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Abstract: Light beams with Orbital Angular Momentum (OAM) are explored in applications
from microscopy to quantum communication, while the Talbot effect revives in applications from
atomic systems to x-ray phase contrast interferometry. We evidence the topological charge of an
OAM carrying THz beam in the near-field of a binary amplitude fork-grating by means of the
Talbot effect, which we show to persist over several fundamental Talbot lengths. We measure and
analyze the evolution of the diffracted beam behind the fork grating in Fourier domain to recover
the typical donut-shaped power distribution, and we compare experimental data to simulations.
We isolate the inherent phase vortex using the Fourier phase retrieval method. To complement the
analysis, we assess the OAM diffraction orders of a fork grating in the far-field using a cylindrical
lens.
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1. Introduction

When Orbital Angular Momentum (OAM) of light entered the scene of optics in the 1990s, it
raised many expectations [1,2] due to its contribution to the total angular momentum, next to the
spin angular momentum. While the spin angular momentum is related to the circular polarization
of light, light that carries OAM exhibits a helical phase front, from which the terms “twisted light”
or “vortex beam” were coined. This phase front includes an azimuthal phase with an integer
number l of 2π phase jumps in one round-trip, where l is the topological charge (TC) and its sign
corresponds to the azimuthal direction in which the phase is increasing [3]. Consequently, all
vortex beams have a phase singularity in their center and show a characteristic donut-shaped
intensity distribution.

While OAM offers an additional degree of freedom for optical communication [4], it is
exploited in many other fields like high-resolution microscopy [5], nanostructure fabrication [6]
optical tweezers [7], or quantum key distribution [8]. To generate the helical phase front, laser
cavity tuning [9] and interference methods [10] have been reported, but also specially designed
phase elements including spiral phase plates [11,12], zone plates [13], lenses [14], spatial light
modulators [15] and fork gratings [16]. Fork gratings have become popular because they are
readily available for all spectral ranges, while the generated vortex beams are of high quality,
which is crucial for real-world applications. In this paper, we work in the THz regime. THz
beams are non-ionizing and penetrate many materials like synthetics and natural substances [17].
Progress can be expected in applying non-conventional laser beams, e.g. OAM carrying Airy
beams, in this spectral range [18].

The far-field diffraction of a binary fork grating shows a fan of well separated OAM carrying
beamlets with different TC in each diffraction order. The characteristic donut-shaped intensity
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distribution and its corresponding vortex phase distribution are readily measured in the far-field
by lens imaging [19], interferometry [20–22] or phase-shifting holography [23]. To analyze the
OAM spectrum of a propagating beam, phase-stepping interferometry with a Gaussian beam was
reported [24]. Recently, the TC of an incoming vortex beam has been measured using the Talbot
effect of a regular grating [25]. Here, however, we generate a OAM beam with a fork grating
and analyze the TC directly in its near-field. In the near-field, all diffraction orders overlap and
several topological charges are simultaneously present.

As the fork grating has also a (quasi) periodic structure, a (pseudo) Talbot effect is expected in the
near-field. When illuminating a periodic diffractive optical element (DOE) with monochromatic
radiation of wavelength λ, the Talbot effect [26] becomes manifest in the self-imaging of the
grating on parallel planes separated by the so-called fundamental Talbot length LT = 2p2/λ and
its multiples, where p is the grid constant of the grating. Self-imaging is exploited in many
applications: Talbot-Lau interferometry is used to show matter waves [27] and interaction effects
of atoms in a periodic potential [28], and it enables X-Ray phase-contrast imaging in medical
applications [29]. The self-images with higher harmonics of the DOE allow focusing light to a
subwavelength scale, which benefits laser lithography [30]. The Talbot effect has been explored
in cases that include ring-shaped [31], radial and azimuthal periodicities [32], Siemens stars [33],
generalized 2D-gratings [34] and for non-paraxial situations [35,36].

While the vortex beam carries OAM from the moment that it passes through the fork grating,
a method to evidence OAM in the near-field diffraction field right after its production has not
been reported, to the best of our knowledge. We propose here a method to evidence OAM from
fork gratings in the near-field using the Talbot effect and Fourier analysis. Single and double
bifurcation gratings are analyzed. While we work in the THz regime, the method is readily
applicable to other wavelength ranges.

2. Theory

A binary amplitude fork grating is a disturbed one-dimensional amplitude grating, in which one
or several bifurcations form a fork-like structure. The number of bifurcations or, equivalently, the
difference of the number of grating lines below and above the fork determines the magnitude
l of the TC. Figure 1(a) shows a fork grating with a single bifurcation, represented by its first
order phase distribution. This pattern can be seen as the superposition of a tilted plane wave,
Fig. 1(b), with a helical wave, Fig. 1(c), shown as a vortex phase distribution in first order. It
can also be regarded as a carrier wave, Fig. 1(b), with an information-bearing wave, Fig. 1(c),
resulting in the modulated signal, Fig. 1(a). The grating period p is the inverse of the spatial
carrier frequency in Fig. 1(b) used to modulate the vortex signal. In this context, Fig. 1 shows a
transmission protocol, namely the encoding of a message as a TC. Therefore, a decoding process
in the form of a demodulation would allow the receiver to read the TC of the fork.

Let the grating plane be described by the coordinate system r = (x, y) so that the y-axis is
parallel to the grating lines of the carrier. Further, we introduce the cylindrical coordinates ϕ =
arctan(x, y), r =

√︁
x2 + y2 and z, the propagation direction of the incoming wave. The amplitude

transmittance function T of the fork grating is represented by the Fourier series:

T(r) =
∞∑︂

n=−∞
Tn exp

[︃
in

(︃
2π
p

x + lϕ
)︃]︃

. (1)

Let the incident plane wave have the complex amplitude distribution u0(r) at the grating plane.
Immediately after the grating, the complex amplitude distribution acquires the form:

ψ(x, y, z = 0) = u0(r) × T(r) =
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. (2)
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Fig. 1. Phase distribution. A fork grating with a single bifurcation (a) is the superposition
of a plane wave (b) with a helical wave (c).

Equation (2) implies that the grating period p of the carrier introduces a linear phase in
x-direction to the incoming beam, while the second phase term lϕ leads to a continuous change
of the grating period. We express the evolution of the wave function in z-direction using direction
cosines [37],
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are the Fourier components of the field distribution right after the grating. Equation (4) describes
the angular spectrum when considering kx =αk and ky= βk, respectively. The direction cosines
α, β, γ that describe the propagating wave vector k are interrelated through:

γ =

√︂
1 − α2 − β2. (5)

Note that for α2+ β2 > 1, γ becomes complex and describes the rapidly attenuated evanescent
waves. The diffraction integral has been solved analytically in the Fresnel and Fraunhofer regimes
for an incoming Gaussian beam to derive the donut shape of the diffraction orders [38]. Assuming
a plane wave with constant amplitude across the grating, u0(r) = 1, the Fourier components of
the field distribution are dominated by the grating, Eq. (1), and are
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Inserting into Eq. (3) yields

ψ(x, y, z) = 4π2
∞∑︂
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This field distribution is proportional to that of the original diffraction plane, Eq.(2), at distances
for which
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where the constant phase factor on the r.h.s. is the free space propagation. This yields the
well-known Talbot distance [39]

LT =
λ

1 −

√︂
1 − n2λ2

p2

≈
2p2

n2λ
. (9)

The Talbot effect repeats the field distribution, and hence the phase, of the DOE in multiples of
the fundamental Talbot length at z= q LT , where q ∈ N. Note that as Eq. (9) holds for n= 1= q, it
is fulfilled for all orders with q= n2.

While the derivation of Eq. (9) strictly holds only for l= 0, we expect a pseudo Talbot effect
for a fork grating. Here, the line density changes from p= S/N to S/ (N+ l) from the bottom to the
top of the grating, where S is the width of the grating and N the number of the illuminated lines,
which leads to a reduction of the Talbot length. In other words, the TC l must be much smaller
than the number N of illuminated lines for the Talbot effect to be observable.

In order to assess the self-imaging, we simulated the near-field diffraction using the angular
spectral method of Eq. (3) [37]. Self-imaging in real space is reflected by self-imaging in Fourier
space, in that the Fourier transform at the Talbot plane matches the Fourier transform of the
grating plane, given by Eq. (2). We have shown earlier that the self-imaging can be identified
using the normalized Pearson correlation coefficient (PCC) applied to the stack of Fourier spectra
[34]:

R =
∑︁m

0
∑︁n

0 (Amn − Ā)(Bmn − B̄)√︃(︂∑︁m
0
∑︁n

0 (Amn − Ā)2
)︂ (︂∑︁m

0
∑︁n

0 (Bmn − B̄)2
)︂ . (10)

where Amn and Bmn are the values at row m and column n in the discrete power spectrum A and
B, respectively, and Ā and B̄ are the averages of A and B. The summation is limited to the most
significant frequency range comprising the fundamental frequency and optionally some higher
harmonics. The PCC is calculated for each pair from the full stack of Fourier spectra.

It is well known that the far-field diffraction pattern corresponds to the Fourier transform of
the diffraction plane, which in turn also corresponds to the Fourier transform at the Talbot planes.
Similarly, the Fourier spectrum of a binary fork grating represents the field distribution of the
far-field. The spatial carrier frequency corresponds to the first diffraction order in the far-field.
This allows to identify both the ring shape and the phase vortex in the near-field. We find the
wrapped phase vortex of the grating by using the Fourier Transform method of phase retrieval
[40], which is performed by band-pass filtering the region around the carrier frequency, followed
by the inverse Fourier transform. According to Eq. (2), the two-dimensional intensity distribution
of the self-image in first order is:

I(x, y) = |ψ(x, y)|2 = |u0(r)|2
|︁|︁|︁T0 + T1 exp

[︂
i
(︂

2π
p x + lϕ

)︂]︂
+ T−1 exp

[︂
−i

(︂
2π
p x + lϕ

)︂]︂ |︁|︁|︁2
= Ib(x, y) + Im(x, y) exp[i(2πfcx + lϕ)] + Im(x, y) exp[−i(2πfcx + lϕ)] + h.h.

(11)

Here, Ib, Im and ϕ are the background intensity, the modulation intensity and the phase to be
determined, respectively, while h.h. are higher harmonics and fc = p−1 is the carrier frequency.
The Fourier spectrum of the intensity distribution of Eq. (11) is:

I(fx, fy) = Ib(fx, fy) + C(fx − fc, fy) + C ∗ (fx + fc, fy). (12)

Here, the capital calligraphy letters indicate the Fourier transform of their italic lowercase
counterparts and (fx, fy) are the frequency coordinates corresponding to (x,y). If fc is large enough,
the spectra of Ib(fx, fy), C(fx, fy), and C*(fx, fy) are separated in the frequency domain. The
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component C(fx - fc, fy) can be isolated by band-pass filtering. A subsequent inverse Fourier
transform yields the complex field distribution c(x). Finally, the wrapped phase is retrieved from

ϕ(x) = arctan 2
{︃

Im[c(x)]
Re[c(x)]

}︃
. (13)

3. Experiment

The experiments were performed on Ronchi fork gratings with single and double bifurcation.
The design was computer generated; the fabrication was done by wafer processing techniques
including spin coating, laser writing, reactive ion etching and lift-off. The gold structures were
fabricated on top of a cyclic olefin copolymer (TOPAS COC) film, which is transparent for
THz radiation [41]. Figure 2(a) shows a photograph of the DOE with a double-bifurcation, see
close-up in Fig. 2(b). This singularity is the origin of the two additional grating lines on the
upper half of the grating.

Fig. 2. Experimental setup for near-field measurements. (a) Photo of a double-bifurcation
fork grating (Ronchi). (b) Microscopic image taken from the black-dashed rectangle in (a).
(c) Experimental setup for the near-field diffraction measurement. The beam of the THz
gas-laser [L] was directed via a mirror [M] through a diaphragm shutter [S] and the DOE to
the camera [C]. The translation stage [TS] moved the camera in z-direction in steps of dz
over a range of ∆z.

The experimental setup for the near-field diffraction experiments is depicted in Fig. 2(c). It
consists of a CH3OH THz gas laser (FIRL 100 system, Edinburgh Instruments, Livingstone, UK),
a DOE (fork grating) and an uncooled microbolometer camera (Gobi-640-GigE, Xenics, Leuven,
BE). To create an image stack in the near-field, the camera was moved on a motorized translation
stage (MTS50-Z8, Thorlabs, Newton, USA) in z-direction over a range of ∆z> 16 mm starting
at near contact of the DOE with the camera window. The smallest gap between camera sensor
and DOE of roughly 6 mm was considered in the analysis. Every dz= 50 µm an image was
taken. A diaphragm shutter (SHB1T, Thorlabs, Newton, USA) was used for infrared background
subtraction. For the experiment with the single-bifurcation fork grating a second translation stage
of the same type was used to move the camera in x-direction. Additional images every dx= 5
mm were stitched together to obtain a synthetic aperture for each z-position.
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Far-field experiments of the beam shape were done with the aid of a plano-convex lens
(PTL-1.5”-100mm-AS, Microtech Instruments, Eugene, USA) placed between DOE and camera
to reduce the size of the individual diffraction orders for imaging. Further, a cylindrical lens
(CL) with a focal length of 120 mm was 3D-printed in-house from TOPAS and was placed
between the DOE and the camera to confirm the topological charge in the far field [42]. The
evaluation of the data as well as the simulations were performed using MATLAB. To obtain
representative results, the pixel resolution of the simulated fork-gratings was made in sufficient
resolution to be processed on a usual workstation (single bifurcation grating: 1033× 947 px;
double bifurcation grating: 981× 988 px). Further, attention was paid that the fork grating
holograms covered the same area as those produced in the gold structures, e.g. Figure 2(a).
The near-field diffraction was generated using the angular spectrum method and was cut out
corresponding to the pixel resolution of the bolometer camera, considering the synthetic aperture
acquisition and zero-padding.

4. Results and discussion

4.1. Single bifurcation grating

The single-bifurcation fork grating with an opening ratio of 0.5 (Ronchi) was tested for self-
imaging. The pitch of the fork grating varied from pbottom ≅ 800 µm to ptop ≅ 780 µm, with an
increased variation close to the singularity in the center. Considering the laser wavelength of
118.8 µm, Eq. (9) predicts the fundamental Talbot length at LT = 5.12 mm and 5.39 mm for top
and bottom, respectively.

The image stack for the single-bifurcation experiment covered a range of ∆z= 17 mm. To
avoid the interference of the grating lines with the pixel matrix, the sample was rotated by 45°.
Further, synthetic aperture acquisition was applied to increase the image area. Figure 3(a) and
Fig. 3(d) show a stitched and rotated image at z= 5.9 mm from the measured and simulated image
stack, respectively. The blue background corresponds to the zero-padding applied to increase the
frequency resolution.

Because a direct evaluation of the experimental diffraction pattern in the spatial domain
was challenging due to slight misalignment, intensity variations and parasitic interference, a
Fourier transformation of the data was performed. The power spectra are displayed in Fig. 3(b)
and Fig. 3(e) for the experiment and simulation, respectively. The characteristic pattern of a
diffraction grating appears. Symmetric orders lying on the v= 0 mm−1 frequency axis clearly
show up and correspond to the fundamental carrier frequency expected around 1.26 mm−1 and its
higher harmonics. As the Fourier transform of the grating corresponds to the far-field diffraction
orders, we determine the TC from the 1st order, see the orange boxes in Fig. 3(b) and Fig. 3(e),
and the respective close-up in Fig. 3(c) and Fig. 3(f). They exhibit ring structures with low
intensity centers, as is expected for a vortex beam. The elliptical shape and its orientation of the
main axis is a consequence of the camera cutout. Due to experimental effects like illumination
variation and a slightly tilted DOE the ellipse in Fig. 3(c) is not completely closed like the one
from the simulated data, Fig. 3(f).

The evolution of the 1st order of the Fourier transform over the z-stack is illustrated in Fig. 4(a)
and Fig. 4(b) for the experimental and simulated data, respectively. Figure 4 indicates that the
self-images of the (spectrum of the) fork grating appear in the Talbot planes at 5.90, 10.65 and
16.15 mm, in agreement with the fundamental Talbot length LT . The repetitive appearance of
the ring structure can be seen more clearly when traveling through the Talbot distance in the
stack, see Visualization 1 and Visualization 2 in the SI for the experimental and simulated data,
respectively. The beam evolution gives insight in the Talbot effect and its fundamental Talbot
length LT .

For an improved quantitative assessment of the self-imaging, the PCC, Eq. (10), was calculated
for the 1st order area of the Fourier spectra. The resulting PCC maps from experimental, Fig. 5(a),

https://doi.org/10.6084/m9.figshare.21922560
https://doi.org/10.6084/m9.figshare.21922566
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Fig. 3. Fourier analysis of a single bifurcation grating. Intensity images at z= 5.90 mm
behind the DOE from experiment (a) and simulation (d), rotated by 45° with zero padding.
(b) and (e) are power spectra of (a) and (d), respectively. The orange dashed rectangle marks
the positive 1st order. (c) and (f) are cut-outs of the 1st order in (b) and (e), respectively. The
white dashed area delineates the frequency band used for the calculation of the PCC map in
Fig. 5.
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Fig. 4. 1st order beam evolution at some exemplary distances behind the single bifurcation
grating from the experimental (a) and simulated (b) data. At regular distances from the fork
grating, the Talbot effect appears.

and simulated spectra, Fig. 5(c), are in good agreement. The Talbot effect is visualized by the
dark-red lines of high correlation values running across the map parallel to the autocorrelation
diagonal line starting at the bottom left. These self-image ridges are not straight as highlighted by
the white-dashed lines. The non-linearity of these self-imaging lines is a consequence of the TC.

Fig. 5. PCC maps generated from the first order Fourier component from experiment (a)
and simulation (c). Both maps show self-imaging (highlighted by white dashed lines). (b)
and (d) are cross-sections taken along the black line in (a) and (c), respectively. The black
rings mark the maxima of the curves which are separated by the fundamental Talbot length
LT (red arrows).
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The horizontal black lines taken through the PCC maps represent the PCC values of the Fourier
spectrum around the 1st order taken at z= 10.65 mm with the entire stack of spectra from 6 to
22 mm. Figure 5(b) and Fig. 5(d) show that the recurrence of the pattern occurs over the full
stack. It allows evaluating the fundamental Talbot length LT from the correlation maxima (black
circles) and results in 5.45 mm and 5.35 mm in the experiment, and 5.60 mm and 5.20 mm in the
simulation.

Based on the self-imaging effect of the DOE the Fourier spectra allow a phase reconstruction.
The Fourier Transform phase retrieval method is applied to the spectrum at z= 5.90 mm.
Figure 6(a) shows the retrieved wrapped phase from the experimental data. Phase retrieval from
the simulated data yields an identical result so its display is waived here. A single bifurcation is
clearly visible in the central part of the wrapped phase map. The bifurcation in combination with
the ring structure of the 1st order in the power spectrum, Fig. 3(c), is proof of the presence of the
TC |l| = 1 in the near-field. To demodulate the inherent phase vortex, the carrier frequency was
subtracted from the wrapped phase map and the resulting phase vortex with |l| = 1 is shown in
Fig. 6(b). The helical phase front of the vortex going from –π to +π is marked by black arrows.
Both maps are given in a diamond shape, which corresponds to the measurement area shown in
Fig. 3(a).

Fig. 6. (a) Retrieved wrapped phase map from the experimental data taken at z= 5.90 mm.
(b) The corresponding helical phase map after subtraction of a linear phase map corresponding
to the carrier frequency. The black arrows indicate the azimuthal phase gradient around the
singularity in the center.

4.2. Double bifurcation grating

The same procedure was applied to a fork grating with double-bifurcation as shown in Fig. 2(a)
and Fig. 2(b). The horizontal pitch in this fork grating varied from pbottom ≅ 725 µm to ptop ≅
695 µm, corresponding to Talbot distances of 4.42 mm to 4.07 mm, respectively, according to
Eq. (9). The stack of near-field images was taken over a range of ∆z= 16 mm. The detector plane
and the DOE were aligned parallel in this experiment to get the sharpest self-images. However,
this caused a parasitic interference that amplified or reduced the signal during the z-scan.

Figure 7(a) shows the measured intensity distribution at z= 8.25 mm, where the self-image
had the highest contrast from all images of the stack. This corresponds to the second Talbot
plane. Thus, the corresponding power spectrum depicted in Fig. 7(b) reveals a ring like structure
in the 1st order (orange dashed rectangle). To increase the frequency resolution the spatial
domains were expanded to a size of 2500× 2500 pixels with zero padding. The simulation shows
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the corresponding intensity image, Fig. 7(d), and power spectrum, Fig. 7(e). The simulated
power spectrum shows a clear ring structure in the 1st order (orange dashed rectangle). Double-
bifurcation fork gratings show a larger ring diameter than single-bifurcation ones, compare to
Fig. 3(c). The cutout around the 1st order in Fig. 7(c) and Fig. 7(f) reveal that the large ring
consists of two partially overlapping rings. The two neighboring minima are an indicator of a
vortex beam with twofold topological charge.

Fig. 7. Fourier analysis of a double bifurcation grating. Intensity images at z= 8.25 mm
behind the DOE from experiment (a) and simulation (d). (b) and (e): Power spectra of (a)
and (d), respectively. The orange dashed rectangle encloses the positive 1st order. (c) and
(f): Cut-out of the positive 1st order calculated with a higher frequency resolution.

The recurrence of the self-imaging distance is less clear from the experimental data. However,
the recurrence of the ring structure in the 1st order can be seen more clearly when traveling
through the simulated data, see Visualization 3 in the SI. For the sake of completeness, a video
generated from the stack of experimental data is available too, see Visualization 4 in the SI, even
if the self-imaging is much harder to recognize.

To verify the fundamental Talbot length, a PCC map was generated from the areas marked by
the white dashed rectangle in Fig. 7(c) and Fig. 7(f), through the entire stack of power spectra.
Figure 8 compares the PCC maps from the spectra of the experimental and simulated data.
The parasitic interference induced by the parallel configuration of the detector and DOE-plane

https://doi.org/10.6084/m9.figshare.21922578
https://doi.org/10.6084/m9.figshare.21922584
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contributed a strong ripple structure in the experimental data, see Fig. 8(a) and Fig. 8(b). In
contrast, the PCC map generated from simulated data, Fig. 8(c) and (d), does not exhibit such
an effect. The red curve in Fig. 8(b) is a low-pass filtered signal, obtained from a Fourier
decomposition in z up to the fourth harmonic, and eliminates the strong high-frequency parasitic
interference.

Fig. 8. PCC maps of the 1st order Fourier components of a double bifurcation grating. PCC
maps generated from experimental (a) and simulated (c) data. (b) and (d): PCC cross-section
taken along the black line in (a) and (c), respectively. The black circles mark the maxima of
the black PCC cross-section lines and yield the fundamental Talbot length LT (red arrows).

Both PCC maps show that the self-imaging contrast washes out with increasing distance more
quickly than in the case of a single-bifurcation grating, see Fig. 5(a). This is attributed to the
larger change of the carrier frequency around the vortex with increasing TC, i.e., the Talbot
planes corresponding to the upper and lower half of the fork grating separate increasingly with
increasing distance. The white circles mark the maxima of the black PCC cross-section lines
and yield the fundamental Talbot length LT (red arrows) to be 4.20 mm and 3.85 mm for the
experiment and 4.25 mm and 4.40 mm for the simulation, respectively.

Fourier transform phase retrieval was applied to the positive 1st order shown in Fig. 7(c) and
Fig. 7(f). In the experiment, the recovered phase shows two bifurcations separated by roughly 40
pixel along the grating lines, Fig. 9(a). This displacement is attributed to experimental artefacts
like inhomogeneous illumination of the DOE and a slight tilt. However, other experimental
conditions, in particular the parasitic interference, made the self-images of the 2nd Talbot distance
the best candidate for phase retrieval, and in fact, the recovered phase shows a double-bifurcation.
The simulation, Fig. 9(c) shows an ideal double-bifurcation in the center. For better visualization
of the phase vortices, the carrier frequency was subtracted in Fig. 9(b) and Fig. 9(d). These
images show that the beam carries OAM of |l| = 2. The black arrows highlight the phase change
in one turn.
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Fig. 9. Wrapped phase maps from the experiment (a) and simulation (c) and the correspond-
ing demodulated helical phase in (b) and (d), respectively. The black arrows highlight the
phase change in the azimuthal direction around the singularities.

4.3. Far-field measurement

To complete the assessment of the double-bifurcation fork grating, a measurement of its far-field
diffraction pattern was performed. Figure 10(a) sketches the experimental setup. Figure 10(b)
shows the characteristic intensity profile of the diffracted beam orders depending on their TC.
The black arrows of the ±1st orders indicate the transversal projection of the k-vector on the
x-y-plane, together with the circumferential phase information which continuously runs from 0 to
4π in one roundtrip for |l| = 2. As demonstrated by Alperin et al. [42], passing a vortex beam
through a cylindrical lens (CL) leads to an interference pattern at the lens focal plane as sketched
in Fig. 10(c). The inclination of the focal line with respect to the y-axis is given by the magnitude
of the transverse component kx of the wave vector k. Meanwhile, the y-component remains
unaltered. The phase is uniform for |l| = 0 in the zero diffraction order. However, destructive
interference due to the horizontal phase components leads to the minima of the focal lines
displaced in x-direction. The number of these dark fringes corresponds to the TC, while the
inclination of the line encodes its sign.

Figure 10(d-f) show the beam profile of the –1st, 0th and +1st diffraction order measured using
a plano-convex lens to reduce their size. They correspond to the expected shapes from Fig. 10(b).
Note that all intensity profiles show some inhomogeneity, caused by the non-Gaussian beam
shape and the non-uniform camera sensitivity. Further, the diaphragm shutter and sample holder
added some ring-shaped diffraction patterns. Nevertheless, the results are significant because
the high-intensity rings of the ±1st diffraction orders are clearly seen, while there is no distinct
ring structure for the 0th diffraction order. Figure 10(g-i) depict the measurement results in the
focal plane of a 3D-printed cylindrical lens with a focal length of 120 mm. The white dashed
lines highlight the minima. Again, the results correspond to the expected shapes from Fig. 10(c).
These far-field results demonstrate that the fork grating with a double-bifurcation performs as
expected.
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Fig. 10. (a) Far-field measurement set-up and effect of a cylindrical lens (CL) on the
diffracted beams of a double-bifurcation fork grating. (b) Beam profiles of the -1st, 0th,+ 1st

diffraction orders (green numbers) carrying a TC of l= -2, l= 0, l=+ 2, respectively. (c)
Corresponding intensity patterns at the focal plane of the CL. (d-f) Far-field camera images
of the -1st, 0th,+ 1st diffraction orders. (g-i) Interference pattern in the focal plane of the CL.
Dark fringes are marked by white dashed lines.

5. Conclusions

In this work, we introduced a method to determine OAM including the TC in the near-field
of fork gratings using the Talbot effect. In doing so, the self-imaging of binary fork gratings
was demonstrated in the THz regime, and the fundamental Talbot length was experimentally
determined and compared to simulations. The far-field diffraction orders of fork gratings are
known to carry TC. However, the far-field diffraction pattern of a DOE is identical to the Fourier
transform of the scattering plane. Based on the Talbot effect the TCs generated by single and
double bifurcation fork gratings were evidenced experimentally and with appropriate simulations
in the near-field. Finally, to confirm the findings from the near-field, measurements of its
far-field diffraction were performed. The TC was measured by means of a 3D-printed cylindrical
lens. This showed good agreement with research done in other regimes of the electromagnetic
spectrum.
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The proposed method is not limited to the THz regime, but can be applied to the entire
electromagnetic spectrum provided the appropriate equipment for imaging is at disposal, and
the fork grating parameters are scaled to the wavelength. The ability to recover the helical
phase from near-field diffraction closes a gap in the detection of TC in the nearfield of fork
gratings. Because fork gratings are widely used to generate OAM carrying beams, our work
will bring an additional impetus to the field of communication and imaging technology, e.g. by
combining nano-printing and fiber technology to get a reliable TC read-out at the end of an
information channel. To measure the TC of OAM beams in the near-field could also be decisive
when there is no possibility for the beam to propagate to the far-field. A typical example for
short propagation distances are photonic circuits or information technology in general. The
applicability is also highlighted when considering diffractive optical elements that change their
number of bifurcations dynamically, and its topological charges need to be known or verified.
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