicity, we assume that the incident field originates from a
point source generated by a unit force, although other solu-
tions compatible with the Kirchhoff plate can be chosen, e.g.,
incident plane waves. The cluster, arranged as in Fig. 2(a), is
probed by a point source located at the origin of the coordinate
system (see the green circle therein).

A measure of the dynamic response, directly accessible
in vibrometric experiments, is the average mobility over a
probing surface, that is, as follows:

M(ω) = ω〈|ψ (r, ω)|〉
|F0(ω)| , (9)

where F0(ω) is the time-Fourier transform of the input force
on the plate, ψ (r, ω) is the time-harmonic flexural field, 〈·〉 =
1/S

∫
d2r(·) is the average operator over a surface of area S,

and |(·)| denotes the absolute value of a complex number. In
computations, we assume F0(ω) = 1. The average mobility
within a probing region [dashed rectangle in Fig. 2(a)] of
the Penrose cluster is represented in Fig. 4(b) by the black
solid curve, whereas the red line represents the average mo-
bility of a honeycomb cluster region [dashed rectangle in
Fig. 2(d)].

The two phononic crystals feature strong Bragg peaks,
shown in Fig. 4(a). The black points refer to the Penrose lattice
and are identical to those in Fig. 2(c), whereas the red dots are
the smallest nonzero Bravais nodal points in reciprocal space
associated with the triangular lattice.

The scattering of flexural waves within the Penrose clus-
ter results in a plethora of local minima in mobility. We
draw the reader’s attention on a set of pronounced minima,
marked by the associated frequencies ( f1 and f2 for the
Penrose cluster, and f ∗ for the honeycomb cluster). In addi-
tion, we observe that the mobility of the honeycomb cluster
features attenuation consistent with the band gap associated
with its periodic counterpart [see Fig. 8(a)] and marked by
the red-shaded rectangle. Despite Eq. (7) is asymptotically
equivalent to the “true” dispersion, only in the low-frequency
long-wavelength regime, Fig. 3(b) shows that it provides a
good estimation for the band-gap frequency. This suggests
that Eq. (7) could be used to estimate an effective wave
number of the mode within the cluster. Indeed, by substitut-
ing ω/(2π ) = f ∗ into Eq. (7) we get |κ| = 217.9 m−1, very
close to |G1| reported in the caption of Fig. 4. A similar
estimation starting from f1 and f2, results in |κ| = 143.4 and
|κ| = 192.1 m−1, respectively, within 5% from the reported
values (see the caption of Fig. 4) for |K1| and |K2|. This
suggests that the attenuation regions featured by the Pen-
rose cluster in Fig. 4(b) are indeed controlled by the Bragg
peaks shown in Fig. 4(a). Moreover, such Bragg peaks are
a clear fingerprint of the long-range order beyond period-
icity. Indeed, the fact that special wave-vectors K1 and K2
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FIG. 4. Panel (a) shows the approximate Bragg peaks of the finite Penrose point-masses cluster (black dots) and the Bragg peaks of
the honeycomb point-mass cluster (red lines) with equivalent density. The dashed and solid black circles with radii |K1| = 136.5 m−1 and
|K2| = 194.2 m−1, respectively, comprise some of the tenfold symmetric Bragg peaks featured by the P3 Penrose lattice. The red circle
with radius |G1| = 218.1 m−1 comprise the sixfold symmetric Bragg peaks featured by the honeycomb lattice. Panel (b) shows the mobility
of the finite clusters hosted by an infinite thin plate as a function of the frequency of the incident point source. Black and red lines refer
to the Penrose and the honeycomb cluster, respectively. In panel (b), we also mark special frequencies at which local minima in mobility
occur in both clusters ( f1 = 3723.1 Hz and f2 = 6684.2 Hz for the Penrose cluster, and f ∗ = 8600.3 Hz for the honeycomb cluster). Panels
(c)–(e) show the incident, scattered and total [ψ (r) in Eq. (2)] flexural fields at ω/(2π ) = f2 resulting from the multiple scattering method in
Appendix A.

are lower in moduli than |G1| = |G2| (the reciprocal lattice
vector of the corresponding honeycomb lattice) suggests that
they emerge from patterns whose length scale is larger than
�̄.

To further substantiate the previous claims, we illustrate
the Bragg scattering nature of the attenuation in our P3 Pen-
rose cluster by means of Figs. 4(c)–4(e). The panels show
the incident, scattered, and total flexural fields, respectively,
associated with the the f2 mobility minimum in Fig. 4(b).
Figure 4(c) shows the incident flexural field emanating from
the point source. Due to the fact that the point source is
located close to the Penrose cluster, the probing region therein
experiences an incoming flexural comprising a wide range
of directions. The scattered field clearly shows similar wave-
fronts with the opposite phase compared to the incident field.
The sum of the incident and scattered contributions (i.e., the
total field) results in an overall attenuation of flexural waves.
As Fig. 4 shows, the cancellation is not perfect, and clear
localized modes emerge, away from the excitation point. De-
spite that, Fig. 4(e) demonstrates that the attenuation observed
in the dynamic response is a coherent effect due to Bragg
scattering.

C. Penrose studded plate mobility and localization

For a Penrose studded plate, a UC in the Bloch-Floquet
sense does not exist. Nevertheless, insights can be gained by
analyzing the dynamic response of a finite plate, subjected
to a harmonic loading and to physical boundary conditions
at the edges of the sample. The most straightforward way
to model the aforementioned situation is by using the FE
method. Specifically, we use a time-harmonic formulation
with a unit forcing vector oriented normal to the plate. We
repeat the computation for 450 equally spaced frequencies
between 1 and 8 kHz, which being independent from one an-
other can be readily parallelized for improved computational
time efficiency. The rigid scatterers assumption for the studs
is justified by an independent modal computation carried over
a single elastic stud made out of brass and showing that its
first nontrivial eigenmode is above 20 kHz, therefore, far away
from our frequency range of interest. Appendix B [specif-
ically, Fig. 8(b)] provides further arguments supporting the
aforementioned modeling assumption. The contact between
the rigid-body scatterer and the plate is of the bonded type,
which assumes continuity of rotations and displacement at the
plate/scatterers junctions.
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FIG. 5. Finite element (FE) average mobility of the two finite plates with traction-free boundary conditions. The black and red solid lines
refer to the Penrose and honeycomb studded lattices, respectively. The material parameters used for both plates are reported in Table I. The red
and black dotted lines represent the average mobility of homogenized plates (honeycomb and Penrose, respectively) with homogenous mass
density as in Eq. (6). We mark band gaps (yellow-shaded rectangles) as predicted by Fig. 3(c). The green-shaded regions highlight frequency
bands for which the flexural waves’ attenuation in the Penrose plate outperforms that of the honeycomb counterpart.

In the same spirit as in Fig. 4, Fig. 5 compares the average
mobility of the two finite plates subjected to a unit point force
and complemented with traction-free boundary conditions at
their boundaries. The black and red curves refer to the Pen-
rose and honeycomb studded plates, respectively. Each stud
is modeled as rigid as detailed in Appendix B. The yellow
rectangles shows the band gaps within the periodic plate as
predicted in the context of Fig. 3(c). This is consistent with
the low average mobility in those frequency ranges (see the
red solid curve). As highlighted by the green-shaded areas
in Fig. 5, the mobility of the Penrose plate is lower than the
periodic counterpart in a wide range of frequencies.

In order to single out the effect of periodic and aperiodic
orders, we report the average mobility of homogeneous finite
plates (bare plate 1 and bare plate 2) with elastic parameters
as in Table I and mass density as in Eq. (6). Such homogenous
counterparts only differ by the overall shape of the plate.
We observe that, despite the bare plates differ by the overall
shape, this affects only the fine modal behavior but not the
mobility order of magnitude in such a broad frequency range.
By direct comparison of the solid and dotted curves in Fig. 5,
the studded plates result in strong attenuation compared to the
homogenous counterparts. Moreover, in the frequency regime
from 3000 up to 9000 Hz, the realization of the Penrose plate
analyzed in the current paper results in a consistently lower
mobility. In turns, this results in the presence of Bragg peaks
associated with aperiodic order. In order to test the predictive
power of the numerical models, we have commissioned a plate
with holes located at the blue dots in Fig. 2(a). We have,
subsequently, screwed the studs described in Sec. III A into
the holes, with sufficient torque to ensure bonded conditions.
Figure 6 shows the setup of the vibrometric experiment. The
Penrose plate is hung by the ceiling via two strings passing
through two small holes. This configuration mimics traction

free boundary conditions, consistent with the numerical FE
models. The resulting studded plate has been, subsequently,
analyzed via laser Doppler vibrometry. Specifically, we drove
a shaker (lower left corner of the plate in Fig. 6) using a
frequency sweep (1–8 kHz). The resulting force between the
stinger of the shaker and the plate, applied to the origin of the
coordinate system in Fig. 2(a), is measured by interposing a
force sensor. The resulting force signal is used as reference
for the laser Doppler vibrometer–also marked in Fig. 6–thus,
allowing a direct measurement of the mobility over a scanning
region. The time-resolved data are collected and Fourier trans-
formed in the time variable by the proprietary laser vibrometer
software (Optomet). Spatially resolved experimental wave-
forms are, subsequently, exported and analyzed in Matlab.

FIG. 6. Setup of the vibrometric experiment, whereby the Pen-
rose studded plate, in nearly free boundary conditions, is excited
by an electromagnetic shaker. The resulting flexural velocity field
is measured via infrared laser Doppler vibrometry and the force
between shaker and plate is used as reference for the calculation of
the mobility.
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(a)

(c) : 5623 Hz (d) : 7297 Hz (e) : 7462 Hz

(f) : 5660 Hz (g) : 7280 Hz (h) : 7480 Hz

(b)

FIG. 7. Panel (a) shows the inverse participation ratio for the modal response of the Penrose plate see Eq. (10)]. Panel (b) compares the
numerical average mobility (black solid line) and the average mobility obtained from vibrometric experiments (red solid line). Panels (c)–(e)
show time-Fourier transform of the experimentally observed localized modes whereas panels (f)–(h) show the corresponding FE time-harmonic
predictions.

Figure 7 compares our numerical predictions with the ex-
perimental observations, in similar regions of the Penrose
studded plate (red and black solid curves, respectively).

In order to gain further insights on the effect of Bragg
scattering within the Penrose plate, we have extracted the
inverse participation ratio over the flexural components of the
structural modes of the plates. By solving a modal analysis in
ANSYS, and extracting the associated modes in the frequency
range from 3000 to 8000 Hz, the inverse participation ratio
(IPR) for the mode with frequency fi is defined as [29]

�( fi ) =
N∑

n=1

�4
n ( fi ), (10)

where �n, n = {1, . . . , N} denote the nodal flexural mode
of the plate and N denotes the total number of nodes. By
assigning the mode normalization

∑N
n=1 �2

n ( fi ) = 1, it is easy
to realize that �( fi ) approaches 1 for very localized modes
(i.e., only one node contributes 1, the remaining being zero),
whereas �( fi ) → 1/N for delocalized modes (each node
equally contributes 1/

√
N). In our numerical experiment, N =

11 085 in the probing region.
The inverse participation ratio for the modal response of

the Penrose studded plate is shown in Fig. 7(a). We highlight
how the modal density of the plate is visibly low between 5500
and 6500 Hz. Moreover, as the frequency increases, several
modes cluster towards high values of the IPR, suggesting a
localized response within the plate. The IPR can be directly
compared to the mobility curves shown in Fig. 6(b) (with
red and black curve referring to experimental and numerical
results, respectively).

The comparison between the experimental and the numeri-
cal mobility curves in Fig. 7(b) demonstrates a fair agreement
of numerical and experimental results. More importantly,
guided by Figs. 4(a) and 4(b), we are able to identify and
experimentally observe localized mode shapes. The space-
resolved experimental results [Figs. 7(c)–7(e)] and numerical
[Figs. 7(f)–7(h)] waveforms indeed compare very well. Panels

(c) and (f) show highly localized waveforms far away from
the source of vibration resulting in very attenuating response
of the Penrose plate. In the latter, localized waveforms are
observed only in the vicinity of the input location, in fre-
quency regimes featuring quasizero group velocity and band
gaps [30] or close to ad hoc defects in the periodicity [31]. In
our P3 scatterers realization, localized modes emerge in the
entire scanned region as shown in Figs. 7(b)–(d). The nature
of such localized modes is reminiscent of “bound states in the
continuum,” recently predicted in highly symmetric clusters
of resonators hosted by homogenous plates [32]. According to
the frequency of the input force, bare plate regions enclosed
by rings of scatterers support monopole [see Figs 7(c) and
7(f)] or dipole modes [see Figs. 7(d), 7(e), 7(g) and 7(h)].
Different from the predictions in Ref. [32], the localization in
our P3 Penrose lattice does not result from the locally resonant
nature of the scatterers but is rather due to Bragg scattering
induced by the aperiodic order, similar to what we show in the
context of Fig. 4(e).

IV. CONCLUSIONS

In conclusion, we have described analytically, numerically,
and experimentally the dynamic response of a finite plate
comprising scatterers arranged aperiodically according to a
P3 Penrose tiling pattern (see Fig. 1). The comparison with
an equivalent (i.e., featuring similar low-frequency dispersive
properties) periodic counterpart shows that the Penrose lattice
is able to attenuate vibrations in a wide frequency range, well
below the Bragg frequency of a honeycomb equivalent lattice.
In addition, the results singled out the effect of rotational
inertia whose inclusion give rise to marked departures from
the Bragg scattering of flexural wave only.

The long-range order in the P3 Penrose lattice results in
strong Bragg wave vectors in reciprocal space, which, in turn,
influences the dynamic response of the cluster. This is evident
when a nonlocally resonant cluster is considered as in Fig. 4.
The inclusion of rigid studs activate the rotational degree

174201-9



TALLARICO, BERGAMINI, AND VAN DAMME PHYSICAL REVIEW B 107, 174201 (2023)

of freedom (DOF) of the scatterers which is responsible for
the departures from the simple picture of Bragg scattering
dominated by purely vertical forces (point mass situation).
Nevertheless, similar conclusions can be drawn even for the
finite plate studded with rigid inclusions. Since Bragg-type
attenuation in a P3 lattice happens at lower frequency com-
pared to the equivalent periodic counterpart, the results are
relevant for structural engineering applications where control-
ling the low-frequency response is critical. In addition, we
have identified a wave localization frequency regime shaped
by Bragg scattering within the aperiodic realization of the
Penrose P3 tessellation. The control of such Bragg scattering
induced localization in aperiodic plates may prove useful in
the context of energy harvesting or to damp even further
unwanted structural modes at desired frequencies.
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APPENDIX A: MULTIPLE-SCATTERING THEORY

Using the KKR [20,21] method, given an incident field φ0,
which is the solution of the unperturbed problem, we can write
the elastic field in an arbitrary position r within the plate as

ψ (r) = φ0(r) +
∫

d2r0g0(r, r0; β )V (r0)ψ (r0), (A1)

where we have introduced the Green’s function in Eq. (4),
and V (r0) is the right-hand side of Eq. (2). Specifically, the
incident flexural displacement resulting from vertical load of
amplitude F0 at the origin of the coordinate system is

φ0(r) = F0

D
g0(r, 0; β ). (A2)

By using V (r0) = ∑Ns
i=1 f (β )δ(r0 − ri ) in Eq. (A1), we obtain

ψ (r) = φ0(r) + f (β )
Ns∑
j=1

g0(|r − r j |)ψ (r j ). (A3)

By taking the limit r → ri, the following linear system fol-
lows:

[1̂ − Ĝ(β )]ψ = φ, (A4)

where [1̂]i j = δi j , [Ĝ(β )]i j = t j (β )g0(|ri − r j |), [ψ]i =
ψ (ri ), [φ]i = φ(ri ), and i = 1, . . . , Ns, from which ψ can be
easily obtained, which completely determines the solution
within the plate comprising scatterers and subjected to a point
load.

APPENDIX B: EFFECT OF MODELING ASSUMPTIONS
ON THE DISPERSIVE PROPERTIES

OF THE PERIODIC COUNTERPARTS

In the present Appendix, we provide the details con-
cerning two unit-cells model formulations, to calculate the
dispersive properties of the honeycomb counterparts intro-
duced in Sec. III. We address two practical modeling issues:

FIG. 8. Panel (a) compares the dispersion diagram in
Fig. 3(b) (blue dots) to that of a homogeneous UC with concentrated
mass over a small volume (red crosses). The Bragg band gap featured
by the latter is also shown (red shaded area). Panel (b) compares the
dispersion diagram in Fig. 3(c) (red points) to that of a shell model
complemented with rigid scatters (blue crosses) in Fig. 3(d).

the effect of the drilled holes, and the accuracy of using a
“shell/rigid-scatterer” (S/RS) model compared to a full 3D
model. Figure 8 illustrates both questions.

1. Bloch-Floquet analysis

The 3D displacement u of a solid within linear, isotropic,
time-harmonic elastodynamics is governed by the Navier-
Cauchy equation,

μ∇2u + (λ + μ)∇(∇ · u) − ρω2u = 0, (B1)

with μ and λ being the Lamé parameters, i.e., μ = E/[2(1 +
ν)] and

λ = Eν/[(1 + ν)(1 − 2ν)]. Equation (B1) holds within
domains with different material properties, such as the plate
and studs for UC2 in Fig. 3(a). Within standard commercial
FE solvers, compatibility among the displacement in multima-
terial regions can be imposed by requiring perfectly bonded
contact, i.e., continuity of displacement and normal tractions
in the junction area. Doubly periodic media support special
solutions to Eq. (B1) of the form

u(r + t, z) = eiκ·t u(r, z), (B2)

where κ is the two-dimensional Bloch-Floquet wave number,
z is the out-of-plane coordinate, and t is any integer linear
combination of the lattice vectors. After FE discretization,
e.g., using COMSOL MULTIPHYSICS, Eq. (B1) complemented
with Bloch-Floquet boundary conditions (B2), results in a
linear algebraic eigenvalue problem for the Bloch frequency
ω, as a function of the Bloch-vector κ within the first Brillouin
zone (the so-called indirect method). Bloch-Floquet analysis
in periodic FE-discretized structures can be also performed
using the so-called direct method where a polynomial eigen-
value problem is solved for the complex Bloch wave vectors
as a function of frequency. For further details, the reader is
referred to Refs. [33,34].
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2. Model formulations

In Fig. 8(a), we compare the dispersion diagram in Fig. 3(a)
(here represented by the blue crosses) with that of a 3D solid
model without holes where the scatter mass is concentrated
into a cylinder of the same height as the plate and radius
r = 1 mm (see the red dots). For both computations, the direct
method is used. The comparison shows that the presence of
the holes shifts frequencies slightly upwards but does not
qualitatively alter the dispersion diagrams. In what follows,
we opt to retain the holes.

An alternative natural FE framework to accommodate the
rotational inertia of the scatterers compared to 3D elasticity
is provided by shell models [Reissner-Mindlin plate theory
[35])] are encoded into the SHELL281 element [36]. The
formulation differs from Kirchhoff’s theory in Eq. (3) due
to the account of first-order shear deformation effects and
rotational inertia of the plate, which in the present paper
are kept small by design, the minimum wavelength be-
ing λmin > h/6. Nevertheless, in finite element routines, the
kinematics of plates account for displacement the rotation
fields as independent variables, allowing to consistently define
boundary conditions of the plate’s rotational and translational
degrees of freedom with the rotations and translations of
the rigid studs. The rigid bodies associated with each scat-
terer feature 6 DOFs, whose compatibility with the shell
rotations and translations is prescribed within the software.
This allows to numerically build a reduced order model with

significantly less degrees of freedom compared to that re-
sulting from the solid element formulation as each finely
resolved 3D scatterer is reduced to 6 degrees of freedom
only.

Figure 8(b) compares the dispersion diagram in Fig. 3(b)
(stemming from 3D elastodynamics, here represented by the
red dots) with that of a S/RS model where the shell is dis-
cretized with quadratic elements (10 344 DOFs in total). The
discretization mesh of the elastodynamics unit-cell (UC2) is
shown in Fig. 3(a) and features 463 224 DOFs. Despite the
different formulations, direct inspection of Fig. 8(b) shows
that the S/RS model captures very well the dispersive prop-
erties of the studded phononic crystal. This encourages us
to use a similar reduced formulation for the Penrose plate
(see Sec. III C). A mesh convergence study has shown that
the spatial discretization proposed here is adequate (error of
less than 1%) in predicting eigenfrequencies with traction-free
boundary conditions up to ≈11 kHz.

The dispersion diagram associated with the reduced shell
UC is solved using the direct method within the wave-finite
element (WFE) formulation [34] and with the help of the
Matlab “polyeig” function. In Ref. [33], we have shown that
the WFE solution space can be efficiently restricted to the IBZ
border. This is precisely what we show in Fig. 8(b) by means
of the blue crosses whereby only the purely real solutions have
been included to facilitate the comparison with the indirect
method calculation (red points).
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